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WHAT IS THE WORST CASE BEHAVIOR OF THE SIMPLEX METHOD?

ABSTRACT

The examples published by Klee and Minty in 1972 do not
preclude the existence of a pivot rule which will make the simplex
method, at worst, polynomial. In fact, the continuing success of
Dantzig's method suggests that such a rule does exist.

A study of known examples shows that a) those which use
"selective' pivot rules require exponentially large coefficients,
and b) none of the examples' pivot rules are typically used in
practice, either because of computational requirements or due to a
lack of even-handed movement through the column set.

In all "bad" problems, certain improving columns are entered
R Zm'_2 times before other improving columns are entered once. This
is done by making the unused columns "appear" to yield small
objective function improvement. -

The purpose of this paper is to explain the Klee-Minty and
Jeroslow constructions, show how they can be modified to be
pathological with small integral coefficients, and then suggest a
"least entered" pivot rule which forces an improving column to be
entered before any other column is entered for the second time.

This rule seems immune to the "deformed product construction” which

is the essence of all known exponential counterexamples.



Introduction

The simplex method has been solving linear programs with m
constraints in m to 3m pivots for over twenty vears. In 1972,

Klee and Minty demonstrated the existence of linear programs with
m inequality constraints in m non-negative variables which require
2m‘1 pivots when any improving column may enter and when the
standard "max cj—zj" rule is followed. Applying their construction
for the standard rule leads to coefficients in excess of 3 .

In 1973, Jeroslow published a modification of a second Klee
and Minty construction. His modification is pathological for the
"maximum increase" rule. An unrefined application of this comstruction
also.yields exponential coefficients.

Other examples involving large coefficients were subsequently
published by Zadeh [1973] for minimum cost network flow problems,
Avis—Chvatal [1977] for Bland's rule (first positive), Murty [1978]
and Fathi [1978] for complementary pivot algorithms, and Goldfarb-

Sit [1980] for a "gradient" selection rule. An example due to
Edmonds for shortest path computations is also known [4].

The above examples may be viewed as "deformed product constructions."
Given a polytope p" requiring -~ 2™ pivots with a polynomial
number of dimensions, a new.polytope Pm+l is constructed by deforming
a product P x V, where V is some polytope usually of low dimension.

m+1

In the first Klee-Minty construction, P differed from P" by one

dimension and two facets (V has one dimension and two facets). In




the Klee-Minty-Jeroslow constructjon, Pm+1 differed from P" by
two dimensions and roughly 4k facets, where k 1is some positive

integer. In the network constructions [16], Pm+1 differed from

30 by 2m dimensions and 2mt4 facets.

We show that ény linear program with rational coefficients
may be expressed with coefficients 0, 1, -1, and 2. Modifications
of the Klee-Minty and Jeroslow constructions are given with integral.
coefficients no greater than four. The Klee-Minty examples are
shown to be equivalent to resource allocation problems with non-
negative coefficients in which all béses have determinants of 1.

In all "bad" examples, the coefficients are chosen so that the
best columns price out moderately, and are not entered until other
columns have been entered exponentially many times. Roughly speaking,

L P" x Vm, this means that the simplex

for a deformed product Pm+
method performs a 2" step pivot sequence for P™ before entering
any of the new variables associated with V. The pivot sequence
for P" 4is then performed again in the reverse order.

Geometrically, the simplex method stays on a lower P face of
Pm X Vm for v 2™ pivots, then moves through the added i dimensions
to an "upper" P" face where it spends another 2" pivots "undoing"
pivots performed on the lower face.

Entering variables from v early causes a permanent move away
from the lower face, killing the exponential growth.

The following rule forces movements away from faces irrespective
of the level or rate of imbrovement. It was considered primarily for

theoretical purposes after athoughtprovoking conversation with Arthur

F. Veinott, Jr.



Least entered rule: Enter the improvinggvariable which has been

entered least often.

The above rule is easy to implement, and when used in conjunction
with the standard or "max increase" rules speeds up both. It is
unlikely to cycle (the cycle must contain all improving columns).

It is our hope that the rule will prove to have a worst case bound
proportional to m+'n, where m 1is the number of rows and n is

the number of columns.* Examples of maximum flow problems requiring
s m*n pivots using this rule will be given in a forthcoming paper.

Other rules similar to the "least entered" rule which have been
suggested [4] are the Least Recently Considered (LRC) rule of
Cunningham and the Least Recently Basic (LRB) rule of E.L. Johnson.
Both methods were apparently designed for shortest path computatioms
in networks but have obvious extensions to general linear programming
which would kill the exponential growth of known counterexamples.

Unfortunately, polynomial proofs for the above rules, if they
exist, might be extremely hard, as they would reduce the current best
bound for the diameters of polytopes from %-- Zd_z(n -d+ g) to a

polynomial in n and d, where n is the number of facets and d,

the dimension.

*
This is similar to the old conjecture z(d,n) =~ (d-1)(n-d) +1
of Klee [12] which was proven false by Klee and Minty for the

standard rule,




The Klee-Minty Construction

The first Klee~-Minty construction c¢reates from an n-dimensional
polytope P" with 2n faces requiring 271 pivots when any
improving column may enter a polytope Pn+1 with two more faces
requiring 2n+1_1 pivots,

The construction is illustrated in Figure 1. The path of
vertices visited in P" 1is denoted Pgs Pys +res p2n 1. The first
polytope Pl has two faces (xl_z 0, % £ 1) and req;ires one pivot.
The second polytope P2 is obtained from Pl by adding two additional
constraints —x1/3 + xz'z 0 and x1/3 +x, < 1, involving one
additional variable.

It is convenient to think of the pivot sequence for P2 in terms
of the slack variables associated with the various faces. The
initial point Pg = (0,0) is determined by Sy 84 basic, Sl’ 33
non-basic. The sequence po, pl, pz, p3 corresponds to entering
81 then 53, and then 52. The wvariables 52, 54 and Sl are
respectively deleted.

P3 is obtained from P2 by adding two more constraints involving
one additional variable. Note in Figure 1 that the pivot sequence
for P3 is essentially the pivot sequence for Pz, plus a movement

from the lower face, followed by the sequence for P2 in the reverse

order. We express this pheomenon in general by writing

- >
Pn+l = Pn, 52n+1’-§n. In terms of entering slack variables,
>3

P = 518352 55 515452'



1. max X1
0 1
2. (0,1)
{
X2 max Xz
{0,0)
3.
== T2y (0,0,1)
,4F'- _|----"
/,’ _‘—-"-\‘
/’:' -~ SG
(0,1,23) p=~
4
X3 max X3
(nr1r1I3) "'-.._: —————— b~ i
.‘h.- ..-'-.85 .-.--'\\
*-‘"'--_: \\
-_‘\\

(0,1,0} ~ X3 {0,0,0)

Pivot sequence:

No.2 84838,

No.3 $1S3S; S5 $154 So

No.4 84838, Sg 818452 Sy 81835, Sg S1835;

Figure 1: An example of the Klee-Minty construction




Fooling the Standard Rule

The examples in Figure 1 take one pivot to solve when the
standard max cj-zj rule is employed. To fool this rule, Klee and
Minty scale the variables so that a much larger change in the entering
slack wvariable is required to achieve the same objective function
change, or equivalently, to move to the same adjacent vertex.

As an illustration, let E(si) denote the relative cost factor

i
entered, then E(si) = Afi/Asi. At Py = {0,0,0) in Figure 1,

for S If Afi denotes the change in the objective when s, 1is

E(sl) =1/9, E(sz) =1/3, and E(ss) = 1, The standard rule would
enter So» moving from (0,0,0) to (0,0,1), the optimum, in one

pivot. However, if s, were replaced by 35/16, it would take a

5
E(ss) would be 1/16. A similar replacment of s, by 32/4 would

16 unit change in s. to move from (0,0,0) to (0,0,1) and
cause the standard rule to enter Sl and follow the same sequence
as before.

The right hand side of Table 1 gives a scaling which will make
the standard rule exponential. Note that the coefficients grow at

m
a rate of 4.



Examples with Small Integral Coefficients

The large coefficients in expressions like 58/64, or more
generally, szn/4n—l, may be eliminated by adding n-1 additional
variables and constraints. For the case 58/64, we replace Sg
by sé with the additional constraints 4sé - sg =0, 4s§ - sg =0,
453' = sg = G, sé, sg, sg"z 0, as done in Table 1. To construct
P" in this fashion using coefficients no greater than 4, m(m-1)
constraints and non-negative variables must be added.

It should benoted that such a'toefficient reduction" can always
be performed, but the "reduction" is cleanest when the large

coefficients in each column are multiples of a fixed power of two,

for example,

3.274

-1-274 .

2.274-

Theorem 1. Let L be a linear program with rational coefficients
whose representation requires a polynomial number of digits. Then L
may be expressed using integral coefficients of 2, 1, -1, and 0

with a polynomial number of variables and constraints.




Any improving column Standard rule
max X,
Xy - 8§ = 0 replace
Xy + s, = 1 slacks by
-xl/3 + x, - 85 = 0 - 83/4
x1/3 + x, + s, =1 54/4
- x2/3 + %, - 85 = 0 - 55/16
x2/3 + x5 + sg =1 56/16
- x3/3 + X4 - S7 =0 - 57/64
x3/3 +x, + sg= 1 58/64
Small Coefficients

Replace a quantity like Sg

the constraints

to_ oo — no_
458 sg 0, 458 s

1

/64 by a variable s, along with
8

1) I nr _ =
3 0, 438 sg 0,

all variables > 0 .

Table 1: Example of the original Klee-Minty construction

(upper left), a s

caling of the slacks to fool

the standard rule {(upper right}, and the addi-

tion of m{m-1)

variables and constraints to

yield integral coefficients < 4 (below).



Proof. The bi may be made to be 0 or 1 by suitably multiplying
each row. With this change, let dj denote the least common multiple
of the divisors of elements in column j. Then column j may be

written as

h

aq -
X, 1
-_y J ’
3

a_,

mj

)

where d,, c., 8,., s.., & . are integers. TLet Z d denote
R R ] k

the binary representation of dj and let
q: = max {tlog, d.], llog, a..l}

Note that d;k) =0 or 1 for .every k, j. Define a new variable

}—cj = xj/dj by adding new variables §§k), k=0,1, 2, ..., qj’

(§§k) = Zk Ej) and constraints (2 d§k) §§k)) - xj =0 and

k
—Egk) + 2§§kﬁ1) =0, k=1, ..., q.. Let Z agg)Zk be the binary
1 J ] k 1]

representation of a .. Now the term xjaij/dj may be expressed
as 2 aig) Egk). All coefficients are 0, +1, or 2. The above
k
construction requires Z (qj+1) additional variables and constraints.
J

10




when applying the simplex method to the above problems, care
must be taken to ensure that initial pivots eliminate Egk) variables
and retain X If X, is eliminated and replaced by E;E), a

rescaling of variables has occurred which will change relative

cost factors and may affect the pivot sequence.

The following theorem notes some similarities.between the Klee-
Minty construction and the "bad" complementary pivot example due to
Murty, and explains how the Avis-Chvatal example was obtained.

Theorem 2. Let L% denote the nth problem constructed on the
left side of Tgble 1, with Spq3 respectively, s

s3it

94-1 replaced by

i~-1 .
521/3 » respectively, s,
Then Ln is equivalent to a resource allocation problem with

non-negative integral coefficients, equal objective coefficients,

and basis matrices whose determinants are 1 or -1,

Proocf. Solving the triangular system

11



X 1
x s
1 3 _
_3+x2 -3 =0
X s
2 5 —
-3 + x3 -3 =0
X s
3 7 _
for Kys vees X yields
32375
_ sl+s3
%2 3
} sl+53+35
X3 9
} sl+s3+ss+s7
X4 27

Substituting for X; in the remaining equations produces the

equivalent problem

12




. 1 ces
maximize ~] (s1 + S4 + Sg + s + + s2n—1)

3
subject to sy + s, -1
251 + 53 + s, -3
Zsl + 253 + S + s¢ = 9
251 + 233 + 255 -+ s + sg = 27
251 + 253 + 255 + 237 + oo+ Szﬁ-1+ + Sznf=3n_l
si_z 0.

The constraint matrix is of the form (L|I) where L is a lower triangular
matrix with ones on the diagonal. This gives the result. 2

The above problem can yield the same pivot sequence as the nth
scaled problem in Table 1 because all relative cost factors will be
0 or i-.1/3n_l at every vertex (there will be many ties). To
insure that the same sequence is followed Spqs respectively, Spi 1
must be replaced by

S,. S,.
21 , respectively, iill

it Kk

with k>3,

in which case the constraint matrix would change but would remain

lower triangular.

13



An example of Avis and Chvatal, which for m = 3 with a rearranging

of indices is

maximize 1025 + lOs3 + s

1 5

. _ 2
subject to Sy + 52 = 10
20s s + s = lO4
1 3 24
200s. + 20s, + s + 5, = 106 s, >0
1 3 5 6 i=

may be obtained from Table 1 by replacing the 3's by 10's and taking
k = 102.
The following assertion notes that a bounded pathological example

can always be transformed into one with all aij’ bi’ and cj 2> 0.

Asgertion 1. Let L be a linear program with a finite optimal

solution. Then L may be transformed to an equivalent program L'
in which all coefficients are positive (non—negative).

Proof. Affix the constraint in + s =M for sufficiently

m+1
large M. Then add suitable multiples of this constraint to each

row until all coefficients are positive. The objective function will

have a constant term involving -M which may be disregarded. B

]

14




Bland's Rule (first improving column)

Table 2 lists the sequence of relative cost factors E(si)
associated with the vertices po, teay p7 of P3. Notice that the

are complementary, i.e., s,,°* =0

variables s,. and s 24 SZi—l

2i 2i-1

¥ i, as are their relative cost factors E(SZi) . E(SZi—l) =0V i
The following theorem notes that examples given in Table 1 are
pathological for Bland's Rule. A similar statement can be made for

the forthcoming Jeroslow modification, and for network examples in

[16].

Theorem 3. The examples in Table 1 follow the same.pivot sequence

with Bland's rule.

Qutline of proof. 1t suffices to show that the first improving

column prices out best. Let ¢ ~denote the objective function.

For every mn, ¢(p0) = 0, ¢(p2n_l) =1, and the jump in ¢ ~between

lower and upper faces is 1/3. Let pi = (pi, ¢(Pi)/3) and
pi = (pi, 1l- ¢(pi)/3) for 0<1iX{ 2™.1. Then the vertex sequence
for Pn+l is
11 1 2 2 2
pO’ pl’ R PZn__ls Pzn—ls s g pl’ po .
. PN rs
~—~ , T
lower face upper face

For each increase in n, the objective change between successive

points on lower (upper) faces decreases by a factor of three. Because

15



9]
w0
W

1 52 %3 4 5 %
0 : 0 5 o = o0
1 0 -5 15 I
2 0 % 0 -3 I]LE 0
3 -2 0 0 -5 = o0
4 % o o = -+
5 0o -3 0 5 0 -
6 o 1 - 0 o -+
7 -3 0 -3 0 0o -+

Table 2: Relative cost factors associated

with the vertices Pgr Pys oot P,-

16




the vertices for Pn+1 are obtained from the vertices for P by
adding an extra dimension (the objective value), the change in the
entering slack required to move from P to Pjyy ©OR the lower

(upper) face remains the same. This implies that relative cost

factors for old slacks are decreased in absolute value by a factor

of three for each increase in n. The new slack variables (with the
highest indices) are scaled to price out worse than the other variables.
This observation and its predecessor imply that the lowest indexed
variables, when profitable, price out best. The exact formula, for
E(Szi) >0, is E(szi) = 4/3" (3/&)i, which decreases by a factor

of three for each increase in n. R

17




The Maximum Increase Rule

This rule enters the column yielding the maximum objective
increase., A sequence of '"bad" polytopes, Pl, eevs PP, will be
constructed recursively. Pl is shown at the top of Figure 2.

It has two dimensions, four faces, and requires two pivots starting
from (0,0) when the objective is maximize X - The two "lower
facesg" are dotted for the purposes of identification.

The second polytope Pz, is four dimensional and appears
below Pl. P2 is a deformed product of Pl with Vl, the two
dimensional polytope shown in the upper right.

Pz is best appreciated by imagining that one is looking down
at the top of a mountain. The shaded edges of Pz correspond to
the upper faces of Pl crossed with Vl. The dotted edges of PZ
correspond to the bottom faces of Pl crossed with V1 and are
not all shown. P1 corresponds to the two dimensional polytope
determined by (0,0) and points a and b. Figure 2 is essentially
an approximate projection of Pz onto the Vl coordinates, which
are denoted %4 and Xy

P2 was designed so that, starting at (0,0), and maximizing the
Xy OF "x" coordinate, one first performs the pivot sequence for Pl;
executes several pivots inveolving Vl variables; "reverses'" the
sequence for Pl; and ends at (1,0).

In terms of entering slack variables, the forward pivot sequence

Py to Pg shown in Figure 2 may be expressed as

18




Sy $3
(ﬂ,ﬂ) ~
b ’

S1, ./ Sa
L4

Initial polytope #

(179,19

(0,0) oo =~ == (1,0)
(-1/3,0} b (43,0)

#2 = 21 x V!
Coordinates shown are xg3 and xg,
the coordinates of vl

91 '"‘;\—-0-7""'—\
AR 1
(0,0) = pg ¥ pg=(1,0)

T &1
/ #1 ¥\
Pg

Reverse pivot sequence, pg to pg, min x3, 8 pivots.

Figure 2: A modification of the Klee-Minty-Jeroslow
construction.
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s.8 S.5.5 S,5 $
374

'P2 is a "reversible" polytope, in the sense that eight pivots
are also required if one starts at (1,0) and minimizes Xq The
reverse pivot sequence from (1,0) to (0,0) is shown at the
bottom of Figure 2.

To insure that the pivot sequence for Pl is performed before
variables in Vl are entered, the difference in x coordinates
between vy = (0,0) and v, = (1/9, 1/9) 4is chosen smaller than
the difference in x coordinates between (0,0} and vertex a.

This ensures that pivots imnvolving variables of Pl are performed

first as long as such pivots are profitable.

21



Construction of P3

P3 is constructed as a deformed product of P2 X Vz. V2

is the same as Vl except that the slopes of the lines through
(- 1/3, 0), (1/2, 5/24) and (1/2, 5/24), (4/3, 0) are decreased
in absolute value by a factor of 4. This effectively squashes the

top half of P3 so that the difference in x coordinates between

*

*
Yo and vy is 1/453 . Variables of P2 are now more "profitable"
2

than variables of Vz, so the whole pivot sequence for P~ is

performed before wvariables of V2 are entered.

Denoting the relevant slacks of V2 corresponding to

) 1 '
Sgo Sg» Sy Sgs Sg» 814 An Vo by 814, Sy5s 8135 Sy4s Sygs Syp

the forward pivot sequence for P3 in terms of entering slacks is

5.5 5.5.8 5.5 ]

5%6°7 °3% °s S11%12%13 1% S10%9%8 ®3%; %7 Si4

172
1\

In general, P® is constructed as a deformed product of Pn_l
and Vn_l, where i is the same as V' except the lines through
(- 1/3, 0), (1/2, 5/24) and (1/2, 5/24), (4/3, 0) have their slopes

decreased in absolute value by a factor of l/4n_2.

*
‘v, 1is determined by the intersection of lines y = x and y = x/16 + 1/48.

1

]
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Examples with Small Coefficients

Constraints with small integral coefficients defining Pl, Pz,
and P3 are shown in Table 3. The system for P is generated

by taking the system for Pn—l and adding the constraints determining

Vn—l, with Xon 1 replaced by x2n—l'-(x2n-3/3) for facets on the

left of the line x = 1/2 and x I3

2n-1 2n-1 2n-1 F Fpp3
=1/2. This yields the deformation,

replaced by x

for facets on the right of X1

or tilting of the product. Note that, aside from a translation of

subscripts, the set of constraints for V2 differs from that for Vl

only in the first two inequalities, where a variable xg (representing
16x6) has replaced a variable xi (representing 4x4). This corresponds

to reducing the slope of the top two facets by a factor of four.

Testing the Problems

To run the problems it is recommended that the x wvariables
be eliminated and replaced by slacks. The starting basis then consists
of those slacks which are positive at the point (0,0,0, ..., 0).
For P2 the starting basis would be S35 By4» Sy Sgy Sgy Syps and

the slacks for the bottom two faces of Vl.

23



max %y + %, 0
xl xl+x2$l
= XZ-S 0
Xy - xz_s 1
max X + 3x3
T | - 3%
Xy - 3x3
%y + 3x3
Xl - 3x3
xl + 3x3
X - 3%,
X + 3x3
max Xy
g x5
*3
X3
%3
*3
*3
%3
max
%7
Table 3

L} 1 " 1 "
Xy By Xgr¥grXgrKgsKgaXgaXg

2 pivots

+ 3x

+ 3x

+ 3x

3x

- 3x

- 3x&

Pom P
|~

I - o
[ P P N P N P N PO |

24

Ix

Ix

111}

3xg
+ 3xg
- 1
4x6 g
4xé - xg
6
6
- 3xé
- 3xé
unrestricted

> 2+.244 = 8 pivots

fos

L

P P PN P AN i

[ A

+

3x7 + 3x™

3x7 + 3x

20 pivots

7

7

< 4

<1
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