SSAI and SSAI_LS: Sparse approximate inverse preconditioners for CG and MINRES

Shaked Regev and Michael Saunders ICME, Stanford University

Householder 2022

Selva di Fasano, Italy, June 12-17, 2022

SSAI and SSAI LS

We study SPAI methods for solving SPD Ax = b, where A is an explicit sparse matrix.

We study SPAI methods for solving SPD Ax = b, where A is an explicit sparse matrix. An exact preconditioner M satisfies AM = I. This is $Am = e_i$ for each column of M.

We study SPAI methods for solving SPD Ax = b, where A is an explicit sparse matrix. An exact preconditioner M satisfies AM = I. This is $Am = e_j$ for each column of M. We compare two methods that change 1 element of m at a time: $m \leftarrow m + \delta e_i$.

We study SPAI methods for solving SPD Ax = b, where A is an explicit sparse matrix. An exact preconditioner M satisfies AM = I. This is $Am = e_j$ for each column of M. We compare two methods that change 1 element of m at a time: $m \leftarrow m + \delta e_i$.

> SSAI Jacobi's method on $Am = e_j$ SSAI_LS 1D least squares on min $||Am - e_j||_2^2$

SPD Ax = b

- $A \in R^{n \times n}$, explicit, sparse
- Diagonal scaling DADy = Db, x = Dy can make diag(DAD) = I.
 Assume A_{ii} = 1.
- SSAI \equiv Symmetric sparse approximate inverse

SPD Ax = b

- $A \in R^{n \times n}$, explicit, sparse
- Diagonal scaling DADy = Db, x = Dy can make diag(DAD) = I.
 Assume A_{ii} = 1.
- SSAI \equiv Symmetric sparse approximate inverse

Two methods

- SSAI: inspired by GMRES preconditioner of Salkuyeh and Toutounian (2004)
- SSAI_LS: SPD version of Chow and Saad (1998), min $||AM I||_F^2$

SSAI and SSAI_LS

Exact $M = [m_1 \ m_2 \ \dots \ m_n]$ satisfies $Am_j = e_j$.

For each col $m = m_j$, apply a few iterations of coordinate descent $(m \leftarrow m + \delta e_i)$ on either $Am = e_j$ (Jacobi's method) or $||Am - e_j||_2^2$ (least squares):

$$m = 0, \quad r = e_j$$

for $k = 1, 2, \dots, k_{max}$
 $i = \arg \max |r_i|$
 $\delta = r_i \quad \text{or} \quad \delta = a_i^T r / ||a_i||^2$
 $m \leftarrow m + \delta e_i$
 $r \leftarrow r - \delta a_i$
end

SSAI and SSAI_LS

Exact $M = [m_1 \ m_2 \ \dots \ m_n]$ satisfies $Am_j = e_j$.

For each col $m = m_j$, apply a few iterations of coordinate descent $(m \leftarrow m + \delta e_i)$ on either $Am = e_j$ (Jacobi's method) or $||Am - e_j||_2^2$ (least squares):

$$m = 0, \quad r = e_j$$

for $k = 1, 2, ..., k_{max}$
 $i = \arg \max |r_i|$
 $\delta = r_i \quad \text{or} \quad \delta = a_i^T r / ||a_i||^2$
 $m \leftarrow m + \delta e_i$
 $r \leftarrow r - \delta a_i$
end

• Limit nnz(m) to average nonzeros in cols of $A \Rightarrow M$ is about as sparse as A

• $M \leftarrow (M + M^H)/2$ is initial preconditioner for CG or MINRES

Test problems from SuiteSparse collection

Name	п	nnz(A)	Kind
olafu	16K	1M	Structural
oilpan	74K	2M	Structural
cfd2	123K	3M	CFD
cant	62K	4M	2D/3D
tmt_sym	727K	5M	Electromag
consph	83K	6M	2D/3D
bmw7st_1	141K	7M	Structural
thermal2	1228K	8M	Thermal
m_t1	98K	9M	Structural
$crankseg_1$	53K	10M	Structural

Note: olafu and oilpan are singular, but the test problems Ax = b are compatible. PCG's iterations would not be well defined, but preconditioned MINRES converges normally.

Time to compute M

SSAI and SSAI LS

nnz(M)

SSAI and SSAI LS

Restarting CG or MINRES with $M \leftarrow M + \gamma I$

M is symmetric but may not be SPD

- Monitor certain $p^T M p$ in CG and MINRES that should be positive
- If necessary, set $M \leftarrow M + \gamma I$ to make M more positive definite
- Restart CG or MINRES

Modifications to M: typically 0, 1, or 2

MINRES restarts [6]

CG and MINRES can detect if $\beta = p^T M p < 0$ for some p, then restart with $M \leftarrow M + \gamma I$ (where γ depends on $|\beta|$)

Name	SSAI	SSAI_LS
olafu	1	1
oilpan	1	3
cfd2	1	2
cant	0	1
tmt_sym	0	0
consph	1	3
bmw7st $_1$	1	1
thermal2	0	0
m_t1	1	1
$crankseg_1$	1	1

SSAI_LS restarts a bit more often

Final γ in $M \leftarrow M + \gamma I$

but needs smaller γ to get SPD $M + \gamma I$

MINRES iterations

SSAI always does fewer MINRES iterations

65 other SuiteSparse problems [5]

- SSAI and SSAI_LS succeeded on all problems
- ichol failed on 26 problems
- Backslash failed on 17 problems
- SSAI was better than SSAI_LS (as for the above 10 problems)

65 other SuiteSparse problems [5]

- SSAI and SSAI_LS succeeded on all problems
- ichol failed on 26 problems
- Backslash failed on 17 problems
- SSAI was better than SSAI_LS (as for the above 10 problems)

Summary:

65 other SuiteSparse problems [5]

- SSAI and SSAI_LS succeeded on all problems
- ichol failed on 26 problems
- Backslash failed on 17 problems
- SSAI was better than SSAI_LS (as for the above 10 problems)

Summary:

- Both methods are a few iterations of coordinate descent
- Each iteration adds 1 or 0 nonzeros to m_j
- Embarrassingly parallel
- General-purpose (no assumptions on sparsity pattern of A)

References

- 1 E. Chow and Y. Saad. Approximate inverse preconditioners via sparse-sparse iterations. SIAM J. Sci. Comput., 19: 995–1023, 1998.
- 2 T. A. Davis, Y. Hu, and S. Kolodziej. SuiteSparse matrix collection. sparse.tamu.edu, 2015-present.
- 3 T. A. Manteufel. An incomplete factorization technique for positive definite linear systems. *Math. Comp.*, 34: 473–497, 1980.
- 4 J. A. Meijerink and H. A. van der Vorst. An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrix. *Math. Comp.*, 31: 148–162, 1977.
- 5 S. Regev and M. A. Saunders. SSAI: A symmetric sparse approximate inverse preconditioner for the conjugate gradient method. Working paper, SOL and ICME, Stanford University, 10 pages, stanford.edu/group/SOL/reports.html, 2019.
- 6 S. Regev and M. A. Saunders. minres20: MATLAB software for MINRES and several preconditioners. stanford.edu/group/SOL/software/minres, 2020.
- 7 D. K. Salkuyeh and F. Toutounian. A new approach to compute sparse approximate inverse of an SPD matrix. *IUST Int. J. Eng. Sci.*, 15: 87–95, 2004.