# MINRES-QLP: a Krylov subspace method for indefinite or singular symmetric systems

Sou-Cheng Choi Chris Paige Michael Saunders Univ of Chicago/Argonne Nat'l Lab School of CS, McGill University ICME, Stanford University

#### 2012 SIAM Conference on Applied Linear Algebra

Instituto de Matemática Multidisciplinar Universitat Politècnica de València Valencia, Spain

#### **Abstract**

CG, SYMMLQ, and MINRES are Krylóv subspace methods for solving symmetric systems of linear equations. When these methods are applied to an incompatible system (that is, a singular symmetric least-squares problem), CG could break down and SYMMLQ's solution could explode, while MINRES would give a least-squares solution but not necessarily the minimum-length (pseudoinverse) solution. This understanding motivates us to design a MINRES-like algorithm to compute minimum-length solutions to singular symmetric systems.

MINRES uses QR factors of the tridiagonal matrix from the Lanczos process (where R is upper-tridiagonal). MINRES-QLP uses a QLP decomposition (where rotations on the right reduce R to lower-tridiagonal form). On ill-conditioned systems (singular or not), MINRES-QLP can give more accurate solutions than MINRES. We derive preconditioned MINRES-QLP, new stopping rules, and better estimates of the solution and residual norms, the matrix norm, and the condition number.

#### **Abstract**

CG, SYMMLQ, and MINRES are Krylóv subspace methods for solving symmetric systems of linear equations. When these methods are applied to an incompatible system (that is, a singular symmetric least-squares problem), CG could break down and SYMMLQ's solution could explode, while MINRES would give a least-squares solution but not necessarily the minimum-length (pseudoinverse) solution. This understanding motivates us to design a MINRES-like algorithm to compute minimum-length solutions to singular symmetric systems.

MINRES uses QR factors of the tridiagonal matrix from the Lanczos process (where R is upper-tridiagonal). MINRES-QLP uses a QLP decomposition (where rotations on the right reduce R to lower-tridiagonal form). On ill-conditioned systems (singular or not), MINRES-QLP can give more accurate solutions than MINRES. We derive preconditioned MINRES-QLP, new stopping rules, and better estimates of the solution and residual norms, the matrix norm, and the condition number.

Krylov Крыло́в

#### **Abstract**

CG, SYMMLQ, and MINRES are Krylóv subspace methods for solving symmetric systems of linear equations. When these methods are applied to an incompatible system (that is, a singular symmetric least-squares problem), CG could break down and SYMMLQ's solution could explode, while MINRES would give a least-squares solution but not necessarily the minimum-length (pseudoinverse) solution. This understanding motivates us to design a MINRES-like algorithm to compute minimum-length solutions to singular symmetric systems.

MINRES uses QR factors of the tridiagonal matrix from the Lanczos process (where R is upper-tridiagonal). MINRES-QLP uses a QLP decomposition (where rotations on the right reduce R to lower-tridiagonal form). On ill-conditioned systems (singular or not), MINRES-QLP can give more accurate solutions than MINRES. We derive preconditioned MINRES-QLP, new stopping rules, and better estimates of the solution and residual norms, the matrix norm, and the condition number.

Krylov Крыло́в

Chebyshev Чебышёв

#### **Outline**

- Symmetric Lanczos
- CG, SYMMLQ, MINRES
- Theorem
- Joke
- MINRES-QLP
- Numerical example

# Tridiagonalization of symmetric *A*Direct (product of Householder transformations):

## Tridiagonalization of symmetric A

### Direct (product of Householder transformations):

#### Iterative (symmetric Lanczos process):

$$(b \quad AV_k) = V_{k+1} \left(\beta e_1 \quad \underline{T_k}\right)$$

$$V_k = \begin{pmatrix} v_1 & \dots & v_k \end{pmatrix} \qquad \underline{T_k} = \begin{pmatrix} T_k \\ 0 \dots 0 & \beta_{k+1} \end{pmatrix}$$

### Lanczos for solving Ax = b

$$eta v_1 = b$$
 $V_k = \begin{pmatrix} v_1 & \dots & v_k \end{pmatrix} \qquad n \times k$ 
 $x_k = V_k y_k \qquad \text{for some } y_k$ 

### Lanczos for solving Ax = b

$$eta v_1 = b$$
 $V_k = \begin{pmatrix} v_1 & \dots & v_k \end{pmatrix} \qquad n \times k$ 
 $x_k = V_k y_k \qquad \text{for some } y_k$ 

$$(b \quad AV_k) = V_{k+1} \left(\beta e_1 \quad \underline{T_k}\right)$$

$$b - AV_k y_k = V_{k+1} \left(\beta e_1 - \underline{T_k} y_k\right)$$

$$\|b - Ax_k\| \le \|V_{k+1}\| \underbrace{\|\beta e_1 - \underline{T_k} y_k\|}_{\text{make small}}$$

### Lanczos properties

For most iterations,  $AV_k = V_{k+1} \underline{T_k}$ 

#### **Theorem**

 $\underline{T_k}$  has full column rank for all  $k < \ell$  (so the MINRES subproblem min  $\|\beta e_1 - T_k y_k\|$  is well defined)

### Lanczos properties

For most iterations,  $AV_k = V_{k+1} \underline{T_k}$ 

#### Theorem

 $\frac{T_k}{\text{(so the MINRES subproblem min } \|eta e_1 - T_k y_k\|}$  is well defined)

At the last iteration,  $AV_\ell = V_\ell T_\ell$ 

#### **Theorem**

 $T_\ell$  is nonsingular iff  $b \in \text{range}(A)$ , and  $\text{rank}\,T_\ell = \ell$  or  $\ell-1$  (so MINRES is ok only if Ax = b)

$$\begin{pmatrix} \alpha_1 & \beta_2 \\ \beta_2 & \alpha_2 & \beta_3 \\ & \ddots & \ddots & \ddots \\ & & \ddots & \ddots & \ddots \\ & & & \beta_{k-1} & \alpha_{k-1} & \beta_k \end{pmatrix} y_k = \begin{pmatrix} \beta \\ 0 \\ \vdots \\ \vdots \\ 0 \end{pmatrix}$$

SYMMLQ  $\min \|y_k\| \text{ st } T_{k-1}^T y_k = \beta e_1$ 

$$\begin{pmatrix} \alpha_1 & \beta_2 \\ \beta_2 & \alpha_2 & \beta_3 \\ & \ddots & \ddots & \ddots \\ & & \ddots & \ddots & \ddots \\ & & & \beta_{k-1} & \alpha_{k-1} & \beta_k \\ & & & & \beta_k & \alpha_k \end{pmatrix} y_k = \begin{pmatrix} \beta \\ 0 \\ \vdots \\ \vdots \\ 0 \\ 0 \end{pmatrix}$$

CG

$$T_k y_k = \beta e_1$$

MINRES

$$\min \|T_k y_k - \beta e_1\|$$

MINRES 
$$\min \|T_k y_k - \beta e_1\|$$

MINRES-QLP min  $||y_k||$  st min  $||T_k y_k - \beta e_1||$ 

7/13

### QLP decomposition of $T_k$ :

$$Q_k \underline{T_k} = \begin{pmatrix} R_k \\ 0 \end{pmatrix}, \quad R_k P_k = L_k \quad \Rightarrow \quad Q_k \underline{T_k} P_k = \begin{pmatrix} L_k \\ 0 \end{pmatrix}$$

$$y = P_k u$$
  $\Rightarrow$   $Q_k(\underline{T_k}y - \beta e_1) = \begin{pmatrix} L_k \\ 0 \end{pmatrix} u - \begin{pmatrix} t_k \\ \phi_k \end{pmatrix}$ 

#### QLP decomposition of $T_k$ :

$$Q_k \underline{T_k} = \begin{pmatrix} R_k \\ 0 \end{pmatrix}, \quad R_k P_k = L_k \quad \Rightarrow \quad Q_k \underline{T_k} P_k = \begin{pmatrix} L_k \\ 0 \end{pmatrix}$$

$$y = P_k u$$
  $\Rightarrow$   $Q_k(\underline{T_k}y - \beta e_1) = \begin{pmatrix} L_k \\ 0 \end{pmatrix} u - \begin{pmatrix} t_k \\ \phi_k \end{pmatrix}$ 

 $k < \ell$ :

$$L_k u_k = t_k,$$
  $x_k = V_k P_k u_k$  orthogonal steps like SYMMLQ

### QLP decomposition of $T_k$ :

$$Q_k \underline{T_k} = \begin{pmatrix} R_k \\ 0 \end{pmatrix}, \quad R_k P_k = L_k \quad \Rightarrow \quad Q_k \underline{T_k} P_k = \begin{pmatrix} L_k \\ 0 \end{pmatrix}$$

$$y = P_k u$$
  $\Rightarrow$   $Q_k(\underline{T_k}y - \beta e_1) = \begin{pmatrix} L_k \\ 0 \end{pmatrix} u - \begin{pmatrix} t_k \\ \phi_k \end{pmatrix}$ 

 $k < \ell$ :

$$L_k u_k = t_k,$$
  $x_k = V_k P_k u_k$  orthogonal steps like SYMMLQ

 $k = \ell$ :

$$L_{\ell}u_{\ell}=t_{\ell}$$
 or  $\min\|u_{\ell}\|$  st  $\min\|L_{\ell}u_{\ell}-t_{\ell}\|$ 

### Theorem

In MINRES-QLP,  $x_\ell = V_\ell P_\ell u_\ell$  is the min-length solution of  $Ax \approx b$ 

#### **Theorem**

In MINRES-QLP,  $x_\ell = V_\ell P_\ell u_\ell$  is the min-length solution of  $Ax \approx b$ 

#### Additional features:

- Two-sided spd preconditioner (reduce number of iterations )
- Transfer from MINRES to MINRES-QLP when  $\underline{T_k}$  is moderately ill-conditioned

#### Theorem

In MINRES-QLP,  $x_\ell = V_\ell P_\ell u_\ell$  is the min-length solution of  $Ax \approx b$ 

#### Additional features:

- Two-sided spd preconditioner (reduce number of iterations )
- Transfer from MINRES to MINRES-QLP when  $\underline{T_k}$  is moderately ill-conditioned

#### Per iteration costs:

- Storage: 7*n*–8*n* vectors
- Matrix-vector multiply: 1
- Work: 9*n*–14*n* flops
- (Solve a system with preconditioner)

### Numerical example

$$A = \mathsf{tridiag} \begin{pmatrix} T & T & T \end{pmatrix} \in \mathbb{R}^{400 \times 400}, \quad T = \mathsf{tridiag} \begin{pmatrix} 1 & 1 \end{pmatrix} \in \mathbb{R}^{20 \times 20} \\ |\lambda_1|, |\lambda_2| = O(\varepsilon), \quad |\lambda_3|, \dots, |\lambda_{400}| \in [0.2, 4.3], \qquad b_i \sim i.i.d. \ U(0, 10)$$



### **Papers**

- S.-C. T. Choi, C. C. Paige and M. A. Saunders,
   "MINRES-QLP: A Krylov subspace method for indefinite or singular symmetric systems," *SIAM J. Sci. Comput*, 33 (2011), no. 4, pp. 1810–1836.
- S.-C. T. Choi, C. C. Paige and M. A. Saunders, "ALGORITHM: MINRES-QLP for singular symmetric and Hermitian linear equations and least-squares problems," ACM Trans. Math. Software, to appear.
- S.-C. T. Choi, "CS-MINRES: a Krylov subspace method for Complex Symmetric Linear Equations and Least-Squares Problems," preprint, (2012).

## **Huge thanks**

Research NSF, NSERC, ONR, AHPCRC

Travel SIAM, CI (U of Chicago/ANL), NSERC

Prize SIAG/LA!

## We dedicate MINRES-QLP to the memory of Gene Golub



Gene's 75th + Stanford CS 50th March 30, 2007