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An e-Precise Feasible Solution to a
Linear Program with a Convexity
Constraint in 1/e Iterations Independent
of Problem Size

by George B. Dantzig

Abstract

Von Neumann, in a private communication to the author in 1948,
proposed the first interior algorithm for finding a feasible solution to a
linear program with a convexity constraint. I prove it has the remark-
able property that, independent of the number of rows m and columns
n, it generates in less than 1/¢? iterations a feasible solution with a
precision ¢ (where €? is the sum of the squares of errors of fit of the left
hand side of the equations to the right hand side) when the general
problem is recast in the form:

z20, E?zj =1, Z'IIPJ""'J' =0, “PJ"2 =1 Vj

Letting §, 0 < § < 1, denote the non-zero coefficient density, the work
per iteration is §mn + 2m + n + 9 multiplications and émn+m+n+9
additions or comparisons.

Defining the problem as solved if a solution is obtained with precision
€, say € = 10710, the algorithm’s bound on the number of arithmetic oper-
ations to attain this precision is a polynomial expression of degree 2 which
is 1.5 degrees lower than that of Karmarkar’s interior algorithm, [1]. Never-
theless, for the bound on the number of arithmetic operations iterations to
be lower than that of the Karmarkar bound, the number of variables has to
be very large, for example for a precision € = 10~1°, it has to be greater than
1.3 x 108 I reproduce von Neumann’s algorithm and my proof of conver-
gence, which dates back to my original correspondence with von Neumann,;
to the best of my knowledge, neither has ever been published.






Introduction

The general linear program feasibility problem with a convexity constraint
(1) findy =(y1,42,..., 1) 20, TIQjyi=b, Yiyi=1 Q™
can be reduced to the “standard” form:

(2) find z = (21,22,...,20) 20, T7Pjz; =0, 1zi =1, PjeR™
where ||P;||, = 1 Vj. This is done by letting

(3) Qi=Qi—-b P=Q;/lQ;l,

and noting that if z = 2° solves (2) then y = y° solves (1) where

¥ = (2 /NQIDTT (z2/11Qll)-







The von Neumann Algorithm

Geometrically, see figure, the columns P; in R™ can be viewed as points
lying on a hypersphere S; with radius = 1 and center at the origin 0. The
problem then becomes one of assigning nonnegative weights z; to the points
P; so that their weighted center of gravity is the origin 0.

Initiation t = 1:

The algorithm can be intitiated with any approximation to the origin:
Al = E'I‘sz}, Z;":; =1, :c} > 0 where z = z! is arbitrary. To be
specific, set

(4) £l =1, z} =0forj#1, Al = Puy = ||Ay]|=1;t:=2

Iteration t > 2:

At the start of iteration t > 2, one is given an approximate solution:

z=2z"120, Z?z;’l =1, A" = Ele‘;'—l, u-y = |47

Step 1: Among directions from the origin to P;, find the direction P, = P,
which makes the largest angle with the direction A*~1:

s := ARGMIN(A* 1T p;;
2

Step 2: Let v = (A*1)T P, Ifv > 0, then all points P; lie on one side of the
hyperplane through the origin perpendicular to the direction A*~! implying
the linear program is infeasible since clearly no convex combination of the
points P; can be found having the origin as center of gravity.

STOP IF v > 0;






Step 37 Choose as next approximate A' the closest point to the origin on
the line segment joining A*~! to P,. Update:

(5) At = M L -N)P,
© W = dwt(1-))
(M) t = /\z;'l forj#sand z} = Azf"1 4 (1-2)

where the A which minimizes u; = ||A|] is:

A= (1-v)/(ul, -20+1) ;

Note that 0 < A < 1 because v = (A““)TP, < 0. Also note that
u¢ < ug—1 because in the right triangle 0A*~1 A* the hypotenuse is u;—; = 0A!~?
and a leg is u; = 0A*.

Step 4: Return to Step 1 with ¢ := ¢t + 1.

Rate of Convergence

In the figure, sy = [|A*Y||, u, = [|A¢]| and 1 = ||P,||. Let the acute angle
at A*"! be 6, the acute angle at P, be 07, and the acute exterior angle of
the triangle at the origin be ¢. We have

b1 +62=¢<7/2
where ¢ < 7/2 because, see Step 2, v = (A*"1)T P, < 0. Note that
sin §2 = sin(¢ — 0;) < sin(m/2 — 8;) = cos b,.
In the figure,

ug/ue—y =sinby, wuy/l =sinb; < cosby,
(U¢/U¢_1)2 + (ug/].)2 < sin? 6 + cos? 6, =1.






Dividing by u?, it follows inductively that

1 1
1 < =
ui_, u?
! + 1 < 1
up_, =i,
Lo e b e =AY =1
u? = u} 1= -

We sum these t — 1 inequalities to obtain t < (1/u;)? = l/”A‘||2.

We conclude that if we wish to iterate until u; = ||A!|| = ¢, it can
be attained in less than 1/e? iterates. This result is independent of the
dimensions m and n. The number of arithmetic operations per iteration of
the various steps:

Multiplications | Additions | Comparisons
Step 1 dmn §mn n
Step 3 2m+n+9 m+ 8 1

Complexity of von Neumann vs Karmarkar Algorithms

To attain a precision of ¢, the Karmarkar Algorithm has an upper bound
of n(—log, €)/7 iterations where ¥ = 1 — log, 2 = 0.3. The work per itera-
tion for his algorithm is considerably higher than a von Neumann iteration.
To load the dice in favor of the Karmarkar algorithm, we will assume the
work per iteration is the same. The comparison is therefore for the same ¢
precision:

Karmarkar:

Work < (1/.3)(-log, €)n(26mn + 3m + 2n + 18) operations
Yon Neumann;

Work < (1/€?)(26mn + 3m + 2n + 18) operations

For a precision ¢, say ¢ = 1071 the von Neumann method has an upper






bound on the number of arithmetic operations which is lower than that for
Karmarkar when the number of variables

n > .3(—log, €)/e? = 1.3 x 10" if e = 10719,

The polynomial complexity of Karmarkar as simplified above is 3 (actually
it is 3.5) with a very small constant factor (—log.€)/y = 75 for € = 10719,
while von Neumann has a polynomial complexity of 2 but a constant factor
of 1/e? = 10%° to obtain a precision of 1071°.

Making the von Neumann Algorithm more efficient

In tests on small examples, the convergence of the von Neumann algorithm
was observed to be too slow for practical problems. In a companion paper
to this one, a variant of the algorithm is presented that yields under certain
conditions an exact solution in considerably fewer iterations, [2]. It too may
be too slow to be practical, but exploits a “bracketing” idea which one may
wish to explore as a way to speed up other infinitely converging methods.
In this companion paper, instead of locating the point 0 at the center of the
hypersphere as in the von Neumann algorithm, we locate the point off center
at Q. This change requires a small alteration in the proof of convergence:
(u¢/1) = sinfp < cos By is changed to read

(ut/|QPs||) = sin b, < cos by
where now ||QP,||* < 1+ ||Q|* < 2 instead of ||OP,|| = 1. This results in
(oo + (A4 QU € (1 forr=2,...t

Summing over 7 = 2,...,? yields the new upper bound ¢ — 1 < (1 + ||Q|[)?/¢2.
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