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Abstract

CG, SYMMLQ), and MINRES are Krylév subspace methods
for solving symmetric systems of linear equations. When these
methods are applied to an incompatible system (that is, a singular
symmetric least-squares problem), CG could break down and
SYMMLQ's solution could explode, while MINRES would give a
least-squares solution but not necessarily the minimum-length
(pseudoinverse) solution. This understanding motivates us to design
a MINRES-like algorithm to compute minimum-length solutions to
singular symmetric systems.

MINRES uses QR factors of the tridiagonal matrix from the
Lanczos process (where R is upper-tridiagonal). MINRES-QLP uses
a QLP decomposition (where rotations on the right reduce R to
lower-tridiagonal form). On ill-conditioned systems (singular or
not), MINRES-QLP can give more accurate solutions than
MINRES. We derive preconditioned MINRES-QLP, new stopping
rules, and better estimates of the solution and residual norms, the
matrix norm, and the condition number.
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Tridiagonalization of symmetric A

Direct (product of Householder transformations):
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Tridiagonalization of symmetric A

Direct (product of Householder transformations):
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Iterative (symmetric Lanczos process):
(b AVk):Vk_H (;5’61 Q)
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Lanczos for solving Ax = b

Bvi=0Db
Vk:(vl...vk) nx k
Xk = Vv for some y
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Lanczos for solving Ax = b

Bvi=b
Vk:(vl...vk) nx k
Xk = Vv for some y

(b AVk) = Vi1 (Ber Ty)
b— AViyk = Vk+1 (Bel - QYk)

16 = Axicll < |Viewa |l | Ber = Taeyil|
—_—

make small
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Lanczos properties

For most iterations, AV = Vi1 Ty

Theorem

Tk has full column rank for all k </
(so the MINRES subproblem min ||3e; — Tyy«|| is well defined)
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Lanczos properties

For most iterations, AV = Vi1 Ty

Theorem

Tk has full column rank for all k </
(so the MINRES subproblem min ||3e; — Tyy«|| is well defined)

At the last iteration, AV, = V; T,

Theorem

T, is nonsingular iff b € range(A), and rankTy = ¢ or {—1
(so MINRES is ok only if Ax = b)
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Four ways to make Ty, =~ Be

a1 B2 B
B2 a2 B3 0

Yk =

Brk—1 k-1 Bk 0

SYMMLQ min ||yk| st Ti—1 vk = Ber
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Four ways to make Ty =~ Be

ar P B
B2 a2 B3 0

Yk =

Brk—1 k-1 Bk

Bk o 0
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Lanczos properties

Four ways to make Ty, =~ Be

a1 B2 B
B2 a2 B3 0

Yk =

Brk—1 k-1 Bk

Bk ok
Br+1 0
MINRES min || Tkyx — Be|
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Four ways to make Ty, =~ Be

ar P B
B2 az B3 0

Yk~

Brk—1 ak—1 Bk

Bk ak
Br+1
MINRES min || Teyx — Be|

MINRES-QLP  min [lyk|| st min | Txyx — Berl|
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QLP decomposition of Ty:

R L
Qkﬂz(ok), RiPe=1Lc = omPk=<Ok>

y = Pyu = QT = fer) = (L0k> o (‘Zkk>
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QLP decomposition of Ty:

R L
Qkﬂz(ok), RiPe=1Lc = omPk=<Ok>

y = Pyu = Qu(Twy = fea) = (L0k> o (‘Zkk>

k< ?:

orthogonal steps

Leuk = ti,  xk = ViPrug like SYMMLQ
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QLP decomposition of Ty:

R L
Qkﬂz(ok), RiPe=1Lc = omPk=<Ok>

y = Pyu = Qu(Twy = fea) = (L0k> o (‘Zkk>

k < ¢
B _ orthogonal steps
Liue = ti,  xie = ViePrug like SYMMLQ
k =/
Leug=1t,  or min [[ugl| st min |[Leue — t]|
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Theorem
In MINRES-QLP, x, = VpP,uy is the min-length solution of Ax = bJ
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Theorem
In MINRES-QLP, x, = VpP,uy is the min-length solution of Ax = bJ

Additional features:

@ Two-sided spd preconditioner (reduce number of iterations )

e Transfer from MINRES to MINRES-QLP when T is
moderately ill-conditioned
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MINRES-QLP

Theorem
In MINRES-QLP, x, = VpP,uy is the min-length solution of Ax = bJ

Additional features:
@ Two-sided spd preconditioner (reduce number of iterations )

e Transfer from MINRES to MINRES-QLP when T is
moderately ill-conditioned

Per iteration costs:
@ Storage: 7n-8n vectors
@ Matrix-vector multiply: 1
o Work: 9n-14n flops

@ (Solve a system with preconditioner)
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Numerical example

A=tridiag (T T T)eRWOOX40 T _tridiag(1 1 1) € R®*®
|)\1|,|>\2| = 0(5), |)\3|,...,‘/\400| S [0.2,4.3], b; ~i.i.d. U(O, 10)
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We dedicate MINRES-QLP
to the memory of Gene Golub

Gene's 75th + Stanford CS 50th
March 30, 2007
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