
SSAI: A SYMMETRIC SPARSE APPROXIMATE INVERSE PRECONDITIONER
FOR THE CONJUGATE GRADIENT METHODS PCG AND PCGLS

SHAKED REGEV∗ AND MICHAEL A. SAUNDERS†

Abstract. We propose a method for solving a Hermitian positive definite linear system Ax = b, where A is
an explicit sparse matrix (real or complex). A sparse approximate right inverse M is computed and replaced by its
symmetrization M̃ , which is used as a left-right preconditioner in a modified version of the preconditioned conjugate-
gradient method (PCG), where M is modified occasionally, if necessary, to make it more positive definite. M is formed
column by column and can therefore be computed in parallel. PCG requires only matrix-vector multiplications with A
and M̃ (not solving a linear system with M̃), and so too can be carried out in parallel. We compare it with incomplete
Cholesky factorization (the gold standard for PCG) and with MATLAB’s backslash operator (sparse Cholesky) on
matrices from various applications. For least-squares problems, we implement an analogous form of preconditioned
Conjugate Gradient Least-Squares (PCGLS) which is also shown to be robust.

Key words. sparse matrix, preconditioning, SPAI, PCG, PCGLS, parallel computing

AMS subject classifications. 65F08, 65F10, 65F50

1. Introduction. We consider linear systems Ax = b, where A ∈ Cn×n is a Hermitian positive
definite (HPD) matrix (real or complex), and x, b ∈ Cn. We also consider least-squares problems
min ‖Ax− b‖2, where A ∈ Cm×n. In both cases, we assume A is an explicit, sparse matrix.

HPD systems are common in many fields including computational fluid dynamics, power net-
works, economics, material analysis, structural analysis, statistics, circuit simulation, computer vi-
sion, model reduction, electromagnetics, acoustics, combinatorics, undirected graphs, and heat or
mass transfer. A reliable and efficient solution method is therefore crucial. Solving directly (for
example with sparse Cholesky factorization) may be computationally prohibitive. Iterative methods
are then preferred, especially when they use the sparsity structure of the matrix [17, 39]. For HPD
systems, the conjugate gradient method (CG) [20] and preconditioned CG (PCG) are such methods.

In general, the rate of convergence of iterative methods for solving Ax = b depends on the
condition number of A and the clustering of its eigenvalues. Preconditioning requires a matrix
M ≈ A−1 such that AM ≈ I or MA ≈ I [4]. The transformed systems AMy = b, x = My or
MAx = Mb have the same solution as Ax = b but are typically better conditioned. One strategy
for approximating A−1 is to choose a sparse M to minimize the Frobenius norm of AM − I or
MA− I [3]. As MATLAB uses column major storage for matrices, we focus on minimizing

(1) ‖AM − I‖2F ≡
n∑

j=1

‖Amj − ej‖22 ,

where mj and ej denote column j of M and I.

If we have M̃ = CHC for some nonsingular C, then M̃ is HPD and we can precondition Ax = b
by solving the left-right preconditioned system

(2) CACHy = Cb, x = CHy.

The matrices C and CH are not needed by PCG, just products M̃v for given vectors v.
Incomplete Cholesky factorization [25, 26], as implemented in MATLAB’s ichol, is a popular

method for computing a sparse triangular matrix L such that LLH ≈ A (and C = L−1 in (2)). In
this case, PCG requires triangular solves with L and LH each iteration. A typical choice for the

∗Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA (E-mail: sregev@
stanford.edu).
†Systems Optimization Laboratory, Department of Management Science and Engineering, Stanford University,

Stanford, CA (E-mail: saunders@stanford.edu). Version of December 11, 2019

1

sregev@stanford.edu
sregev@stanford.edu
saunders@stanford.edu

2 S. REGEV and M. A. SAUNDERS

Algorithm 1 Diagonal scaling of A

1: Define a diagonal matrix D with Dii = 1/
√
Aii

2: A← D∗tril(A)∗D (the strictly lower triangular part of A)
3: A← A+AH + I

sparsity structure of L is that of the lower triangular part of A. The cost of each PCG iteration
with LLH preconditioner is then about twice that of CG. Choosing a denser L is usually undesirable
unless it substantially decreases the number of iterations. Choosing a sparser L will generally lead
to more iterations, while not changing the asymptotic cost of each iteration. Therefore, we restrict
our discussion to the iChol factorization [25, 26] with no fill-in, and its modified version (miChol).
While both versions omit elements of the exact L, miChol compensates the diagonal for the dropped
elements by ensuring Ae = LLHe, where e is an n-vector of all 1s.

An alternative to incomplete factorization is sparse approximate inverse preconditioning (AINV
in Benzi et al. [5] and SPAI in Grote and Huckle [18]). For sparse HPD systems we propose SSAI,
a symmetric sparse approximate inverse preconditioner. It is an inherently parallel SPAI algorithm
adapted from the left-preconditioner described for GMRES [31] in [32]. (Some other SPAI algorithms
described in [10] were implemented, but they were less efficient in preliminary tests.)

The paper is organized as follows. Section 2 details the algorithms for computing our precon-
ditioner M̃ ≈ A−1 and solving Ax = b with a modified version of PCG. Section 3 compares M̃
with iChol, miChol, and sparse Cholesky (via MATLAB’s ‘\’ operator) on a wide variety of square
matrices from different applications from the SuiteSparse Matrix Collection [12] and other sources.
For least-squares problems, section 4 tests the same preconditioner on the normal equations, and
develops a modified version of preconditioned Conjugate Gradient Least-Squares (PCGLS), to solve
some examples from SuiteSparse [12]. Matrices in Sections 3, 4 are chosen to cover a wide array
of fields and problem sizes, and several scale-up tests. Section 5 examines sparsity structures of
square and rectangular systems and their impact on choosing solution methods. Section 6 discusses
complexity and parallel implementation. Section 7 discusses results and future directions. For sym-
metric indefinite systems, section 7.1 shows that CS-MINRES [8] can be used with an indefinite
preconditioner M = CTC if and only if C is available separately. Thus, SSAI is not useful in this
situation (because it exists as M , not as CTC).

2. A PCG algorithm for HPD linear systems. For SSAI and comparisons with existing
methods, we start by diagonally scaling A using Algorithm 1. Each off-diagonal entry is scaled by the
square root of the product of the diagonal entries in its row and column. Thus, Aii = 1 and |Aij | . 1.
The symmetry and unit diagonal of the scaled A are not affected by round-off. Algorithm 1 takes
O(k) time, where k ≡ nnz(A) is the number of nonzeros in A. It could be parallelized (less trivially
than the rest of SSAI) but its cost is negligible. The system to be solved becomes DADy = Db,
x = Dy. From now on we assume Ax = b has been scaled in this way.

For each column of M , if we define the residual to be rj = ej −Amj , Algorithm 2 is essentially

coordinate descent on the function 1
2 ‖rj‖

2
2. The main differences between Algorithm 2 and the

method of [32] are application to PCG (not GMRES), simplification of the for loops, parameter
selection (lfil and itmax), and the fact that the symmetrization on line 16 is mandatory instead
of optional. Algorithm 2 computes the ith entry of mj with a maximum number of nonzeros per
column (nnz(mj) ≤ lfil). Note that line 12 sets r[i] = 0; thus, the next i will be different.

We must choose itmax ≥ lfil for SSAI to work, but not so large that the preconditioner is too
expensive to compute. (In our experiments, we set itmax = 2*lfil.) We construct M column by
column (not row by row) because this leads to efficient memory access in MATLAB.

It is known that many entries of the inverse of a sparse HPD matrix are small in magnitude [13].
Lines 6–8 of Algorithm 2 tend to generate the larger values of mj . M itself has previously been used
with GMRES, but PCG requires a Hermitian preconditioner. If M is a good right preconditioner,

SSAI PRECONDITIONER 3

Algorithm 2 SSAI: left-right HPD preconditioner

1: M ← 0n×n

2: for j ← 1 to n do
3: m← 0n×1

4: r ← ej (n× 1)
5: for k ← 1 to itmax do
6: i = indmax(|r|) (index of maximum element-wise absolute value)
7: δ ← r[i]
8: m[i]← m[i] + δ
9: if nnz(m) ≥ lfil then

10: break;
11: end if
12: r ← r − δ∗ai
13: end for
14: mj ← m
15: end for
16: M̃ ← (M +MH)/2

i.e., it minimizes (1) in some subspace, we know that MH minimizes
∥∥MHA− I

∥∥
F

in the same
subspace, and so is a good left preconditioner. Thus, the Hermitian matrix M̃ = (M +MH)/2
should be a good left-right preconditioner.

If M is PD, it follows that MH is PD and M̃ is HPD. However, M may not be PD. Grote and
Huckle [18] prove that if ‖rj‖2 ≡ ‖Amj − ej‖2 < ε and p denotes the maximum number of nonzeros
in any column of the residual, the eigenvalues of AM lie inside a disk of radius

√
pε, centered around

1. As p ≤ n, taking ε = 1/
√
n, changing line 5 of Algorithm 2 to “While ‖rj‖2 ≥ ε do”, and removing

lines 9–11, guarantees M will be PD [32], but would substantially increase computation time.
Fortunately, Algorithm 2 usually produces an HPD M̃ . In Algorithm 3 we use an alternative

and less expensive way of ensuring M̃ is HPD, and this has proved effective in the numerical tests.
If M̃ = CHC, it is natural to ask whether CACH ≈ I. The eigensystem of M̃ proves there

is a unique HPD C̃ such that M̃ = C̃2. Further, for a Hermitian A, AC̃2 = I ⇒ C̃AC̃ = I. By
continuity, we can expect that minimizing ‖AM̃ − I‖2F tends to minimize ‖C̃AC̃ − I‖2F .

For simplicity, the rest of the paper uses M in place of M̃ .
In Algorithm 3 the computed preconditioner M̃ (now M) is used in a version of PCG, modified

to include a matrix-vector multiplication instead of a linear system solve, since typically M ≈ A,
but in our case M ≈ A−1. This algorithm is mathematically equivalent to using CG for solving
system (2). In exact arithmetic, PCG is guaranteed to converge in at most n iterations. In practice
this number is usually much less than n with any reasonable preconditioner. We can therefore safely
choose itmax= n, knowing that our break condition will usually be the one to stop the loop. We
store our initial guess as x0 and use dx to compute the difference from the guess accrued by the
algorithm. If x0 is a very good guess, the small steps defining dx won’t be lost to round-off error.

A further safeguard is to detect indefiniteness or near-singularity in M (lines 18–20) and restart
PCG with an updated x0 and a more HPD M . The normalized inner product of r with M is
ρ̂ ≡ (rHMr)/ ‖r‖22. If ρ̂ is small or negative, M must be close to singular or indefinite. In this case,
we define tolM to be the minimal ρ̂ that we accept, and otherwise modify M in a linear fashion to
increase ρ̂, update x0, and restart PCG.

The original PCG has a solve with M instead of the matrix-vector product in line 16. The
product can be parallelized (another advantage of SSAI). Benzi et al. [5] introduce a sparse approx-
imate inverse of the Cholesky factor, again allowing a parallel product. However, their method does
not parallelize the computation of the preconditioner, and should not be expected to work when
Cholesky fails. (SSAI does not depend on Cholesky factorization.) Some known methods such as [32]

4 S. REGEV and M. A. SAUNDERS

Algorithm 3 Modified PCG Typical parameters: tolM = 10−2, δ = 10

1: r ← b−A∗x0, dx← 0n×1

2: p← z ←M ∗r
3: ρnew ← real(zH∗r)
4: for j ← 1 to itmax do
5: q ← A∗p
6: β ← real(pH∗q)
7: if β ≤ 0 then
8: break; (A is not PD)
9: end if

10: ρ← ρnew, α← ρ/β
11: dx← dx+ α∗p
12: r ← r − α∗q
13: if ‖r‖2 / ‖b‖2 < tol then
14: break
15: end if
16: z ←M ∗r
17: ρnew ← real(zH∗r), ρ̂ = ρnew/ ‖r‖22
18: if ρ̂ < tolM then
19: Restart at line 1 with x0 ← x0 + dx, M ←M + (δ∗(tolM− ρ̂))∗I
20: end if
21: p← z + (ρnew/ρ)∗p
22: end for
23: x = x0 + dx

aim to compute an HPD preconditioner, but use it on the left or right with more general methods
such as GMRES, because the resulting matrix AM or MA is not guaranteed to be Hermitian. These
methods are far less efficient than PCG, which is tailored for HPD matrices and has fixed storage.

If A is not already scaled, diagonal scaling MD = diag(A)−1 is typically far more effective than
no preconditioner, but it is not “greedy enough” as MD is much cheaper to apply than A. Each
iteration costs roughly the same on large matrices, but we may neglect important information on the
off-diagonals, costing valuable iterations. SSAI is the best of both worlds: it retains the advantages
of a good sparse approximate HPD inverse, and allows the iterative solver to be PCG.

3. Numerical results on HPD systems. We compare the performance of SSAI (Algo-
rithm 2) with the iChol and miChol preconditioners and the intrinsic backslash (\) solver, using
MATLAB on a serial PC. For all methods, we apply Algorithm 1 to HPD matrices A to obtain
a scaled matrix A with unit diagonal. We then attempt to solve Ax = b, where b = Aw and
wT = [1, 2, . . . , n]/n. The first section uses matrices from the SuiteSparse collection, and the other
sections contain scale-up tests for problems submitted to SuiteSparse and also available in [29].

Note that the MATLAB implementation of SSAI handles both real and complex systems (with-
out change), but SuiteSparse contains only one complex HPD matrix (mhd1280 in Table 1).

iChol and miChol are computed by the built-in function ichol(A) with opts.type = ’nofill’

and opts.michol = ’off’ and ’on’ respectively. We implement SSAI as in Algorithm 2 and use
it with PCG as in Algorithm 3. For iChol and miChol, a simpler form of PCG replaces the product
with M by two triangular solves (corresponding to the iChol factors). Backslash computes the
Cholesky factors of A if possible, and then two triangular solves. Otherwise, it tries MATLAB’s ldl
function (LDLH with possibly indefinite D) or sparse LU factorization. Note that decompositions
take far more time than triangular solves. If there are multiple right-hand sides, it is best to compute
the decomposition explicitly using Ã = decomposition(A,’chol’) and x = Ã\b for each b.

SSAI PRECONDITIONER 5

In Algorithm 2 we use itmax = 2∗lfil and lfil = ceil(nnz(A)/n), giving nnz(M) ≈ nnz(A).
These values were chosen to be roughly consistent with iChol, and for the same reason of not
substantially affecting the run-time of each PCG iteration. It is possible that different values would
give better results, including selecting lfil on a column by column basis, but here we focus on the
method itself and not optimizing on the edges.

In Algorithm 3 we use tol = 10−8, tolM = 10−2, δ = 10. Final relative residuals ‖b−Ax‖2 / ‖b‖2
were verified to be below tol. The relative residual for backslash was always much closer to machine
precision.

In the tables of results, miChol is omitted because when it worked, the number of iterations was
very similar to that of iChol, but it was less robust, frequently encountering a non-positive pivot
even when iChol worked seamlessly. iChol and ‘\’ are also omitted if they failed. T1 and T2 are the
times (in seconds) for Algorithms 2 and 3. For ‘\’, only total time is reported as T2.

The MATLAB code for Algorithms 2 and 3 is available from [30].

Table 1: Results with unmodified M

Field Matrix n nnz Method Itns T1 T2

Acoustics aft01 8,205 125,567 iChol 87 1.15e−3 1.56e−1
\ - - 1.15e−2
SSAI 228 2.08e+0 2.30e−1

qa8fm 66,127 1,660,579 iChol 6 1.20e−2 1.33e−1
\ - - 1.71e+0
SSAI 11 3.07e+1 1.14e−1

Circuit G2 circuit 150,102 726,674 iChol 486 5.77e−3 1.32e+1
Simulation \ - - 3.84e−1

SSAI 827 1.24e+1 1.09e+1
G3 circuit 1,585,478 7,660,826 iChol 564 9.44e−2 2.08e+2

\ - - 8.41e+0
SSAI 1132 8.79e+2 1.93e+2

Fluid shallow water 81,920 327,680 iChol 11 2.78e−3 1.60e−1
Dynamics \ - - 1.31e−1

SSAI 16 4.12e+0 1.45e−1
parabolic fem 525,825 3,674,625 iChol 696 3.61e−2 7.35e+1

\ - - 1.57e+0
SSAI 892 9.39e+1 7.10e+1

Computer bundle1 10,581 770,811 iChol 22 1.88e−1 1.07e−1
Graphics/ \ - - 1.33e−1
Vision SSAI 25 1.42e+1 8.89e−2

Andrews 60,000 760,154 iChol 43 1.85e−2 9.73e−1
\ - - 6.26e+0
SSAI 59 8.70e+0 9.84e−1

Economics finan512 74,752 596,992 iChol 8 5.72e−3 1.20e−1
\ - - 1.21e−1
SSAI 11 7.32e+0 1.33e−1

Electro- mhd1280 1,280 22,778 iChol 6 6.68e−4 9.63e−3
magnetics \ - - 1.51e−3

SSAI 12 4.13e−1 1.18e−2
mhd4800b 4,800 27,520 iChol 2 4.07e−4 2.25e−3

\ - - 1.72e−3
SSAI 12 3.67e−1 7.58e−3

2cubes sphere 101,492 1,647,264 iChol 9 3.00e−2 3.04e−1
\ - - 2.86e+0
SSAI 10 1.96e+1 2.54e−1

tmt sym 726,713 5,080,961 iChol 1043 4.87e−2 1.69e+2
\ - - 2.49e+0
SSAI 1976 1.59e+2 1.79e+2

Geomechanics Bump 2911 2,911,419 127,729,899 SSAI 784 4.97e+3 6.14e+2
Materials crystm03 24,696 583,770 iChol 2 5.09e−3 1.90e−2

\ - - 2.21e−1

6 S. REGEV and M. A. SAUNDERS

SSAI 11 8.80e+0 4.14e−2
Optimization torsion1 40,000 197,608 iChol - - 1.81e+0

\ 651 8.69e+1 2.53e+1
SSAI - - 1.24e+1

gridgena 48,962 512,084 iChol 9353 8.20e+2 2.62e+3
\ 3147 1.02e+3 9.55e+2
SSAI 18 1.52e−3 1.35e−1

Power 1138 bus 1,138 4,054 iChol - - 4.35e−2
Network \ 29 1.92e+0 1.14e−1

SSAI 713 3.63e−3 6.64e+0
ecology2 999,999 4,995,991 iChol - - 1.02e−1

\ 987 7.19e+0 4.99e+0
SSAI 141 2.11e−4 3.84e−2

Random wathen120 36,441 565,761 iChol - - 9.24e−4
\ 451 6.32e−2 8.76e−2
SSAI 1718 3.94e−2 4.67e+2

Statistics Chem97ZtZ 2,541 7,361 iChol - - 1.74e+0
\ 3248 2.60e+2 2.04e+2
SSAI 10 3.88e−3 8.81e−2

Structural Kuu 7,102 340,200 iChol - - 6.19e−2
Mechanics \ 18 6.52e+0 1.03e−1

SSAI 1 2.07e−4 6.00e−4
boneS01 127,224 5,516,602 \ - - 1.10e−3

SSAI 15 7.02e−2 6.40e−3
boneS10 914,898 40,878,708 \ 72 4.60e−3 1.89e−1

SSAI - - 1.45e−2
bone010 986,703 47,851,783 SSAI 118 6.10e+0 2.07e−1
Flan 1565 1,564,794 114,165,372 iChol 1948 2.28e+0 1.78e+3

SSAI 1426 2.40e+3 8.12e+2
Thermal ted B unscaled 10,605 144,579 iChol 1 1.56e−3 3.04e−3

\ - - 5.37e−3
SSAI 8 1.99e+0 1.16e−2

thermomech TC 102,518 711,558 iChol 8 1.46e−2 2.46e−1
\ - - 2.75e−1
SSAI 12 8.77e+0 2.56e−1

thermal2 1,228,045 8,580,313 iChol 1817 1.47e−1 7.24e+2
\ - - 4.36e+0
SSAI 2418 4.36e+2 6.37e+2

3.1. Matrices from SuiteSparse. Table 1 gives results for matrices where M did not need to
be modified within PCG. It shows there are some large problems where SSAI is the only method that
works. There is a way to ensure that iChol succeeds with the ‘diagcomp’ option with parameter α,
which calculates iChol on A +α*diag(diag(A)). (For scaled A, this is equivalent to A +α*speye(n).)
However, there is no foolproof way for selecting α. On the matrices tested, α = 0.1 did not work but
α = 1 did. In the latter case, the PCG time T2 was substantially larger than with SSAI. MATLAB
advises that α = max(sum(abs(A))./diag(A)) - 2 guarantees A +α*diag(diag(A)) is diagonally
dominant—a sufficient condition for iChol to succeed, but a too conservative one. It led to α ≈ 10
and even more iterations. We recommend iChol be used only when it works with α = 0.

Table 1 also shows that the cost per iteration of PCG + SSAI is almost always less than that
of PCG+iChol. If the number of PCG iterations is lower or comparable with SSAI, which indeed
occurs frequently, SSAI would be preferred even when the other methods work. Note that iChol
and ‘\’ are intrinsic MATLAB functions coded in C and thus can be expected to outperform .m

functions such as Algorithms 2 and 3, or PCG with iChol. The disparity between run times of
intrinsic and .m functions in MATLAB can be 3 orders of magnitude [2, 23]. Thus, although T1
is often significant for SSAI, if efficiently implemented it could outperform iChol on large systems
(given that nnz(M) < 2∗nnz(L)). Also, the T1 cost is less significant when there are multiple bs.

Table 2 contains the case where M had to be modified by Algorithm 3 (meaning ρ̂ = rHMr/ ‖r‖22

SSAI PRECONDITIONER 7

Table 2
Results with modified M

Field Matrix n nnz Method Itns R T1 T2

Fluid bcsstk13 2,003 83,883 \ - - 2.08e−2
Dynamics SSAI 320 1 1.61e+0 1.48e−1

Pres Poisson 14,822 715,804 iChol 206 - 1.48e−2 1.19e+0
\ - - 8.43e−2
SSAI 202 2 1.21e+1 8.52e−1

cfd2 123,440 3,085,406 \ - - 1.80e+0
SSAI 1235 1 5.32e+1 2.90e+1

StocF-1465 1,465,137 21,005,389 SSAI 7983 1 9.29e+2 1.85e+3
Optimization cvxbqp1 50,000 349,968 \ - - 1.72e−1

SSAI 1642 1 4.96e+0 1.34e+1
Structural sts4098 4,098 72,356 \ - - 1.02e−2
Mechanics SSAI 110 1 1.21e+0 8.68e−2

bcsstk18 11,948 149,090 \ - - 2.69e−2
SSAI 441 1 2.40e+0 9.31e−1

hood 220,542 9,895,422 \ - - 8.44e−1
SSAI 567 1 1.88e+2 3.77e+1

Fault 639 638,802 27,245,944 SSAI 662 1 5.76e+2 1.10e+2
Queen 4147 4,147,110 316,548,962 SSAI 1508 1 1.21e+4 2.02e+3

Undirected pdb1HYS 36,417 4,344,765 iChol 276 - 1.26e−1 7.05e+0
Graph \ - - 9.77e−1

SSAI 512 2 7.75e+1 9.80e+0

Table 3
Results on StocF-1465 with varying lfil and itmax

lfil itmax nnz(M) nnz(M)+nnz(A) Itns R Obj
20 40 11,033,497 32,038,886 7691 1 1.03
30 60 13,342,987 34,348,376 6767 1 0.97
40 80 15,282,153 36,287,542 6072 1 0.92
50 100 16,981,205 37,986,594 5487 1 0.87
60 120 18,526,847 39,532,236 5263 1 0.87
70 140 19,950,933 40,956,322 5156 1 0.88
80 160 21,293,187 42,298,576 4660 2 0.82
90 180 22,566,173 43,571,562 4631 1 0.84

100 200 23,774,337 447,797,26 4315 1 0.81

is small or negative). SSAI is the only method that succeeds on the three largest problems. For
smaller problems, it seems that other methods usually work better. The number of iterations
reported includes iterations before and after M was changed. The number of changes to M is
labeled R. Evidently with very few corrections to M , SSAI gives an effective HPD preconditioner.

For StocF-1465 (the problem that took the most PCG iterations) we conduct a further study in
Table 3 to see if larger values of lfil and itmax give a better M . Monitoring nnz(M) shows that
Algorithm 2 is terminating mostly because of itmax and not lfil. To avoid discrepancies in run-
time unrelated to the algorithm, we define a measure Obj = [nnz(A) + nnz(M)]∗Itns that roughly
represents the number of operations completed by PCG. We see that the number of iterations is
monotonically decreasing and Obj has a downward trend. We conclude that for some applications,
tweaking the parameters lfil and itmax can be advantageous.

3.2. Scale-up for Trefethen challenge matrices. Table 4 shows scale-up results for a chal-
lenge matrix [37, 38] with increasing prime numbers on the main diagonal and 1s wherever |i−j| = 2N

for some non-negative integer N . The original matrix has n = 20, 000, and the challenge is to com-
pute eT1 A

−1e1. SuiteSparse contains cases n = 2, 000 and 20,000. We generated two larger matrices
of the same form. They remind us that iterative methods are essential for systems that have substan-
tial fill-in in their Cholesky factors. For iChol and SSAI, T2 scales linearly with nnz (with SSAI being

8 S. REGEV and M. A. SAUNDERS

Table 4
Combinatorics problem scale-up

Matrix n nnz Method Itns T1 T2

Trefethen 2000 2,000 41,906 iChol 5 5.82e−4 4.95e−3
\ - - 2.15e−2
SSAI 4 4.04e−1 2.53e−3

Trefethen 20000 20,000 554,466 iChol 5 5.73e−3 3.12e−2
\ - - 5.76e+0
SSAI 3 5.27e+0 1.30e−2

Trefethen 200000 200,000 6,875,714 iChol 4 9.38e−2 3.13e−1
SSAI 3 7.79e+1 1.60e−1

Trefethen 2000000 2,000,000 81,805,698 iChol 3 1.71e+0 3.35e+0
SSAI 2 2.06e+3 1.49e+0

Table 5
Ordered grid structural mechanics scale-up

Matrix n nnz Method Itns T1 T2

FEM3D 2 1,029 71,445 iChol 11 4.03e−3 1.08e−2
\ - - 6.16e−3
SSAI 13 1.32e+0 8.64e−3

FEM3D 3 10,125 1,021,365 iChol 19 4.79e−2 1.31e−1
\ - - 1.23e+0
SSAI 25 2.00e+1 1.18e−1

FEM3D 4 89,373 10,525,557 iChol 35 5.00e−1 2.40e+0
\ - - 9.65e+1
SSAI 45 2.29e+2 2.09e+0

FEM3D 5 750,141 94,852,341 iChol 67 4.49e+0 4.18e+1
SSAI 81 2.42e+3 3.40e+1

twice as fast as iChol). On these problems, ‘\’ scales poorly because the bandwidth grows linearly
with n. It fails on even the moderately sized Trefethen 200000. The PCG iterations remain roughly
constant because the matrix becomes more diagonally dominant near the bottom right corner, and
the solution vector is also concentrated at the bottom. We checked all methods on the original
Trefethen problem by solving with b = e1. Their performance was similar. For each n we recovered
the first ten digits of the solution: 0.7250188326, 0.7250783462, 0.7250809785, 0.7250812561 (found
by all methods that worked). The n = 20, 000 value agrees with [37]. A later publication by some
of the challenge participants [6] found the same values with PCG + a diagonal preconditioner for
the largest three problems. We note that PCG with tol = 10−11 took 14 iterations with a diagonal
preconditioner [6], but only 6 with SSAI. The relatively high cost of calculating M suggests that for
one b, it may not be worth the trouble. However, if we were interested in multiple bs, such as finding
A−1, we would only need to find M once, making it negligible in the overall cost. The number of it-
erations needed to solve each system b = ej is constant empirically and analytically [6]. In fact, with
the matrix becoming more diagonally dominant near the bottom, the number of iterations decreases
with j (for example: n = 20, 000, j = 20, 000 converged in 2 iterations). nnz(A) = O(n log(n)) means
that PCG with any of the three preconditioners can find A−1 in O(n2 log(n)) time, as matrix-vector
products with A (or M) take up the bulk of computation. SSAI has the smallest constant.

3.3. Scale-up for finite-element linear elasticity matrices. Table 5 shows scale-up results
for a structural mechanics problem that results from discretizing a cube using quadratic hexahedral
finite elements. All elements are cubes, leading to a relatively well-conditioned A. We show results
for 4, 8, 16, 32 elements per direction. As in Table 4, ‘\’ fails, though later because the bandwidth
of A grows less rapidly with n compared to the Trefethen problems. Both iterative methods work
well. SSAI needs more PCG iterations but less PCG time. The PCG iterations roughly double as
the number of elements increases—a small price for 2X the resolution in all three directions.

SSAI PRECONDITIONER 9

Table 6
Finite-Volume problem scale-up

Matrix n nnz Method Itns T1 T2

lin4E5 422,400 2,912,312 iChol 445 1.86e−2 6.11e+1
\ - - 8.02e+0
SSAI 662 7.48e+1 3.47e+1

lin1E6 1,122,000 7,779,996 iChol 1139 6.88e−2 6.87e+2
\ - - 8.46e+1
SSAI 1745 3.97e+2 2.40e+2

lin2E6 2,097,152 14,581,760 iChol 1795 1.35e−1 2.73e+3
SSAI 2719 1.38e+3 7.35e+2

lin4E6 4,096,000 28,518,400 iChol 2008 2.42e−1 6.57e+3
SSAI 2950 5.32e+3 1.55e+3

lin8E6 8,000,000 55,760,000 iChol 2960 5.53e−1 2.09e+4
SSAI 4191 2.05e+4 5.79e+3

lin1E7 16,003,008 111,640,032 iChol 2950 1.11e+0 4.48e+4
SSAI 4211 8.56e+4 1.18e+4

Table 7
Unordered grid structural mechanics scale-up

Matrix n nnz Method Itns R T1 T2

ant16 5 629,544 29,697,024 \ - - - 1.16e+1
SSAI 5033 1 6.92e+2 6.75e+2

ant16 10 1,154,164 57,537,984 \ - - - 9.95e+1
SSAI 8973 2 1.54e+3 2.22e+3

ant8 5 2,521,872 119,642,880 SSAI 6339 3 4.34e+3 3.64e+3
ant8 10 4,623,432 231,808,080 SSAI 12063 2 1.16e+4 1.54e+4

3.4. Scale-up for finite-volume petroleum engineering matrices. Table 6 shows scale-
up results for SPE10, an important benchmark for testing solver methods in petroleum engineering
[11]. Examples were constructed by Klockiewicz [21] using the methods in [24] for a petroleum
reservoir simulation. Here again, ‘\’ fails for the larger problems, while both iterative methods work
well. As with the preceding finite-element matrices, iChol needs fewer PCG iterations but more
PCG time. For this problem, nnz(M) ≈ 1.1 nnz(A).

3.5. Scale-up for finite-element ice-sheet matrices. Table 7 shows scale-up results for a
model of ice flow in Antarctica [7, 36]. SSAI is the only method that works on all cases, with ‘\’ failing
for the larger ones and iChol failing on all of them. For this problem, nnz(M) ≈ 0.3–0.4 nnz(A),
leaving room for a denser M .

4. Least-squares problems. We consider least-squares problems minx ‖Ax− b‖2 with rect-
angular A ∈ Rm×n and m > n. (SSAI would work as implemented here for m = n, but we hope to
improve on this in the future.) If A is sparse and Ã ≡ AHA is not too dense, a naive approach is to
apply PCG + SSAI to the normal equation

(3) AHAx = AHb ≡ Ãx = b̃.

The system is HPD iff A has full column rank. Otherwise, Ã is Hermitian positive semi-definite (and
singular) but (3) always has a solution, i.e., the system is compatible. Using the same methods and
comparisons as in Section 3, we compile results for SSAI on least-squares problems. Normalizing
each column of A gives Ã unit diagonals, and then we can apply Algorithms 2 and 3. We set b = AT e
and use b̃, which is normalized with the same diagonal matrix used to normalize A.

When A is rectangular and sparse, ‘\’ uses a QR factorization AP = QR to solve Ax ≈ b
directly without forming AHA (where P is a permutation to preserve sparsity, QHQ = I, and R
is upper triangular). In general, if Ã is sparse, the high efficiency of sparse Cholesky compared to

10 S. REGEV and M. A. SAUNDERS

Table 8
Least-squares problems with rectangular A ∈ Rm×n

Matrix m n nnz (A) nnz (AHA) Method Itns R T1 T2

LargeRegFile 2,111,154 801,374 4,944,201 6,378,592 iChol 35 - 1.23e+2 1.09e+0
\ - - - 3.88e+0
SSAI 47 0 2.06e+2 9.04e−1

ch8-8-b2 18,816 1,568 56,448 114,464 iChol 8 - 3.51e−3 8.99e−3
\ - - - 2.29e−2
SSAI 9 0 2.61e+0 4.92e−3

ch8-8-b3 117,600 18,816 470,400 1,430,016 iChol 11 - 4.29e−2 5.53e−2
\ - - - 5.62e+1
SSAI 11 0 3.30e+1 2.86e−2

ch8-8-b4 376,320 117,600 1,881,600 7,644,000 iChol 15 - 2.20e−1 4.19e−1
SSAI 13 0 1.70e+2 1.67e−1

ch8-8-b5 564,480 376,320 3,386,880 17,310,720 SSAI 12 1 2.30e+2 5.76e−1
image interp 240,000 120,000 711,683 1,555,994 \ - - 3.84e−1

SSAI 8749 0 2.89e+1 2.89e+1
Hardesty2 929,901 303,645 4,020,731 3,936,209 \ - - 1.31e+0

SSAI 29961 0 8.26e+1 2.60e+2
Hardesty3 8,217,820 7,591,564 40,451,632 98,634,426 \ - - 3.32e+1

SSAI 749491 0 1.91e+4 2.04e+5
sls 1,748,122 62,729 6,804,304 4,718,957 iChol 58 - 4.42e−1 9.08e−1

\ - - - 1.27e+1
SSAI 100 2 3.36e+2 2.17e+0

Rucci1 1,977,885 109,900 7,791,168 9,747,744 iChol 158 - 3.71e−1 4.07e+0
\ - - - 7.40e+0
SSAI 2162 2 2.06e+2 2.97e+1

sparse QR makes x = Ã\b̃ outperform x = A\b, as in the examples here. Thus, we use Ã and b̃ for
all methods. Table 8 shows results for one circuit simulation matrix, four combinatorial problems,
three from computer graphics/vision, and two general least-squares matrices [12]. As in Section 3,
when a method fails, it is omitted from the table for that matrix.

We see that SSAI is again the most robust of the three methods. It is the only method to work
on ch8-8-b5 and outperforms the other methods sometimes even when they work. SSAI and iChol’s
T2 scales linearly on ch8-8-b type problems. SSAI is twice as fast as iChol until iChol fails.

Section 4.1 uses PCGLS, a more numerically stable form of PCG on the normal equations.
Section 5 explains the seemingly surprising result of ‘\’ working well on the large Hardesty3, but
not at all on the substantially smaller ch8-8-b4 and ch8-8-b5.

4.1. PCGLS. For the normal equations (3), Hestenes and Stiefel [20, §10] gave a special form
of CG now known as CGLS [28, §7.1], [1, §7.4.1]. If a preconditioner M ≈ (AHA)−1 is known,
preconditioned CGLS can be implemented as shown in Algorithm 4, with operators A and M . Some
previous implementations of PCGLS work in this way (e.g., Regularization Tools [19] and IRtools
[16]), excluding the restarts in lines 16–18. We note that when M is available in factored form
([19, 16] use M = L−TL−1 with L triangular), it should be preferable numerically to work with
CGLS and operator AL−1, rather than with PCGLS.

In case M is not HPD, Algorithm 4 includes restarts with modified M analogous to Algorithm 3.
Table 9 compares the performance of PCG and PCGLS on the same test problems as before (with
R denoting restarts for each algorithm). The results show that PCGLS dominates because of its
numerical superiority. For the same reason, the number of restarts is always equal or lower in PCGLS.
We note that PCG’s first restart for sls and Rucci1 is because there is a negative inner product
with M , and the second is because there is a small (but positive) inner product with M . The first
cannot be avoided by PCGLS, but the second can. For Rucci1, this second update to M evidently
helps PCG’s convergence. The best performance improvement with PCGLS is on Hardesty3, where
the number of iterations and the solution time are about 1% of those for PCG.

SSAI PRECONDITIONER 11

Algorithm 4 Modified PCGLS Typical parameters: tolM = 10−2, δ = 10

1: r ← b−A∗x0, dx← 0n×1

2: t← AH∗r
3: u← w ←M ∗t
4: γnew = tH∗w
5: for j ← 1 to itmax do
6: q ← A∗u, γ ← γnew
7: α← γ/ ‖q‖22
8: dx← dx+ α∗u
9: r ← r − α∗q

10: t← AH∗r
11: if ‖t‖2 / ‖b‖2 < tol then
12: break
13: end if
14: w ←M ∗t
15: γnew = tH∗w, γ̂ = γnew/ ‖t‖22
16: if γ̂ < tolM then
17: Restart at line 1 with x0 ← x0 + dx, M ←M + (δ∗(tolM− γ̂))∗I
18: end if
19: u← w + (γnew/γ)∗u
20: end for
21: x = x0 + dx

Table 9
PCG and PCGLS comparison with rectangular A ∈ Rm×n

Matrix m n PCG Itns PCGLS Itns PCG R PCGLS R PCG T2 PCGLS T2

LargeRegFile 2,111,154 801,374 47 33 0 0 9.04e−1 1.23e+0
ch8-8-b2 18,816 1,568 9 6 0 0 4.92e−3 8.56e−3
ch8-8-b3 117,600 18,816 11 7 0 0 2.86e−2 2.61e−2
ch8-8-b4 376,320 117,600 13 9 0 0 1.67e−1 1.21e−1
ch8-8-b5 564,480 376,320 12 5 1 1 5.76e−1 3.26e−1
image interp 240,000 120,000 8749 5941 0 0 2.89e+1 2.29e+1
Hardesty2 929,901 303,645 29961 2871 0 0 2.60e+2 4.39e+1
Hardesty3 8,217,820 7,591,564 749491 7226 0 0 2.04e+5 2.13e+3
sls 1,748,122 62,729 100 75 2 1 2.26e+0 3.84e+0
Rucci1 1,977,885 109,900 2162 3557 2 1 2.97e+1 1.19e+2

The MATLAB code for Algorithm 4 is available from [30].

4.2. LS problems with dense rows. Our experiments with PCG and PCGLS have obtained
their preconditioner M by applying Algorithm 2 to AHA. When A contains some relatively dense
rows, special methods are needed to avoid forming AHA (and SSAI is not practical). Several such
methods have been given by Scott and T

◦
uma [33, 34, 35].

5. Sparsity structure of A. We examine the sparsity structure of some of our matrices in
Figures 1–2, where for rectangular matrices (last two) we look at the sparsity of AHA in addition to
A. We look at the largest matrix in each of four classes. The sparsity structure of smaller matrices is
essentially identical. The banded structure of AHA is apparent in Hardesty, allowing a dense band
solver (or sparse Cholesky) to solve the problem easily. PCG + SSAI on the other hand is probably
neglecting many large entries in the inverse and requires ≈ n/10 iterations for convergence, which
can be prohibitive. PCGLS+SSAI falls somewhere in between. For this reason, direct methods are
preferred. Trefethen and ch8-8-b are difficult for direct solvers because of the substantial fill-in.

12 S. REGEV and M. A. SAUNDERS

Fig. 1. Sparsity structures of A in square HPD problems.

Fig. 2. Sparsity structures of A in rectangular problems, compared to the sparsity structure of AHA.

However, the low magnitude of most of the omitted entries allows PCG + SSAI to converge with a
constant number of iterations on these problems. FEM3D has the classic sparsity structure of finite-
element matrices. It is less banded than Hardesty, but substantially more banded than Trefethen

and ch8-8-b. It is a middle ground of sorts, with ‘\’ scaling poorly but not quite as poorly as for
Trefethen and ch8-8-b. PCG + SSAI iterations scale as ∼ n0.3 (very low), making it a good choice
on these problems, while leaving room for a different iterative solver to do better.

In Figure 2, note that the Hardesty3 matrix A appears to have a significant number of relatively
dense rows, suggesting that the special methods of Scott and T

◦
uma [33, 34, 35] might be needed to

avoid a dense AHA. However, the nonzeros in A are integers and there must be exact cancellation
when AHA is formed, as it proves to be banded as shown. Hardesty3 is a deceptive test matrix(!),
but it provides a striking example of PCGLS being numerically preferable to PCG on the normal
equations (with the same high-quality preconditioner).

6. Parallelism and complexity. Parallelism requires examination of run-time dependence on
n, k ≡ nnz(A), and number of processors p. We can assume that communication between processors

SSAI PRECONDITIONER 13

is negligible for p� n, but verification of both this assumption and the following idealized analysis
is the subject for another paper. For a nonsingular A, n ≤ k ≤ n2. All lines in the outer loop
of Algorithm 2 are trivially parallelizable on up to n machines, because each column is computed
separately. Symmetrization of M (Line 16) could be parallelized with greater effort, but it is only
an O(k) operation occurring once. Lines 6–12 are executed O(k) times, requiring O(k/n) arithmetic
operations each time. Line 14 runs n times with O(k/n) operations each time. The time to compute
M is therefore T (A) ≡ O(k2/(np)).

Algorithm 3 is dominated by matrix-vector products that require O(k) arithmetic operations.
In exact arithmetic, the loop runs at most n times and at least once. It must happen sequentially.
On parallel machines, matrix-vector products can be done row by row. Therefore, with p machines
they take O(k/p) time. The norm on line 13 is an O(n/p) operation because the contribution of each
processor must be summed. Therefore, the run-time for PCG on p machines is τ(A) ≡ O(kn/p).
The analysis of Algorithm 4 is similar with A replaced by AHA.

When τ & T it could be advantageous to use larger lfil and itmax for computing M . This
was true on StocF-1465 (which needed the most PCG iterations among the SuiteSparse matrices).

Such run-time information should be taken into account when we choose a method to solve a
system, or try to bound the size of the system being constructed. A comprehensive study such as
[22] is needed to verify how these theoretical results for parallel machines hold up in practice.

7. Discussion. The numerical results show that even on serial machines, SSAI is competitive
with iChol preconditioners and direct methods for large HPD linear systems whose Cholesky factors
are denser than A. Moreover, PCG + SSAI is the most robust of the four methods, and guarantees a
solution in a wider range of cases. For small systems, the overhead of computing the preconditioner is
considerable, although this is partly due to inefficient implementation compared to built-in functions.
The overhead for computing M is less significant when there are several right-hand sides or several
similar matrices, such that the preconditioner M can be reused. Although there is no ‘one size fits
all’ preconditioner, our results suggest that SSAI for HPD systems is suitable if some of the following
criteria are met: n or k is large, A arises from finite element schemes, A is not banded and factors of
A would be too dense, or parallelization is essential. For general systems or least-squares problems,
PCG + SSAI on the normal equations or PCG + SSAILS can be effective methods. In addition to
the previous considerations, the dimensions m,n and sparsity of AHA should be taken into account
when deciding upon a method to use.

CG normally terminates when ‖rk‖ is sufficiently small (line 13 of Algorithm 3), which means
the conjugate residual method (CR [20]) and MINRES can always terminate sooner than CG [15].
Thus, CR + SSAI or MINRES + SSAI would be viable alternatives to PCG + SSAI if precautions
were added to increase the positive definiteness of M and restart, as in lines 17–20 of Algorithm 3.

A future research direction would be to find a more efficient SSAI-type algorithm to derive a
preconditioner for more general matrices; for example, a SSAI-type preconditioner for LSQR and
LSMR [28, 14] on square or rectangular systems, where AHA is not explicitly formed. For symmetric
indefinite systems, we can hope to do better.

7.1. MINRES and CS-MINRES preconditioners for indefinite A. In passing, we show
that an indefinite left-right preconditioner cannot be used with MINRES-type methods [27, 9] with-
out explicit knowledge of its factors. Hence, an (indefinite) approximate inverse for indefinite A is
not usable as a preconditioner.

MINRES solves Ax = b with Hermitian A. As real symmetric (RS) matrices are a subset
of both Hermitian matrices and complex symmetric (CS) matrices, we restrict our attention to
RS nonsingular A. Suppose we have an RS nonsingular preconditioner M with eigensystem M =
QDQT = Q

√
D
√
DQT = Q

√
DQTQ

√
DQT = CC, where QTQ = I,

√
Dii =

√
Dii, and C =

Q
√
DQT . If M is SPD,

√
D is real-valued, C = CH = CT , and the system can be rewritten as in

(2). However, if M is indefinite,
√
D has some pure real and pure imaginary diagonal entries, and

14 S. REGEV and M. A. SAUNDERS

C = CT 6= CH. We therefore rewrite Ax = b as

(4) CACT y = Cb, x = CT y,

where (4) is not Hermitian but rather CS(!). To solve (4) we must use CS-MINRES [8] and not
MINRES. If the factor C is known explicitly, we can do so.

In practice it is hard to obtain C, perhaps even harder than solving the original system. Con-
sequently, we seek a method that uses M = CC = CTC. A proof that this can be done (Choi [8,

section 6.1]) unfortunately fails on the line labeled (6.1). In Choi’s notation, if zk = βkM
1
2 vk and

qk = βkM
− 1

2 v̄k, then Mq̄k = M
(
βkM− 1

2 v̄k

)
= βkMM− 1

2 vk. This equals zk iff M− 1
2 = M− 1

2 ,

meaning M is actually PD. If M is indefinite, the rest of the proof holds, but we have no way of

finding qk without explicitly knowing M
1
2 , as now M

1
2M

1
2 q̄k = zk. Up to a scalar factor, the defi-

nition of qk arises naturally from the recurrence. We must define zk to uphold the crucial relation

for the calculation of β = ‖vk‖2 =
√
qTk zk without knowing vk explicitly, so its definition too is set.

It is worth noting that CS-MINRES remains a valuable algorithm, but its preconditioner is more
restricted than originally thought. We conclude that for SSAI, knowing an indefinite M = CTC
such that CACT ≈ I is not sufficient to precondition the problem. We must obtain the factor C
explicitly and solve (4), or abandon the left-right approximate inverse approach as a preconditioner

for a symmetric indefinite system. In the latter case, we could seek M to minimize ‖AM − S‖2F ,
where S is a signature matrix (a diagonal matrix with entries ±1). The choice of S would require
knowledge of the number of positive eigenvalues of A.

Acknowledgements. We thank Eric Darve, Bazyli Klockiewicz, and Leopold Cambier for con-
sultation and data regarding the SPE10 and Antarctica matrices. We also recognize the invaluable
resource that the SuiteSparse collection [12] represents.

REFERENCES

[1] Å. Björck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, 1996.
[2] T. Andrews, Computation time comparison between Matlab and C++ using launch windows, 2012, https:

//pdfs.semanticscholar.org/ed2b/5f9a2ca37e55052eafbf5abc166245cf7995.pdf.
[3] O. Axelsson, Iterative Solution Methods, Cambridge University Press, Cambridge, 1994, http://dx.doi.org/10.

1017/CBO9780511624100.
[4] M. Benzi, Preconditioning techniques for large linear systems: A survey, J. Comput. Phys., 182 (2002), pp. 418–

447, http://dx.doi.org/10.1006/jcph.2002.7176.
[5] M. Benzi, C. D. Meyer, and M. Tuma, A sparse approximate inverse preconditioner for the conjugate gradient

method, SIAM J. Sci. Comput., 17 (1996), pp. 1135–1149, http://dx.doi.org/10.1137/S1064827594271421.
[6] F. Bornemann, D. Laurie, S. Wagon, and J. Waldvogel, The SIAM 100-Digit Challenge, SIAM, Philadel-

phia, PA, 2004.
[7] L. Cambier, C. Chen, E. G. Boman, S. Rajamanickam, R. S. Tuminaro, and E. Darve, An algebraic sparsified

nested dissection algorithm using low-rank approximations. arXiv preprint arXiv:1901.02971, 2019.
[8] S. C. Choi, Minimal residual methods for complex symmetric, skew symmetric, and skew Hermitian systems.

arXiv preprint arXiv:1304.6782v2, 2014.
[9] S. C. Choi, C. C. Paige, and M. A. Saunders, MINRES-QLP: a Krylov subspace method for indefinite or

singular symmetric systems, SIAM J. Sci. Comput., 33 (2011), pp. 1810–1836, http://dx.doi.org/10.1137/
100787921.

[10] E. Chow, A priori sparsity patterns for parallel sparse approximate inverse preconditioners, SIAM J. Sci. Com-
put., 21 (2000), pp. 1804–1822, http://dx.doi.org/10.1137/S106482759833913X.

[11] M. Christie, M. Blunt, and et al., Tenth SPE comparative solution project: A comparison of upscaling
techniques, Soc. Petrol. Eng. J., 4 (2001), http://dx.doi.org/10.2118/72469-PA.

[12] T. A. Davis and Y. Hu, The University of Florida sparse matrix collection, ACM Trans. Math. Softw., 38
(2011), http://dx.doi.org/10.1145/2049662.2049663.

[13] S. Demko, W. F. Moss, and P. W. Smith, Decay rates for inverses of band matrices, Math. Comp., 43 (1984),
pp. 491–499, http://dx.doi.org/10.2307/2008290.

[14] D. C.-L. Fong and M. Saunders, LSMR: An iterative algorithm for least-squares problems, SIAM J. Sci.
Comput., 33 (2011), pp. 2950–2971, http://dx.doi.org/10.1137/10079687X.

https://pdfs.semanticscholar.org/ed2b/5f9a2ca37e55052eafbf5abc166245cf7995.pdf
https://pdfs.semanticscholar.org/ed2b/5f9a2ca37e55052eafbf5abc166245cf7995.pdf
http://dx.doi.org/10.1017/CBO9780511624100
http://dx.doi.org/10.1017/CBO9780511624100
http://dx.doi.org/10.1006/jcph.2002.7176
http://dx.doi.org/10.1137/S1064827594271421
http://dx.doi.org/10.1137/100787921
http://dx.doi.org/10.1137/100787921
http://dx.doi.org/10.1137/S106482759833913X
http://dx.doi.org/10.2118/72469-PA
http://dx.doi.org/10.1145/2049662.2049663
http://dx.doi.org/10.2307/2008290
http://dx.doi.org/10.1137/10079687X

SSAI PRECONDITIONER 15

[15] D. C.-L. Fong and M. A. Saunders, CG versus MINRES: An empirical comparison, SQU J. Sci., 17 (2012),
pp. 44–62. http://stanford.edu/group/SOL/reports/SOL-2011-2R.pdf.

[16] S. Gazzola, P. C. Hansen, and J. G. Nagy, IR Tools: a MATLAB package of iterative regularization methods
and large-scale test problems, Numer. Algor., 81 (2019), pp. 773–811, http://dx.doi.org/https://doi.org/10.
1007/s11075-018-0570-7.

[17] G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins Studies in the Mathematical Sciences,
The Johns Hopkins University Press, Baltimore, fourth ed., 2013.

[18] M. J. Grote and T. Huckle, Parallel preconditioning with sparse approximate inverses, SIAM J. Sci. Comput.,
18 (1997), pp. 838–853, http://dx.doi.org/10.1137/S1064827594276552.

[19] P. C. Hansen, Regularization Tools version 4.0 for Matlab 7.3, Numer. Algor., 46 (2007), pp. 189–194.
[20] M. R. Hestenes and E. L. Stiefel, Methods of conjugate gradients for solving linear systems, J. Res. Nat.

Bureau Standards, 49 (1952), pp. 409–436, http://dx.doi.org/10.6028/jres.049.044.
[21] B. Klockiewicz and E. Darve, Sparse hierarchical preconditioners using piecewise smooth approximations of

eigenvectors. arXiv preprint arXiv:1907.03406v1, 2019.
[22] L. Y. Kolotilina and A. Y. Yeremin, Factorized sparse approximate inverse preconditioning II: Solution

of 3D FE systems on massively parallel computers, Int. J. High Speed Comput., 7 (1995), pp. 191–215,
http://dx.doi.org/10.1142/S0129053395000117.

[23] J. Kouatchou, Basic Comparison of Python, Julia, R, MATLAB and IDL, 2016, https://modelingguru.nasa.
gov/docs/DOC-2625.

[24] A. M. Manea, J. Sewall, H. A. Tchelepi, and et al., Parallel multiscale linear solver for highly detailed
reservoir models, Soc. Petrol. Eng. J., 21 (2016), pp. 2–62, http://dx.doi.org/10.2118/173259-PA.

[25] T. A. Manteufel, An incomplete factorization technique for positive definite linear systems, Math. Comp., 34
(1980), pp. 473–497, http://dx.doi.org/10.1090/s0025-5718-1980-0559197-0.

[26] J. A. Meijerink and H. A. van der Vorst, An iterative solution method for linear systems of which the
coefficient matrix is a symmetric M-matrix, Math. Comp., 31 (1977), pp. 148–162, http://dx.doi.org/10.
2307/2005786.

[27] C. C. Paige and M. A. Saunders, Solution of sparse indefinite systems of linear equations, SIAM J. Numer.
Anal, 12 (1975), pp. 617–629, http://dx.doi.org/10.1137/0712047.

[28] C. C. Paige and M. A. Saunders, LSQR: An algorithm for sparse linear equations and sparse least squares,
ACM Trans. Math. Software, 8 (1982), pp. 43–71, http://dx.doi.org/10.1145/355984.355989.

[29] S. Regev, 2019, https://drive.google.com/drive/u/2/folders/1N6nhNpe6fotNO4D38B0VPuusOvE2w1Yi.
[30] S. Regev, 2019, https://github.com/shakedregev/SSAI.
[31] Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for nonsymmetric linear

systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856–869, http://dx.doi.org/10.1137/0907058.
[32] D. K. Salkuyeh and F. Toutounian, A new approach to compute sparse approximate inverse of an SPD

matrix, IUST - Int. J. Eng. Sci., 15 (2004), pp. 87–95, http://dx.doi.org/10.1016/j.amc.2005.06.011.
[33] J. Scott and M. T

◦
uma, Solving mixed sparse-dense linear least squares by preconditioned iterative meth-

ods, SIAM J. Sci. Comput., 39 (2017), pp. A2422–A2437, http://dx.doi.org/https://doi.org/10.1137/
16M1108339.

[34] J. Scott and M. T
◦
uma, A schur complement approach to preconditioning sparse linear least-squares problems

with some dense rows, Numer. Algor., 79 (2018), pp. 1147–1168, http://dx.doi.org/https://doi.org/10.1007/
s11075-018-0478-2.

[35] J. Scott and M. T
◦
uma, Sparse stretching for solving sparse-dense linear least-squares problems, SIAM

J. Sci. Comput., 41 (2019), pp. A1604–A1625, http://dx.doi.org/https://doi.org/https://doi.org/10.1137/
18M1181353.

[36] I. K. Tezaur, M. Perego, A. G. Salinger, R. S. Tuminaro, and S. F. Price, Albany/felix: a parallel, scalable
and robust, finite element, first-order stokes approximation ice sheet solver built for advanced analysis,
Geosci Model Dev, 8 (2015), pp. 1197–1220, http://dx.doi.org/10.5194/gmd-8-1197-2015.

[37] L. N. Trefethen, A hundred-dollar, hundred-digit challenge, SIAM News, 35 (2002), p. 65.
[38] L. N. Trefethen, The SIAM 100-Dollar, 100-Digit Challenge, 2002, https://people.maths.ox.ac.uk/trefethen/

hundred.html.
[39] L. N. Trefethen and D. Bau, Numerical Linear Algebra, SIAM, Philadelphia, PA, 1983.

http://stanford.edu/group/SOL/reports/SOL-2011-2R.pdf
http://dx.doi.org/https://doi.org/10.1007/s11075-018-0570-7
http://dx.doi.org/https://doi.org/10.1007/s11075-018-0570-7
http://dx.doi.org/10.1137/S1064827594276552
http://dx.doi.org/10.6028/jres.049.044
http://dx.doi.org/10.1142/S0129053395000117
https://modelingguru.nasa.gov/docs/DOC-2625
https://modelingguru.nasa.gov/docs/DOC-2625
http://dx.doi.org/10.2118/173259-PA
http://dx.doi.org/10.1090/s0025-5718-1980-0559197-0
http://dx.doi.org/10.2307/2005786
http://dx.doi.org/10.2307/2005786
http://dx.doi.org/10.1137/0712047
http://dx.doi.org/10.1145/355984.355989
https://drive.google.com/drive/u/2/folders/1N6nhNpe6fotNO4D38B0VPuusOvE2w1Yi
https://github.com/shakedregev/SSAI
http://dx.doi.org/10.1137/0907058
http://dx.doi.org/10.1016/j.amc.2005.06.011
http://dx.doi.org/https://doi.org/10.1137/16M1108339
http://dx.doi.org/https://doi.org/10.1137/16M1108339
http://dx.doi.org/https://doi.org/10.1007/s11075-018-0478-2
http://dx.doi.org/https://doi.org/10.1007/s11075-018-0478-2
http://dx.doi.org/https://doi.org/https://doi.org/10.1137/18M1181353
http://dx.doi.org/https://doi.org/https://doi.org/10.1137/18M1181353
http://dx.doi.org/10.5194/gmd-8-1197-2015
https://people.maths.ox.ac.uk/trefethen/hundred.html
https://people.maths.ox.ac.uk/trefethen/hundred.html

	Introduction
	A PCG algorithm for HPD linear systems
	Numerical results on HPD systems
	Matrices from SuiteSparse
	Scale-up for Trefethen challenge matrices
	Scale-up for finite-element linear elasticity matrices
	Scale-up for finite-volume petroleum engineering matrices
	Scale-up for finite-element ice-sheet matrices

	Least-squares problems
	PCGLS
	LS problems with dense rows

	Sparsity structure of A
	Parallelism and complexity
	Discussion
	MINRES and CS-MINRES preconditioners for indefinite A

	References

