SSAI and SSAI LS:
 Sparse approximate inverse preconditioners for CG and MINRES

Shaked Regev and Michael Saunders ICME, Stanford University

Householder 2022
Selva di Fasano, Italy, June 12-17, 2022

Abstract

We study SPAI methods for solving SPD $A x=b$, where A is an explicit sparse matrix.

Abstract

We study SPAI methods for solving SPD $A x=b$, where A is an explicit sparse matrix. An exact preconditioner M satisfies $A M=I$. This is $A m=e_{j}$ for each column of M.

Abstract

We study SPAI methods for solving SPD $A x=b$, where A is an explicit sparse matrix. An exact preconditioner M satisfies $A M=I$. This is $A m=e_{j}$ for each column of M. We compare two methods that change 1 element of m at a time: $m \leftarrow m+\delta e_{i}$.

Abstract

We study SPAI methods for solving SPD $A x=b$, where A is an explicit sparse matrix. An exact preconditioner M satisfies $A M=I$. This is $A m=e_{j}$ for each column of M. We compare two methods that change 1 element of m at a time: $m \leftarrow m+\delta e_{i}$.
$\begin{array}{ll}\text { SSAI } & \text { Jacobi's method on } A m=e_{j} \\ \text { SSAI_LS } & 1 D \text { least squares on } \min \left\|A m-e_{j}\right\|_{2}^{2}\end{array}$

SPD $A x=b$

- $A \in R^{n \times n}$, explicit, sparse
- Diagonal scaling $D A D y=D b, x=D y$ can make $\operatorname{diag}(D A D)=I$. Assume $A_{i i}=1$.
- SSAI \equiv Symmetric sparse approximate inverse

SPD $A x=b$

- $A \in R^{n \times n}$, explicit, sparse
- Diagonal scaling $D A D y=D b, x=D y$ can make $\operatorname{diag}(D A D)=l$. Assume $A_{i j}=1$.
- SSAI \equiv Symmetric sparse approximate inverse

Two methods

- SSAI: inspired by GMRES preconditioner of Salkuyeh and Toutounian (2004)
- SSAI_LS: SPD version of Chow and Saad (1998), min $\| A M$ - $I \|_{F}^{2}$

SSAI and SSAI_LS

Exact $M=\left[\begin{array}{llll}m_{1} & m_{2} & \ldots & m_{n}\end{array}\right]$ satisfies $A m_{j}=e_{j}$.
For each col $m=m_{j}$, apply a few iterations of coordinate descent $\left(m \leftarrow m+\delta e_{i}\right)$ on either $A m=e_{j}$ (Jacobi's method) or $\left\|A m-e_{j}\right\|_{2}^{2}$ (least squares):

```
\(m=0, \quad r=e_{j}\)
for \(k=1,2, \ldots, k_{\text {max }}\)
    \(i=\arg \max \left|r_{i}\right|\)
    \(\delta=r_{i} \quad\) or \(\quad \delta=a_{i}^{\top} r /\left\|a_{i}\right\|^{2}\)
    \(m \leftarrow m+\delta e_{i}\)
    \(r \leftarrow r-\delta a_{i}\)
end
```


SSAI and SSAI LS

Exact $M=\left[\begin{array}{llll}m_{1} & m_{2} & \ldots & m_{n}\end{array}\right]$ satisfies $A m_{j}=e_{j}$.
For each col $m=m_{j}$, apply a few iterations of coordinate descent ($m \leftarrow m+\delta e_{i}$) on either $A m=e_{j}$ (Jacobi's method) or $\left\|A m-e_{j}\right\|_{2}^{2}$ (least squares):

```
\(m=0, \quad r=e_{j}\)
for \(k=1,2, \ldots, k_{\text {max }}\)
    \(i=\arg \max \left|r_{i}\right|\)
    \(\delta=r_{i} \quad\) or \(\quad \delta=a_{i}^{T} r /\left\|a_{i}\right\|^{2}\)
    \(m \leftarrow m+\delta e_{i}\)
    \(r \leftarrow r-\delta a_{i}\)
end
```

- Limit $\mathrm{nnz}(m)$ to average nonzeros in cols of $A \Rightarrow M$ is about as sparse as A
- $M \leftarrow\left(M+M^{H}\right) / 2$ is initial preconditioner for CG or MINRES

Test problems from SuiteSparse collection

Name	n	$n n z(A)$	Kind
olafu	16 K	1 M	Structural
oilpan	74 K	2 M	Structural
cfd2	123 K	3 M	CFD
cant	62 K	4 M	2D/3D
tmt_sym	727 K	5 M	Electromag
consph	83 K	6 M	2D/3D
bmw7st_1	141 K	7 M	Structural
thermal2	1228 K	8 M	Thermal
m_t1	98 K	9 M	Structural
crankseg_1	53 K	10 M	Structural

Note: olafu and oilpan are singular, but the test problems $A x=b$ are compatible. PCG's iterations would not be well defined, but preconditioned MINRES converges normally.

Time to compute M

$n n z(M)$

Restarting CG or MINRES with $M \leftarrow M+\gamma I$

M is symmetric but may not be SPD

- Monitor certain $p^{\top} M p$ in CG and MINRES that should be positive
- If necessary, set $M \leftarrow M+\gamma I$ to make M more positive definite
- Restart CG or MINRES

Modifications to M : typically 0,1 , or 2

MINRES restarts [6]

CG and MINRES can detect if $\beta=p^{T} M p<0$ for some p, then restart with $M \leftarrow M+\gamma I$ (where γ depends on $|\beta|$)

Name	SSAI	SSAI_LS
olafu	1	1
oilpan	1	3
cfd2	1	2
cant	0	1
tmt_sym	0	0
consph	1	3
bmw7st_1	1	1
thermal2	0	0
m_t1	1	1
crankseg_1	1	1

SSAI_LS restarts a bit more often

Final γ in $M \leftarrow M+\gamma I$

but needs smaller γ to get SPD $M+\gamma$ I

MINRES iterations

SSAI always does fewer MINRES iterations

65 other SuiteSparse problems [5]

- SSAI and SSAI_LS succeeded on all problems
- ichol failed on 26 problems
- Backslash failed on 17 problems
- SSAI was better than SSAI_LS (as for the above 10 problems)

65 other SuiteSparse problems [5]

- SSAI and SSAI_LS succeeded on all problems
- ichol failed on 26 problems
- Backslash failed on 17 problems
- SSAI was better than SSAI_LS (as for the above 10 problems)

Summary:

$$
\begin{array}{ll}
\text { SSAI } & \text { Jacobi on } A m_{j}=e_{j} \\
\text { SSAI_LS } & \min \left\|A m_{j}-e_{j}\right\|_{2}^{2}
\end{array}
$$

65 other SuiteSparse problems [5]

- SSAI and SSAI_LS succeeded on all problems
- ichol failed on 26 problems
- Backslash failed on 17 problems
- SSAI was better than SSAI_LS (as for the above 10 problems)

Summary:

$$
\begin{array}{ll}
\text { SSAI } & \text { Jacobi on } A m_{j}=e_{j} \\
\text { SSAI_LS } & \min \left\|A m_{j}-e_{j}\right\|_{2}^{2}
\end{array}
$$

- Both methods are a few iterations of coordinate descent
- Each iteration adds 1 or 0 nonzeros to m_{j}
- Embarrassingly parallel
- General-purpose (no assumptions on sparsity pattern of A)

References

1 E. Chow and Y. Saad. Approximate inverse preconditioners via sparse-sparse iterations. SIAM J. Sci. Comput., 19: 995-1023, 1998.

2 T. A. Davis, Y. Hu, and S. Kolodziej. SuiteSparse matrix collection. sparse.tamu.edu, 2015-present.
3 T. A. Manteufel. An incomplete factorization technique for positive definite linear systems. Math. Comp., 34: 473-497, 1980.

4 J. A. Meijerink and H. A. van der Vorst. An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrix. Math. Comp., 31: 148-162, 1977.

5 S. Regev and M. A. Saunders. SSAI: A symmetric sparse approximate inverse preconditioner for the conjugate gradient method. Working paper, SOL and ICME, Stanford University, 10 pages, stanford.edu/group/SOL/reports.html, 2019.

6 S. Regev and M. A. Saunders. minres20: MATLAB software for MINRES and several preconditioners. stanford.edu/group/SOL/software/minres, 2020.

7 D. K. Salkuyeh and F. Toutounian. A new approach to compute sparse approximate inverse of an SPD matrix. IUST Int. J. Eng. Sci., 15: 87-95, 2004.

