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An active-set convex QP solver based on regularized KKT systems

Implementations of the simplex method depend on “basis repair” to
steer around near-singular basis matrices, and KKT-based QP
solvers must deal with near-singular KKT systems. However, few
sparse-matrix packages have the required rank-revealing features
(we know of LUSOL, MA48, MA57, and HSL MA77).

For convex QP, we explore the idea of avoiding singular KKT
systems by applying primal and dual regularization to the QP
problem. A simplified single-phase active-set algorithm can then be
developed. Warm starts are straightforward from any given active
set, and the range of applicable KKT solvers expands.

QPBLUR is a prototype QP solver that makes use of the block-LU
KKT updates in QPBLU (Hanh Huynh’s PhD dissertation, 2008)
but employs regularization and the simplified active-set algorithm.
The aim is to provide a new QP subproblem solver for SNOPT for
problems with many degrees of freedom. Numerical results confirm
the robustness of the single-phase regularized QP approach.

Supported by the Office of Naval Research and AHPCRC
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Motivation: SNOPT

SNOPT: an SQP method for constrained NLP (Gill, Murray, S 2005)

SQOPT: an active-set method
Solves a sequence of convex QP problems

min
x

cTx + 1
2xTHx

Ax = b, l ≤ x ≤ u,

where c , H, A, b change (less and less)

Initially H diagonal
Later H ← GTHG , G = (I + dvT )
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Convex QP Solvers

Interior Active-set

LOQO

HOPDM SQOPT reduced-Hessian
QPB QPA

CPLEX QPBLU

IPOPT QPBLUR

All based on KKT systems (except SQOPT)
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SQOPT
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SQOPT

min cTx + 1
2xTHx st Ax = b, l ≤ x ≤ u

Reduced-gradient method (active-set method)

free variables fixed variables

AP = B S N

→ ←
degrees of freedom
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SQOPT

Any active-set method solves for search direction in Free variables:(
HF AT

F

AF 0

)(
∆xF

∆y

)
≈
(

r1

r2

)

Reduced-gradient method uses a specific ordering (Gill et al. 1990):

AF =
(
B S

)
→

HBB BT HBS

B S
HSB ST HSS


Reduced Hessian is Schur-complement of red block:

ZTHZ = HSS − (. . . )(. . . )−1(. . . )T

Likely to be dense ⇒ Need to work with original KKT system
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SQOPT limitation

min cTx + 1
2xTHx st Ax = b, l ≤ x ≤ u

Reduced-gradient method

free variables fixed variables

AP = B S N

OK if 10000 2000 100000
What if 1M 1M 10M
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QPBLU
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QPBLU
F90 convex QP solver based on block-LU updates of K
(Hanh Huynh 2008)

First,

K0 =

(
HF AT

F

AF 0

)
= L0D0L

T
0 or L0U0

Later,

K ≈
(

K0 V
V T E

)
=

(
L0

ZT I

)(
U0 Y

C

)

Active-set method of (Gill 2007) keeps K nonsingular

Y , Z sparse, C small

Quasi-Newton updates to H handled same way

L0,U0 from LUSOL, MA57, PARDISO, SuperLU, UMFPACK
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Singular KKTs

MA27, MA57, . . . , HSL MA87 are rank-revealing if u ≥ 0.25 (say)
For semidefinite QP,

K =

D1 AT
1

AT
2

A1 A2

 , D1 � 0

Theorem. K is nonsingular iff(
A1 A2

)
has full row rank

A2 has full column rank

KKT Repair not yet implemented
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Regularization
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Regularization

PDQ1 Interior method for LP (S 1996), OSL (S and Tomlin 1996)

min
x ,y

cTx + 1
2γ‖x‖

2 + 1
2δ‖y‖

2

Ax + δy = b, l ≤ x ≤ u

Indefinite LDLT on KKT is stable if γ, δ sufficiently large

HOPDM Interior method for QP (Altman and Gondzio 1999)

Smaller perturbation via dynamic proximal point terms:

1
2 (x − xk)TRp(x − xk), 1

2 (y − yk)TRd(y − xy )

Banff 2009 15/26
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QPBLUR
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QPBLUR

min
x ,y

cTx + 1
2xTHx + 1

2δ‖x‖
2
2 + 1

2µ‖y‖
2
2

Ax + µy = b, l ≤ x ≤ u

(
HF + δI AT

F

AF −µI

)(
∆xF

∆y

)
≈
(

r1

r2

)

Nonsingular for any active set (any AF )

Always feasible (no Phase 1)

Can use LUSOL, MA57, UMFPACK, . . . without change

Can use Hanh’s block-LU updates without change
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Strategy

min
x ,y

cTx + 1
2xTHx + 1

2δ‖x‖
2
2 + 1

2µ‖y‖
2
2

Ax + µy = b, l ≤ x ≤ u

Matlab implementation

Scale problem

Get square AF from PATQ = LU [L,U,P] = lu(...)

Solve with δ, µ = 10−6, 10−8, 10−10, 10−12 opttol =
√
δ

Unscale

Solve with δ, µ = 10−8, 10−10, 10−12 opttol =
√
δ

Exit if small relative change in obj

Banff 2009 18/26
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Numerical Results
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Accuracy of solutions
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KKT factorizations
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Infeasible problems
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• µ↘ 10−12 • µ ≡ 1
(min cTx + 1

2
xTHx + 1

2
δxTx + 1

2
µyTy Ax + µy = b, . . . )
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Conclusions
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QPBLUR Pros and Cons

min
x,y

cTx + 1
2
xTHx + 1

2
δxTx + 1

2
µyTy Ax + µy = b, l ≤ x ≤ u

Advantages

Can start from any active set
(hence good for warm starts in SNOPT)

Can use any black-box LDLT or LU solver
(preferably separate L and U solves and no refinement)
Black-box solver should never report singularity
(hence no KKT repair)
Simple step-length procedure
(l ≤ x ≤ u always; no degeneracy troubles)

Disadvantages

Large regularization can increase number of iterations
Tiny regularization risks ill-conditioned KKT
(but so far so good)
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