
HyKKT: A Hybrid Direct and Iterative Method
for Solving KKT Linear Systems

Shaked Regev, Nai-Yuan Chiang, Eric Darve, Cosmin Petra,
Michael A. Saunders, Kasia Świrydowicz, Slaven Peleš

Stanford University; Pacific Northwest National Laboratory;
Lawrence Livermore National Laboratory

sregev@stanford.edu

August 3, 2022
Approved for unlimited distribution PNNL-SA-164807

Shaked Regev, et al. (PNNL-SA-164807) Solving KKT Linear Systems August 3, 2022 1 / 15



Acknowledgements

This research was supported by the Exascale Computing Project (ECP),
Project Number: 17-SC-20-SC, a collaborative effort of two DOE
organizations—the Office of Science and the National Nuclear Security
Administration—responsible for the planning and preparation of a capable
exascale ecosystem—including software, applications, hardware, advanced
system engineering, and early testbed platforms—to support the nation’s
exascale computing imperative.

Shaked Regev, et al. (PNNL-SA-164807) Solving KKT Linear Systems August 3, 2022 2 / 15



General Sparse NLPs

Sparse NLP formulation supports sparse optimization problems, requires
Hessians of objective and constraints in addition to gradients

min
x∈Rn

f (x)

s.t. c(x) = cE [y ]

[yd ,l ] dl ≤ d(x) ≤ du [yd ,u]

[zl ] xl ≤ x ≤ xu [zu]

Assume gradients and sparse Hessians are available

Quantities insides brackets are Lagrange multipliers for the constraints

For infinite bounds, multiplier is 0

Shaked Regev, et al. (PNNL-SA-164807) Solving KKT Linear Systems August 3, 2022 3 / 15



Model Requirements

D1 objective and constraint functions f (x), c(x), d(x)

D2 first derivatives: ∇f (x), Jc(x) = ∇c(x), Jd(x) = ∇d(x)

D3 Hessian of the Lagrangian

∇2L(x) = ∇2f (x) +
∑
i

yc,i∇2ci (x) +
∑
i

yd ,i∇2di (x)

D4 simple bounds xl and xu, inequality bounds dl and du,
and rhs cE of equality constraints

Shaked Regev, et al. (PNNL-SA-164807) Solving KKT Linear Systems August 3, 2022 4 / 15



Motivation

Out of the box GPU solvers do not work well on these problems

KLU + cuSolver works but is proprietary, only works on NVIDIA GPUs

Want a solver that allows substantial speedup on GPUs

Using a Cholesky solver instead of LBLTwould allow parallelization
and GPU utilization, but the problem is indefinite

K. Świrydowicz et al. (2021) Linear solvers for power grid optimization
problems: a review of GPU-accelerated linear solvers

Shaked Regev, et al. (PNNL-SA-164807) Solving KKT Linear Systems August 3, 2022 5 / 15



Problem Setup

Interior method, used to solve KKT systems, generates series of linear
systems Kk∆xk = rk :

H + Dx 0 JTc JTd
0 Ds 0 −I
Jc 0 0 0
Jd −I 0 0



∆x
∆s
∆y
∆yd

 =


r̃x
rs
ryc
ryd


Jc and Jd - sparse Jacobians for equality and inequality constraints

H - sparse Hessian matrix

Diagonal Dx arises from primal variables x in log-barrier function

Diagonal Ds arises from slack variables s in log-barrier function

Shaked Regev, et al. (PNNL-SA-164807) Solving KKT Linear Systems August 3, 2022 6 / 15



Simplifying the Problem

Eliminating ∆s = Jd∆x − ryd and ∆yd = Ds∆s − rd gives[
H̃ JTc
Jc 0

] [
∆x
∆y

]
=

[
rx
ryc

]
, H̃ ≡ H + Dx + JTd DsJd ,

where rx = r̃x + JTd (Dsryd + rd). Gaussian elimination with pivot
[
Ds −I
−I

]
.

We need to perform Ruiz Scaling on H̃ and Jc so we can judge the
sizes of the entries in the blocks

C. Petra et al. (2009) A computational study of the use of an
optimization-based method for simulating large multibody systems
D. Ruiz (2001) A scaling algorithm to equilibrate both rows and columns
norms in matrices

Shaked Regev, et al. (PNNL-SA-164807) Solving KKT Linear Systems August 3, 2022 7 / 15



Schur Complement System

The KKT system is equivalent to[
Hγ JTc
Jc 0

] [
∆x
∆y

]
=

[
r̂ x
ryc

]
, Hγ = H̃+γJTc Jc , r̂ x = rx+γJTc ryc

γ > 0 makes the system more SPD (increases the eigenvalues)

If Hγ or whole system are poorly conditioned, only option may be to
ignore the block structure and use an LBLT factorization

Sparse Cholesky on Hγ and CG on its Schur complement S:

S∆y = JcH
−1
γ r̂ x − ryc , S = JcH

−1
γ JTc

Hγ∆x = r̂ x − JTc ∆y

G. H. Golub and C. Greif (2003) On solving block-structured indefinite
linear systems

Shaked Regev, et al. (PNNL-SA-164807) Solving KKT Linear Systems August 3, 2022 8 / 15



Convergence Theorems

Reminder: H̃ ≡ H + Dx + JTd DsJd , Hγ = H̃ + γJTc Jc

For large γ and full-rank Jc , H̃ is PD on null(Jc) iff Hγ is uniformly
PD (required at optimization problem solution).

HyKKT provides descent direction to interior method (for large γ )

If H̃ is positive definite on null(JTc Jc), ∃γmax such that for γ ≥ γmax,
κ(Hγ) increases linearly with γ.

For large enough γ and C ≡ 1/γ
(
JcH̃

−1JTc

)−1
, Sγ ≡ γS =

γJcH
−1
γ JTc =

∑∞
k=0(−1)kC k = I − C + O

(
1
γ2

)
= I + O

(
1
γ

)
.

Shaked Regev, et al. (PNNL-SA-164807) Solving KKT Linear Systems August 3, 2022 9 / 15



HyKKT Workflow

Shaked Regev, et al. (PNNL-SA-164807) Solving KKT Linear Systems August 3, 2022 10 / 15



Preliminary Results With Solver Prototype

RR for Ax = b: ∥Ax−b∥
∥b∥

BE: ∥Ax−b∥
∥A∥∥x∥+∥b∥ , with ∥A∥∞ ≈ ∥A∥

5/6 matrix series (NLPs at different iterations of interior method)
solved efficiently and accurately (other needed O(1) regularization)

BE consistently < 10−8

Average CG iterations < 20.

δmin in the range 10−8 down to 10−10 is reasonable for any γ ≤ 108

(1) refers to the 4× 4 system, (2) refers to the 2× 2 system

Jonathan Maack and Shrirang Abhyankar (2020) ACOPF sparse linear solver test suite,
https://github.com/NREL/opf matrices

Shaked Regev, et al. (PNNL-SA-164807) Solving KKT Linear Systems August 3, 2022 11 / 15



US Eastern Interconnection Grid

Figure: (Left) CG iterations on S with γ = 106. Mean number of iterations is
13.1. (Right) Various errors for γ = 106. BE < 10−14.

Shaked Regev, et al. (PNNL-SA-164807) Solving KKT Linear Systems August 3, 2022 12 / 15



Comparison with LBLT: Factorization Density

Table: Dimensions, number of nonzeros, and factorization densities (average
number of nonzeros in the factors per row) for solving full system directly with
LBLTvia MA57 with pivot tolerance 0.01 (nL, nnzL, ρL) and solving systems with
Hγ with Cholesky (nC , nnzC , ρC )

Abbreviation nL nnzL ρL nC nnzC ρC

Illinois 4.64K 94.7K 20.4 2.28K 34.9K 15.3
Texas 55.7K 2.95M 52.9 25.9K 645K 24.9
Western US 238K 10.7M 44.8 116K 2.23M 19.2
Eastern US 1.64M 85.4M 52.1 794K 17.7M 22.3

Shaked Regev, et al. (PNNL-SA-164807) Solving KKT Linear Systems August 3, 2022 13 / 15



Comparison with LBLT: Run Time (Preliminary)

Table: Times (in seconds) for solving full system directly on a CPU with
LBLT(via MA57) or HyKKT on a GPU. CG is solved to tolerance of 10−12. All
runs are on x86 64 CPUs and A100 GPUs. As the problems grow larger, HyKKT
outperforms MA57 by an increasing factor.

Abbreviation MA57 HyKKT Relative size MA57/HyKKT
Illinois 6.24 · 10−3 1.01 · 10−2 1 0.62
Texas 1.00 · 10−1 1.04 · 10−1 10 1.04
Western US 3.38 · 10−1 1.46 · 10−1 50 2.32
Eastern US 3.48 · 100 3.31 · 10−1 350 10.5

Duff (2004)
Chen, Davis, Hager, and Rajamanickam (2008)

Shaked Regev, et al. (PNNL-SA-164807) Solving KKT Linear Systems August 3, 2022 14 / 15



Summary

We designed a linear solver strategy suitable for fine-grain
parallelization and deployment on hardware accelerators

We prove fast CG, holds in practice

The iterative nature of the solver provides more flexibility to balance
trade-offs between accuracy and performance

Cholesky instead of LBLT allows for better GPU utilization

Non-optimized HyKKT outperforms MA57 by 10x on largest problems
tested

Shaked Regev, et al. (PNNL-SA-164807) Solving KKT Linear Systems August 3, 2022 15 / 15


