
ALGORITHM 583
LSQR: Sparse Linear Equations and Least
Squares Problems

CHRISTOPHER C. PAIGE
McGill University, Canada
and
MICHAEL A. SAUNDERS
Stanford University

Categories and Subject Descriptors: G.1.3 [Numerical Analysis] Numerical Linear Algebra--linear
systems (dtrect and tterattve methods), G.3 [Mathematics of Computing]: Probability and Statis-
tms--s tatzshcal computtng, stattsttcal software, G.m [Mathematics of Computing]: Miscella-
n e o u s - - F O R T R A N program untts

General Terms Algorithms

Additional Key Words and Phrases: Analysis of variance, conjugate-gradient method, least squares,
linear equatmns, regression, sparse matrix

1. INTRODUCTION

LSQR finds a solution x to the following problems:

Unsymmetr ic equations: solve A x = b (1.1)

Linear least squares: minimize [[A x - b [[2 (1.2)

where A is a matr ix with m rows and n columns, b is an m-vector, ~ is a scalar,
and the given data A, b,), are real. The matr ix A will normally be large and
sparse. It is deemed by means of a user-writ ten subrout ine APROD, whose

Received 4 June 1980; revised 23 September 1981, accepted 28 February 1982
This work was supported by Natural Sciences and Engineering Research Council of Canada Grant
A8652, by the New Zealand Department of Scientific and Industrial Research; and by U S. National
Science Foundation Grants MCS-7926009 and ECS-8012974, the Department of Energy under
Contract AM03-76SF00326, PA No. DE-AT03-76ER72018, the Office of Naval Research under
Contract N00014-75-C-0267, and the Army Research Office under Contract DAA29-79-C-0U0,
Authors' addresses: C. C. Paige, School of Computer Science, McGill University, Montreal, Quebec,
Canada H3A 2K6; M. A Saundem, Department of Operations Research, Stanford University,
Stanford, CA 94305.
Permmsion to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notme is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
© 1982 ACM 0098-3500/82/0600-0[95 $00 75

ACM Transactions on Mathematical Software, Vol. 8, No. 2, June 1982, Pages 195-209.

196 Algorithms

Table I. Comparison of CGLS and LSQR

Storage Work per iteration

CGLS, h = 0 2m 4- 2n 2m + 3n
CGLS,)~ ~ 0 2m 4- 2n 2m + 5n
LSQR, any)~ m 4- 2n 3m 4- 5n

essential function is to compute products of the form A x and AWy for given
vectors x and y.

Problems (1.1) and (1.2) are t rea ted as special cases of (1.3), which we shall
write as

An earlier successful me thod for such problems is the conjugate-gradient me thod
for least squares systems given by Hestenes and Stiefel [3]. (This me thod is
described as algori thm CGLS in [6, sect. 7.1].) CGLS and LSQR are i terative
methods with similar quali tat ive properties. The i r computat ional requirements
are summarized in Table I. In addit ion they require a product A x and a product
ATy each iteration.

In order to achieve the storage shown for LSQR, we ask the user to implement
the matr ix-vector products in the form

y ,,-- y + A x and x (-- x + ATy, (1.5)

where <--- means tha t one of the given vectors is overwri t ten by the expression
shown. (A paramete r specifies which expression the user 's subroutine APROD
should compute on any given entry.) We see tha t LSQR has a storage advantage
if the operat ions (1.5) can be performed with no additional storage beyond tha t
required to represent A. For least squares applications with many observations
(m >> n), this could be useful.

T h e work shown in Table I is the number of floating-point multiplications per
i teration, excluding the work involved in the products Ax, AWy. Since CGLS is
somewhat more efficient, we would not discourage using tha t me thod whenever
A or A is well conditioned. However, LSQR is likely to obtain a more accurate
solution in fewer i terations i f .4 is modera te ly or severely ill-conditioned.

Le t ~k = b - / i x k be the residual vector associated with the k th iteration. LSQR
provides est imates of][xk IJ 2, II ~k]] 2, [] -4T~k H 2, the norm of.4, the condition number
of .4, and s tandard errors for the components of x. The last two i tems require a
fur ther 2n multiplications per i terat ion and an additional n-vector of storage.

Subrout ine LSQR is wri t ten in the P F O R T subset of American Nat ional
S tandard FORTRAN. I t contains no machine-dependent constants. Auxiliary
routines required are APROD, NORMLZ, SCOPY, SNRM2, and SSCAL. The
last three correspond to members of the BLAS collection [5].

2. MATHEMATICAL BACKGROUND

Algorithmic details are given in [6], mainly for the case ~ = 0. We summarize
these here with ~ reintroduced, and show tha t a given value of :k m a y be dealt
with at negligible cost. The vector norm I] v]] 2 = (vTv) 1/2 is used throughout .

ACM Transactions on Mathematical Software, Vol. 8, No. 2, June 1982

Algorithms • 197

LSQR uses an algorithm of Golub and Kahan to reduce A to lower bidiagonal
form. The quantities produced from A and b after k + 1 steps of the bidiagonal-
ization (procedure Bidiag 1 [6]) are

Uk+l ~ [UI~ U2~ - - . ~ Uk+l]~

Vk+l = [Vl , V2, • • . , Vk+l],
B k ~--

(XI
~2 O~2

fi3 "

~k+l

(2.1)

The k t h approximation to the solution x is then defined to be xk = V~yk , where
yk solves the subproblem

(2.2)

Lett ing the associated residual vectors be

tk+l = fi le1 - B k y k

rk = b - A x k (2.3)

we find tha t the relations

rk = Uk+ltk+l (2.4)

AWrk = h2Xk + Olk+lgk+lVk+l

will hold to machine accuracy, where rk+~ is the last component of tk+~, and we
therefore conclude tha t (rk, xD will be an acceptable solution of (1.4) if the
computed value of either II th+l II or I ak+lVk+l I is suitably small.

Bjorck [1] has previously observed tha t subproblem (2.2) is the appropriate
generalization of minll B k y k -- fl~el II, when X ~ 0. He also discusses methods for
computing yk and xk efficiently for various ~ and k.

In LSQR we assume tha t a single value of)~ is given, and to save storage and
work, we do not compute yk, rk, or tk+~. The orthogonal factorization

qk J
(2.5)

is computed (Q T Q k = I ; R k upper bidiagonal, k x k) and this would give R k y k =
DTDT V[and form xk D k f k . fk, but instead we solve ~h k = =

The factorization (2.5) is formed similarly to the case)t = 0 in [6], except tha t
two rotat ions are required per step instead of one. For k --- 2, the factorization

ACM Transac$1ons on Mathematical Software, Vol. 8, No. 2, June 1982.

198 • Algorithms

proceeds according to

2 0/2

X

I pl 8= 61]

-'* f13

~2 O/2 j~2 ~2

p~ e2
p2

pl

62

Note that the first ~ is rotated into the diagonal element a~. This alters the right-
hand side fl~e~ to produce ~1, the first component of qk. An alternative is to rotate

into f12 (and similarly for later h), since this does not affect the right-hand side
and it more closely simulates the algorithm that results when LSQR is applied to

and 5 directly. However, the rotations then have a greater effect on Bk, and in
practice the first option has proved to give marginally more accurate results.

The estimates required to implement the stopping criteria are

II kU = = Ilrkll 2 + X=llxkll = = + Ilqkll =,

']'4T~*]l ffi l]ATr~-- X2X*l' =] ak÷~Bk+~k] " o k

This is a simple generalization of the case h ffi 0. No additional storage is needed
for qk, since only its norm is required. In short, although the presence of h
complicates the algorithm description, it adds essentially nothing to the storage
and work per iteration.

3. REGULARIZATION AND RELATED WORK

Introducing h as in (1.3) is just one way of "regularizing" the solution x, in the
sense that it can reduce the size of the computed solution and make its compo-
nents less sensitive to changes in the data. LSQR is applicable when a value of

is known a priori. The value is entered via the subroutine parameter DAMP. A
second method for regularizing x is available through LSQR's parameter ACOND,
which can cause iterations to terminate before I[xk [I becomes large. A similar
approach has recently been described by Wold et al. [9], who give an illuminating
interpretation of the bidiagonalization as a partial least squares procedure. Their
description will also be useful to those who prefer the notation of multiple
regression.

Methods for choosing X, and other approaches to regularization, are given in
[1, 2, 4, 8] and elsewhere. For a philosophical discussion, see [7].

4. CODING APROD

The best way to compute y + Ax and x + ATy depends upon the origin of the
matrix A. We shall illustrate a case that commonly arises, in which A is a sparse
matrix whose nonzero coefficients are stored by rows in a simple list. Let A have
ACM Transactions on Mathematmal Software, Voi. 8, No. 2, June 1982

Algor i thms • 199

M rows, N columns, and NZ nonzeros. Conceptually we need three arrays
dimensioned as REAL RA(NZ) and INTEGER JA(NZ), NA(M),.where

RA(L) is the Lth nonzero of A, counting across row 1, then across row 2, and
so on;

JA(L) is the column in which the Lth nonzero of A lies;
NA(I) is the number of nonzero coefficients in the Ith row of A.

These quantities may be used in a straightforward way, as shown in Figure 1 (a
FORTRAN implementation). We assume that they are made available to
APROD through COMMON, and that the actual array dimensions are suitably
large.

Blank or labeled COMMON will often be convenient for transmitting data to
APROD. (Of course, some of the data could be local to APROD.) For greater
generality, the parameter lists for LSQR and APROD include two workspace
arrays IW, RW and their lengths LENIW, LENRW. LSQR does not use these
parameters directly; it just passes them to APROD.

Figure 2 illustrates their use on the same example (sparse A stored by rows).
An auxiliary subroutine APROD1 is needed to make the code readable. A similar
scheme should be used to initialize the workspace parameters prior to calling
LSQR.

Returning to the example itself, it may often be natural to store A by c o l u m n s
rather than rows, using analogous data structures. However, we note that in
sparse least squares applications, A may have many more rows than columns
(M >> N). In such cases it is vital to store A by rows as shown, if the machine
being used has a paged (virtual) memory. Random access is then restricted to
arrays of length N rather than M, and page faults will therefore be kept to a
minimum.

Note also that the arrays RA, JA, NA are adequate for computing both A x and
AWy; we do not need to store A by rows a n d by columns.

Regardless of the application, it will be apparent when coding APROD for the
two values of MODE that the matrix A is effectively being defined twice. Great
care must be taken to avoid coding inconsistent expressions y + A l x and x +
A T y , where either A1 or A2 is different from the desired A. (If A1 ~ As, algorithm
LSQR will not converge.) Parameters ANORM, ACOND, and CONLIM provide
a safeguard for such an event.

5. P R E C O N D I T I O N I N G

It is well known that conjugate-gradient methods can be accelerated if a nonsin-
gular matrix M is available to approximate A in some useful sense. When A is
square and nonsingular, the system A x -- b is equivalent to both of the following
systems:

(M - 1 A) x = c where M c = b; (5.1)

(A M - I) z -- b where M x = z. (5.2)

For least squares systems (undamped), only the analogue of (5.2) is applicable:

minllAx - b]12 = minll(AM-1)z - bH2, where M x = z. (5.3)
ACM Transac~mns on Mathematical Software, Vol. 8, No 2, June 1982

200 • Algorithms

Fig. 1. Computation ofy + Ax,
x + Ary, where A is a sparse
matrix stored compactly by
rows. For convenience, the
data structure for A is held in
COMMON.

SUBROUTINE APROD(MODE,M,N,X,Y,
* LENIW,LENRW,IW,RW)

INTEGER MODE,M,N,LENIW,LENRW
INTEGER IW(LENIW)
REAL X(N) ,Y(M), RW(LENRW)

APROD PERFORMS THE FOLLOWING FUNCTIONS:

IF MODE = I, SET Y = Y + A*X
IF MODE = 2, SET X " X + A(TRANSPOSE)*Y

WHERE A IS A MATRIX STORED BY ROWS IN
THE ARRAYS RA, JA, NA. IN THIS EXAMPLE,
RA, JA, NA ARE STORED IN COMMON.

REAL RA
INTEGER JA, NA
COMMON RA(9000), JA(9000), NA(I000)

INTEGER I,J,L,LI,L2
REAL SUM, YI, ZERO

ZERO - 0.0
L2 - 0
IF (MODE .NE.I) GO TO 400

MODE - 1 -- SET Y = Y + A*X.

DO 200 I - I, M
SUM - ZERO
L1 " L2 + 1
L2 " L2 + NA(I)
DO 100 L " LI, L2

J .. JA(L)
SUM - SUM + RA(L)*X(J)

I00 CONTINUE
Y(1) = Y(1) + SUM

200 CONTINUE
RETURN

MODE = 2 -- SET X = X + A(TRANSPOSE)*Y.

400 DO 600 I " I, M
YI = Y(1)
L1 " L2 + 1
L2 " L2 + NA(I)
DO 500 L " LI, L2

J " JA(L)
X(J) " X(J) + RA(L)*YI

500 CONTINUE
600 CONTINUE

RETURN

END OF APROD
END

ACM Transactions on Mathematical Software, Vol 8, ~ No. 2, June 1982.

SUBROUTINE APROD(MODE,H,N,X,Y,
* LENIW,LENRW,IW,RW)

INTEGER MODE,M,N,LENIW,LENRW
INTEGER IW(LENIW)
REAL X(N),Y(M),RW(LENRW)

APROD PERFORMS THE FOLLOWING FUNCTIONS:

IF MODE = I, SET Y ffi Y + A*X
IF MODE - 2, SET X ffi X + A(TRANSPOSE)*Y

WHERE A IS A MATRIX STORED BY ROWS IN
THE ARRAYS RA, JA, NA. IN THIS EXAMPLE,
APROD IS AN INTERFACE BETWEEN LSQR AND
ANOTHER USER ROUTINE THAT DOES THE WORK.
THE WORKSPACE ARRAY RW CONTAINS RA.
THE FIRST M COMPONENTS OF IW CONTAIN NA,
AND THE REMAINDER OF IW CONTAINS JA.
THE DIMENSIONS OF RW AND IW ARE ASSUMED
TO BE SUFFICIENTLY LARGE.

INTEGER LENJA,LENRA,LOCJA

LOCJA ffi M + I
LENJA ffi LENIW - LOCJA + 1
LENRA ffi LENRW
CALL APRODI(MODE,M,N,X,Y)

* LENJA,LENRA,IW,IW(LOCJA),RW)
RETURN

END OF APROD
END

Algorithms . 201

Fig. 2 S a m e as Figure 1, with
the data structure for A held
in the workspace parameters.

SUBROUTINE APRODI(MODE,M,N,X,Y,
* LENJA,LENRA,NA,JA,RA)

INTEGER
INTEGER
REAL

MODE,M,N,LENJA,LENRA
NA(M),JA(LENJA)
X(N),Y(M),RA(LENRA)

APRODI DOES THE WORK FOR APROD.

INTEGER I,J,L,LI,L2
REAL SUM,YI,ZERO

< the same code as in APROD in Figure 1 >

END OF APRODI
END

ACM Transactions on Mathematical Software, Vol. 8, No. 2, June 1982

0'3
0
I

0
0

o

0
o,I

I

r~

I
r..r..1
0
0
0

I|

Q

0
0

II

Z
0

0

, - 1 0
II 0 I

U r.r-1
0

• K O 0

0 II

0 0 0

0
0

II II

0

! I

II I1

~.4 0
I ~ I

°

0
0

0

~'~ 0

I

0
0
0
0

• -,-i 0

0

0 0 0 0 0 0 ~ ~
0 0 0 0 0 0 0 0 0 0 0 0 0

0 ~ ~ ~ ~
0 ~ 0 0 ~ ~

!

I I I I I I 1 1 1 1 I I I

I I I I I I I I I I I l l

~ 0 ~ ~ 0 ~ ~

0 0 0 0 0 0 0 0 0 0 0 0 0
I I I I

O Q O
O O 0 0 0 Q O O O Q Q Q O
Q O O O O O O Q O 0 O 0 0

~ 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

I I I I

O O O O O 0 0 0 0 0 Q O 0 Q O O O O O Q O O 0 O O Q
O O 0 0 0 0 0 0 0 0 O O 0

~ ~ 0 0 ~ ~

| 1 1

0

0
0

0

C~
r~

v

0

0

0

0

v

0

I.-.I
u ' l

I

-I¢

v

0
Z

O 0
I I

0 0 0

I I

0
I

O~ ~'~1
0~-~"

0
I

0

0 0 0

c.,I r '~

0 0 o h
Z o

0

0 0 0

O 0

~ 2

CO

¢ 0 , - ~

O 0

0 0 0

aOu'~

00u '~

O C)

tx l r.-.

~ c O 0 0
0 u~ ,.-4

°

Z

0

204 • Algori thms

We note only t ha t subroutine L S Q R may be appl ied without change to sys tems
(5.1)-(5.3). T h e effect of M is localized to the user ' s own subrout ine APROD. For
example, when M O D E -- 1, A P R O D for the last two sys tems should compute
y + (A M - t) x by first solving M w = x and then comput ing y + Aw. Clearly it mus t
be possible to solve sys tems involving M and M T very efficiently.

6. O U T P U T

Subrout ine L S Q R produces pr in ted ou tpu t on file N O U T , if the p a r a m e t e r
N O U T is positive. Th is is i l lustrated in Figure 3, in which the least squares
p rob lem solved is P(20, 10, 1, 1) as defined in [6], with a slight generalization to
include a damping p a r a m e t e r)~ = 10 -2. (Single precision was used on an I B M
370/168.) T h e i tems printed~at the k th i terat ion are as follows.

I T N T h e i terat ion n u m b e r k. Resul ts are a lways pr inted for the
first 10 and last 10 iterations. In t e rmed ia te resul ts are
pr in ted if m _< 40 or n ___ 40, or if one of the convergence
condit ions is near ly satisfied. Otherwise, informat ion is
pr in ted every 10th i teration.

X(1) T h e value of the first e l ement of the approx imate solution
Xk.

F U N C T I O N T h e value of the function being minimized, namely [] Fk [I --

(11 rk II 2 + x 2 II x , 112) '/2
C O M P A T I B L E A dimensionless quant i ty which should converge to zero i f

and only i f A x = b is compat ible . I t is an es t imate of II ~k II/
II b II, which decreases monotonical ly.

I N C O M P A T I B L E A dimensionless quan t i ty which should converge to zero i f
a n d only i f the o p t i m u m II ~k II is nonzero. I t is an es t imate
of II i i T ~ II/(11 t i II w II Fk II), which is usual ly not monotonic .

N O R M (A B A R) A monotonica l ly increasing es t imate of II Li II ~.
C O N D (A B A R) A monotonica l ly increasing es t imate of cond(z~) =

II A II r II/i+ II r , the condit ion n u m b e r of z{.

ACKNOWLEDGMENT

T h e au thors are grateful to Richard Hans on for suggestions t ha t p romp ted
several i m p r o v e m e n t s to the implementa t ion of LSQR.

REFERENCES
1. BJORCK, A. A bidlagonahzation algorithm for solving ill-posed systems of linear equatmns Rep

LITH-MAT-R-80-33, Dep. Mathematics, Linkopmg Univ., Lmkoping, Sweden, 1980.
2 ELDI~,N, L. Algorithms for the regularization of ill-conditioned least squares problems BIT 17

(1977), 134-145.
3. HESTENES, M.R, AND STIEFEL, E Methods of conjugate gradients for solving hnear systems. J

Res. N.B.S. 49 (1952), 409-436.
4 LAWSON, C.L, AND HANSON, R.J Solvmg Least Squares Problems. Prentice-Hail, Englewood

Cliffs, N.J., 1974.
5 LAWSON, C .L , HANSON, R J., KINCA1D, D.R, AND KROGH, F T Basic hnear algebra subprograms

for Fortran usage ACM Trans Math Softw 5, 3 (Sept 1979), 308-323 and (Algorithm} 324-325.
6. PAIGE, C.C., AND SAUNDERS, M A LSQR An algorithm for sparse linear equations and sparse

least squares ACM Trans Math Softw 8, 1 (March 1982), 43-71

ACM TransacUons on Mathematical Software, Vol 8, No. 2, June 1982

Algorithms • 205

7. SMITH, G., AND CAMPBELL, F. A critique of some ridge regression methods. J. Am. Star. Assoc.
75, 369 (March 1980), 74-81

8 VARAH, J.M A practical examination of some numerical methods for linear discrete ill-posed
problems S I A M Rev. 21 (1979), 100-111.

9. WOLD, S, WOLD, H., DUNN, W.J., AND RUHE, A. The collinearity problem in linear and
nonlinear regression. The partial least squares (PLS) approach to generalized inverses. Rep.
UMINF-83.80, Univ. Ume~, Ume&, Sweden, 1980.

ALGORITHM

[A p a r t o f t h e l i s t ing is p r i n t e d he re . T h e c o m p l e t e l i s t ing is a v a i l a b l e f r o m t h e
A C M A l g o r i t h m s D i s t r i b u t i o n S e r v i c e (see p a g e 227 for o r d e r form) .]

SUBROUTINE LSQR(M,N,APROD, DAMP,
i LENIW,LENRW, IW,RW,
2 U,V,W,X,SE,
3 ATOL,BTOL,CONLIM, ITNLIM,NOUT,
4 ISTOP,ANORM,ACOND,RNOI~M,ARNORM, XNOEM)

EXTERNAL
INTEGER
INTEGER
REAL

i

APROD
M,N,LENIW, LENRW, ITNLIM,NOUT,ISTOP
IW(LENIW)
RW(LENRW),U(M),V(N),W(N),X(N),SE(N),
ATOL,BTOL, CONLIM, DAMP,ANORM,ACOND, RNORM,ARNORM, XNORM

io
2.
3.
4.
5.
6.
7.
8.
9.

i¢.
ii.
12.

LSQR FINDS A SOLUTION X TO THE FOLLOWING PROBLEMS...

i. UNSYMMETRIC EQUATIONS -- SOLVE A*X = B

2. LINEAR LEAST SQUARES -- SOLVE A*X = B
IN THE LEAST-SQUARES SENSE

3. DAMPED LEAST SQUARES -- SOLVE (A)*X ffi (B)
(DAMP*I) (~b)

IN THE LEAST-SQUARES SENSE

WHERE A IS A MATRIX WITH M ROWS AND N COLUMNS, B IS AN
M-VECTOR, AND DAMP IS A SCALAR (ALL QUANTITIES REAL).
THE MATRIX A IS INTENDED TO BE LARGE AND SPARSE. IT IS ACCESSED
BY MEANS OF SUBROUTINE CALLS OF THE FORM

CALL APROD(MODE,M,N,X,Y,LENIW,LENRW, IW,RW)

WHICH MUST PERFORM THE FOLLOWING FUNCTIONS...

IF MODE ffi i, COMPUTE Y = Y + A*X.
IF MODE ffi 2, COMPUTE X = X + A(TRANSPOSE)*Y.

THE VECTORS X AND Y ARE INPUT PARAMETERS IN BOTH CASES.
IF MODE = i, Y SHOULD BE ALTERED WITHOUT CHANGING X.
IF MODE = 2, X SHOULD BE ALTERED WITHOUT CHANGING Y.
THE PARAMETERS LENIW, LENRW, IW, RW MAY BE USED FOR WORKSPACE
AS DESCRIBED BELOW.

THE RHS VECTOR B IS INPUT VIA U, AND SUBSEQUENTLY OVERWRITTEN.

ACM Transactions on Mathematical Software, Vol. 8, No. 2, June

13.
14.
15.
16.
17.
18.
19.
2~.
21.
22.
23.
24.
25.
26.
27.
28.
29.
3#.
31.
32.
33.
34.
35.
36.
37.
38.
39.
4¢.
41.
42.
43.
44.
45.

1982

206 • Algorithms

NOTE. LSQR USES AN ITERATIVE METHOD TO APPROXIMATE THE SOLUTION.
THE NUMBER OF ITERATIONS REQUIRED TO REACH A CERTAIN ACCURACY
DEPENDS STRONGLY ON THE SCALING OF THE PROBLEM. POOR SCALING OF
THE ROWS OR COLUMNS OF A SHOULD THEREFORE BE AVOIDED WHERE
POSSIBLE.

FOR EXAMPLE, IN PROBLEM i THE SOLUTION IS UNALTERED BY
ROW-SCALING. IF A ROW OF A IS VERY SMALL OR LARGE COMPARED TO
THE OTHER ROWS OF A, THE CORRESPONDING ROW OF (A B) SHOULD
BE SCALED UP OR DOWN.

IN PROBLEMS i AND 2, THE SOLUTION X IS EASILY RECOVERED
FOLLOWING COLUMN-SCALING. IN THE ABSENCE OF BETTER INFORMATION,
THE NONZERO COLUMNS OF A SHOULD BE SCALED SO THAT THEY ALL HAVE

THE SAME EUCLIDEAN NORM (E.G. i.@).

IN PROBLEM 3, THERE IS NO FREEDOM TO RE-SCALE IF DAMP IS
NONZERO. HOWEVER, THE VALUE OF DAMP SHOULD BE ASSIGNED ONLY
AFTER ATTENTION HAS BEEN PAID TO THE SCALING OF A.

THE PARAMETER DAMP IS INTENDED TO HELP REGULARIZE
ILL-CONDITIONED SYSTEMS, BY PREVENTING THE TRUE SOLUTION FROM
BEING VERY LARGE. ANOTHER AID TO REGULARIZATION IS PROVIDED BY
THE PARAMETER ACOND, WHICH MAY BE USED TO TERMINATE ITERATIONS
BEFORE THE COMPUTED SOLUTION BECOMES VERY LARGE.

NOTATION

THE FOLLOWING QUANTITIES ARE USED IN DISCUSSING THE SUBROUTINE
PARAMETERS...

~ A R = (A) , BBAR - (B)
(D ~ * I) (~)

R = B - A'X, REAR - BBAR - ABAR*X

RNOEM - SQRT(NORM(R)**2 + DAMP**2 * NORM(X)**2)

= NORM(RBAR)

RELPR = THE RELATIVE PRECISION OF FLOATING-POINT ARITHMETIC
ON THE MACHINE BEING USED. FOR EXAMPLE, ON THE IBM 370,
RELPR IS ABOUT i. @E-6 AND 1.~D-16 IN SINGLE AND DOUBLE
PRECISION RESPECTIVELY.

LSQR MINIMIZES THE FUNCTION RNOEM WITH RESPECT TO X.

PARAMETERS

M INPUT THE NIIMBER OF ROWS IN A.

N INPUT THE NIJM~ER OF COLUMNS IN A.

APROD EXTERNAL SEE ABOVE.

DAMP INPUT THE DAMPING PARAMETER FOR PROBLEM 3 ABOVE.
(DAMP SHOULD BE ~.~ FOR PROBLEMS i AND 2.)

ACM Transactions on Mathematical Software, Vol 8, No 2, June 1982.

46.
47.
48.
49.
5¢.
51.
52.
53.
54.
55.
56.
57.
58.
59.
6¢.
61.
62.
63.
64.
65.
66.
67.
68.
69.
7¢.
71.
72.
73.
74.
75.
76.
77.
78.
79.
8~.
81.
82.
83.
84.
85.
86.
87.
88.
89.
9¢.
91.
92.
93.
94.
95.
96.
97.
98.
99.

z¢2.
z03.

LENIW
LENRW
IW
RW

U(M)

V(N)
W(N)

X(N)

SE(N)

ATOL

BTOL

CONLIM

Algorithms • 207

IF THE SYSTEM A*X = B IS INCOMPATIBLE, VALUES 1@6.
OF DAMP IN THE RANGE @ TO SQRT(RELPR)*NORM(A) 1@7.
WILL PROBABLY HAVE A NEGLIGIBLE EFFECT. 1@8.
LARGER VALUES OF DAMP WILL TEND TO DECREASE 1@9.
THE NORM OF X AND TO REDUCE THE ~ER OF Ii@.
ITERATIONS REQUIRED BY LSQR. IIi.

112.
THE WORK PER ITERATION AND THE STORAGE NEEDED 113.
BY LSQR ARE THE SAME FOR ALL VALUES Ol ~ DAMP. 114.

115.
INPUT THE LENGTH OF THE WORKSPACE ARRAY !W. 116.
INPUT THE LENGTH OF THE WORKSPACE ARRAY RW. 117.
WORKSPACE AN INTEGER ARRAY OF LENGTH LENIW. 118.
WORKSPACE A REAL ARRAY OF LENGTH LENRW. 119.

12@.
NOTE. LSQR DOES NOT EXPLICITLY USE THE PREVIOUS FOUR 121.
PARAMETERS, BUT PASSES THEM TO SUBROUTINE APROD FOR 122.
POSSIBLE USE AS WORKSPACE. IF APROD DOES NOT NEED 123.
IW OR RW, THE VALUES LENIW = i OR LENRW ,, i SHOULD 124.
BE USED, AND THE ACTUAL PARAMETERS CORRESPONDING TO 125.
IW OR RW MAY BE ANY CONVENIENT ARRAY OF SUITABLE TYPE. 126.

127.
THE RHS VECTOR B. BEWARE THAT U IS 128.
OVER-WRITTEN BY LSQR. 129.

13@.
131.
132.
133.

RETURNS THE COMPUTED SOLUTION X. 134.
135.

RETURNS STANDARD ERROR ESTIMATES FOR THE 136.
COMPONENTS OF X. FOR EACH I, SE(1) IS SET 137.
TO THE VALUE ENORM * SQRT(SIGMA(I,I) / T), 138.
WHERE SIGMA(I,I) IS AN ESTIMATE OF THE I-TH 139.
DIAGONAL OF THE INVERSE OF ABAR(TRANSPOSE)*ABAR 14@.
AND T " i IF M .LE. N, 141.

T ffi M - N IF M .GT. N AND DAMP ffi @, 142.
T ,, M IF DAMP .NE. @. 143.

144.
AN ESTIMATE OF THE RELATIVE ERROR IN THE DATA 145.
DEFINING THE MATRIX A. FOR EXAMPLE, 146.
IF A IS ACCURATE TO ABOUT 6 DIGITS, SET 147.
ATOL " I.@E-6 . 148.

149.
AN ESTIMATE OF THE RELATIVE ERROR IN THE DATA 15@.
DEFINING THE RHS VECTOR B. FOR EXAMPLE, 151.
IF B IS ACCURATE TO ABOUT 6 DIGITS, SET 152.
BTOL ffi I.@E-6 • 153.

154.
AN UPPER LIMIT ON COND('ABAR), THE APPARENT 155.
CONDITION NUMBER OF THE MATRIX ABAR. 156.
ITERATIONS WILL BE TERMINATED IF A COMPUTED 157.
ESTIMATE OF COND(ABAR) EXCEEDS CONLIM. 158.
THIS IS INTENDED TO PREVENT CERTAIN SMALL OR 159.
ZERO SINGUI2d~ VALUES OF A OR ABAR FROM 16@.
COMING INTO EFFECT AND CAUSING UNWANTED GROWTH 161.
IN THE COMPUTED SOLUTION. 162.

163.
CONLIM AND DAMP MAY BE USED SEPARATELY OR 164.
TOGETHER TO REGULARIZE ILL-CONDITIONED SYSTEMS. 165.

ACM Transactions on Mathematical Software, Vol. 8, No. 2, June 1982

INPUT

WORKSPACE
WORKSPACE

OUTPUT

OUTPUT

INPUT

INPUT

INPUT

~ ~;~ L ~ I ~ •

208 • Algorithms

C
C
C
C
C
C
C
C
C
C
C
C
C ITNLIM INPUT
C
C
C
C
C NOUT INPUT
C
C
C ISTOP OUTPUT
C
C 0
C
C
C 1
C
C
C
C 2
C
C
C
C
C 3
C
C
C
C
C 4
C
C
C
C 5
C
C
C
C
C 6
C
C
C
C
C 7
C
C ANORM OUTPUT
C
C
C
C
C

166.
NORMALLY, CONLIM SHOULD BE IN THE RANGE 167.
1 ~ TO 1/REAR. 168.
SUGGESTED VALb~ -- 169.
CONLIM = 1/(100*RELPR) FOR COMPATIBLE SYSTEMS, 170.
CONLIM - I/(10*SQRT(RELPR)) FOR LEAST SQUARES. 171.

172,
NOTE. IF THE USER IS NOT CONCERNED ABOUT THE PARAMETERS 173.
ATOL, BTOL AND CONLIM, ANY OR ALL OF THEM MAY BE SET 174.
TO ZERO. THE EFFECT WILL BE THE SAME AS THE VALUES 175.
RELPR, RELPR AND I/KELPR RESPECTIVELY. 176.

177.
AN UPPER LIMIT ON THE NUMBER OF ITERATIONS. 178.
SUGGESTED VALUE -- 179.
ITNLIM " N/2 FOR WELL CONDITIONED SYSTEMS, 180.
ITNLIM - 4*N OTHERWISE. 181.

182.
FILE NUMBER FOR PRINTER. IF POSITIVE, 183.
A SUMMARY WILL BE PRINTED ON FILE NOUT. 184.

185.
AN INTEGER GIVING THE REASON FOR TERMINATION... 186.

187.
X " 0 IS THE EXACT SOLUTION. 188.
NO ITERATIONS WERE PERFORMED. 189.

THE EQUATIONS A*X - B ARE PROBABLY
COMPATIBLE. NORM(A*X - B) IS SUFFICIENTLY
SMALL, GIVEN THE VALUES OF ATOL AND BTOL.

THE SYSTEM A*X = B IS PROBABLY NOT
COMPATIBLE. A LEAST-SQUARES SOLUTION HAS
BEEN OBTAINED WHICH IS SUFFICIENTLY ACCURATE,
GIVEN THE VALUE OF ATOL.

AN ESTIMATE OF COND(ABAR) HAS EXCEEDED
CONLIM. THE SYSTEM A*X - B APPEARS TO BE
ILL-CONDITIONED. OTHERWISE, THERE COULD BE AN
AN ERROR IN SUBROUTINE APROD.

THE EQUATIONS A*X - B ARE PROBABLY
COMPATIBLE. NORM(A*X - B) IS AS SMALL AS
SEEMS REASONABLE ON THIS MACHINE.

THE SYSTEM A*X - B IS PROBABLY NOT
COMPATIBLE. A LEAST-SQUARES SOLUTION HAS
BEEN OBTAINED WHICH IS AS ACCURATE AS SEEMS
REASONABLE ON THIS MACHINE.

COND(ABAR) SEEMS TO BE SO LARGE THAT THERE IS
NOT MUCH POINT IN DOING FURTHER ITERATIONS,
GIVEN THE PRECISION OF THIS MACHINE.
THERE COULD BE AN ERROR IN SUBROUTINE APROD.

THE ITERATION LIMIT ITNLLM WAS REACHED.

AN ESTIMATE OF THE FROBENIUS NORM OF ABAE.
THIS IS THE SQUARE-ROOT OF THE SUM OF SQUARES
OF THE ELEMENTS OF ABAR.
IF DAMP IS SMALL AND IF THE COLUMNS OF A
RAVE ALL BEEN SCALED TO HAVE LENGTH 1.0,
ANORM SHOULD INCREASE TO ROUGHLY SQRT(N).

190.
191.
192.
193 •
194.
195.
196.
197.
198 •
199.
200.
2~1.
202.
203.
204.
205.
206.
207.
208.
209.
21~.
211.
212.
213.
214.
215.
216.
217.
218.
219.
220.
221.
222.
223.
224.
225.
226.

ACM Transactions on Mathematical Software, Vol. 8, No. 2, June 1982.

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
c
C
C

ACOND OUTPUT

RNORM OUTPUT

ARNORM OUTPUT

XNORM OUTPUT

Algor i thms •

A RADICALLY DIFFERENT VALUE FOR ANORM MAY
INDICATE AN ERROR IN SUBROUTINE APROD (THERE
MAY BE AN INCONSISTENCY BETWEEN MODES 1 AND 2).

AN ESTIMATE OF COND(ABAR), THE CONDITION
NUMBER OF ABAR. A VERY HIGH VALUE OF ACOND
MAY AGAIN INDICATE AN ERROR IN APROD.

AN ESTIMATE OF THE FINAL VALUE OF NORM(KBAR),
THE FUNCTION BEING MINIMIZED (SEE NOTATION
ABOVE). THIS WILL BE SMALL IF A*X " B HAft
A SOLUTION.

AN ESTIMATE OF THE FINAL VALUE OF
NORM(ABAR(TRANSPOSE)*RBAR) , THE NORM OF
THE RESIDUAL FOR THE USUAL NORMAL EQUATIONS.
THIS SHOULD BE SMALL IN ALL CASES. (ARNORM
WILL OFTEN BE SMALLER THAN THE TRUE VALUE
COMPUTED FROM THE OUTPUT VECTOR X.)

AN ESTIMATE OF THE NORM OF THE FINAL
SOLUTION VECTOR X.

SUBROUTINES AND FUNCTIONS USED

USER APROD
LSQR NORMLZ
BLAS SCOFY,SNRM2,SSCAL (SEE LAWSON ET AL. BELOW)

(SNRM2 IS USED ONLY IN NORMLZ)
FORTRAN ABS,MOD, SQRT

PRECISION

THE NUMBER OF ITERATIONS REQUIRED BY LSQR WILL USUALLY DECREASE
IF THE COMPUTATION IS PERFORMED IN HIGHER PRECISION. TO CONVERT
LSQR AND NORMLZ BETWEEN SINGLE- AND DOUBLE-PRECISION, CHANGE
THE WORDS

SCOPY, SNRM2, SSCAL
ABS, REAL, SQRT

TO THE APPROPRIATE BLAS AND FORTRAN EQUIVALENTS.

REFERENCES

PAIGE, C,C, AND SAUNDERS, M,A. LSQR: AN ALGOR~T~ FOP, SPARSE
LINEAR EQUATIONS AND SPARSE LEAST SQUARES.
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE 8, 1 (MARCH 1982).

LAWSON, C.L., HANSON, R.J., KINCAID, D.R. AND KROGH, ¥.T.
BASIC LINEAR ALGEBRA SUBPROGRAMS FOR FORTRAN USAGE.
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE 5, 3 (SEPT 1979),
3@8-323 AND 324-325.

LSQR. THIS VERSION DATED 22 FEBRUARY 1982.

ACM Transactions on Mathematical Software, VoL 8, No. 2, June

200

227.
228.
229.
23~.
231.
232.
233.
234.
235.
236.
237.
238.
239.
24@.
241.
242.
243.
244.
245.
246.
247.
248.
249.
25@.
251.
252.
253.
254.
255.
256.
257.
258.
259.
26~.
261.
262.
263.
264.
265.
266.
267.
268.
269.
270.
271.
272.
273.
274.
275.
276.
277.
278.
279.
28@.
281.
282.
283.
284.
285.
286.
287.

1982.

