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for eigenvalues. Products Av plus a few vectors

1952 Lanczos method of “minimized iterations”
for posdef Ax = b

1952 Hestenes and Stiefel CG method
for posdef Ax = b

@ 1965 Golub-Kahan bidiagonalization of general A
for SVD

1971 Paige thesis on Lanczos tridiagonalization

for eigenvalues

1975 Paige-Saunders SYMMLQ and MINRES

Lanczos tridiagonalization for indefinite Ax = b

@ 1982 Paige-Saunders LSQR

Golub-Kahan bidiagonalization for general Ax = b, min ||Ax — b||
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1981 Saunders, 2 months in Sweden
Tridiagonalization for unsymmetric Ax = b
Coded and tested USYMLQ

1982 (July) Yip, SIAM meeting at Stanford

“CG method for unsymmetric matrices applied to PDE problems”

1982 (Oct) Simon, Sparse Matrix Symposium
“The Lanczos algorithm for ... nonsymmetric linear systems”

(7?7 Seems to be LSQR with partial reorthogonalization)
1988 Saunders, Simon, and Yip, SINUM 25

“Two CG-type methods for unsymmetric linear equations”
(USYMLQ and USYMQR = GMINRES)
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History (contd)

@ 2006 Reichel and Ye

“A generalized LSQR algorithm” (GLSQR)

Unsymmetric tridiagonalization, focused on rectangular A
@ 2007 Golub, Stoll, and Wathen (draft)

“Approximation of outputs”
Unsymmetric tridiagonalization, focused on Ax = b, ATy = ¢

and estimation of ¢'x and b'y
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e Bidiagonalization for dense SVD (Golub and Kahan 1965)

* * *

UTA = . UlAV =

* X ¥ X ¥
* X ¥ X ¥
* ¥ X ¥ X
* X X ¥ X
* ¥ ¥ ¥
* ¥ ¥ %

UTAV =B = AV =UB, A'U=VB"

SOL, Stanford University Oct 3, 2007 Slide 10/29



History Tridiag 1 Bidiag Tridiag 2 Original aim Symmetric Ax = b Unsymmetric Ax = b Yip's aim Results Conclusions

Rectangular A

e Bidiagonalization for dense SVD (Golub and Kahan 1965)

* ¥ ¥ %

* ok % % * %
* * * * *
U, TA = x ok k|, UlTAVl = * ok
¥k % * %
* * * * *
U'AVv=B = AV=UB, A'U=VB'
@ Golub-Kahan process on A, b o1
,31U1 = b, a1vy = ATul ﬂZ
Bi =
Botir = Avi — auvi
asvo = ATtp — Bowy
Uk = (U1
Vk = (V1
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Upper or lower bidiagonal?

@ Dense A
* *
ko ok
AV=UB = U * %
*
@ Sparse A with b = 111
AV = U1Bxk = (b AVk) = U1 (Brier Bi)

* ok

S (b A) (1 vk> = Ui
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Tridiagonalization of
unsymmetric or rectangular A
(the “new method”)
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e Tridiagonalization for dense EVD (eigenvalues)

* % ok ok * %
T * k% ok ok T *  x ok %
U A= , U AL =
* %k * % %
* %k * ok ok

UTAV=T = AV=UT, AlU=VT"

@ Bi-tridiagonalization process on A, b, ¢

B =b Vi =c¢ o1

32
p1 = Awvp ar = uip T =

Botr = p1 — aaun — y1Uo
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.
AV Uik Tk + Bry1Ury1€x
T T T
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Original motivation (1981)

@ CG, SYMMLQ, MINRES work well for symmetric Ax = b

@ Bi-tridiagonalization of unsymmetric A is no more than twice
the work and storage per iteration

e If Ais symmetric, we get Lanczos

@ If A is nearly symmetric, total itns should be not much more
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via Lanczos
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Symmetric Ax = b

Lanzcos process:

a1 (2
Bo a2 B3
AV = Viep1 Hy, H, = * 0k %
Bk ak
Br+1

Suppose x;, = V) wy for some wy
@ rp,=b— Ax

@ r = Vk+1(ﬁ1€1 — Hka)
o ||ri|| will be small if Hywy ~ [1e1

Three subproblems make Hywy ~ 3161 = CG, SYMMLQ, MINRES
(e.g. Txwy = Pie; for CG)
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Symmetric — Unsymmetric

I A\ (r b
Lanczos on (AT > (X> = <0> (general A)

leads to Golub-Kahan and LSQR

ncason (3 ) ()= (B) e

is not equivalent to bi-tridiagonalization (but seems worth trying!)

I A\ [r b
Lanczos on (AT ) <x> = <c> (general A)

is not equivalent either (Who would like to try?)
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Solving unsymmetric Ax = b
via bi-tridiagonalization
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Unsymmetric Ax = b

Bi-tridiag process:

3
AV, = U,Tgk +ﬂk+1uk+1ekT = Uk_,_lH;(
ATUx = ViT! +vviried = ViaH)]
Suppose x;, = V) wy for some wy

Three subproblems make wak ~ J1e1 = UCG, USYMLQ, USYMQR

Similarly, let y, = U,y to solve ATy = ¢
Three subproblems make H, yi ~ y1e1

Not much extra effort to get both x; and yj
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Elizabeth Yip’s motivation (1982)

(Boeing Computer Services Co.)
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Elizabeth's SIAM conference abstract (1982)

CG method for unsymmetric matrices applied to PDE problems

We present a CG-type method to solve Ax = b, where A is an arbitrary
nonsingular unsymmetric matrix. The algorithm is equivalent to an orthogonal
tridiagonalization of A.
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CG method for unsymmetric matrices applied to PDE problems

We present a CG-type method to solve Ax = b, where A is an arbitrary

nonsingular unsymmetric matrix. The algorithm is equivalent to an orthogonal
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Each iteration takes more work than the orthogonal bidiagonalization proposed
by Golub-Kahan, Paige-Saunders for sparse least squares problems (LSQR).

However, ... the condition number for our tridiagonalization is the square root
of that for the bidiagonalization.
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Elizabeth's SIAM conference abstract (1982)

CG method for unsymmetric matrices applied to PDE problems

We present a CG-type method to solve Ax = b, where A is an arbitrary
nonsingular unsymmetric matrix. The algorithm is equivalent to an orthogonal
tridiagonalization of A.

Each iteration takes more work than the orthogonal bidiagonalization proposed
by Golub-Kahan, Paige-Saunders for sparse least squares problems (LSQR).

However, ... the condition number for our tridiagonalization is the square root
of that for the bidiagonalization.

We apply a preconditioned version (Fast Poisson) to the difference equation of

unsteady transonic flow with small disturbances. (Compared with ORTHOMIN(5))
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Numerical results
with unsymmetric tridiagonalization
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Numerical results (SSY 1988)

B I
-1 B -l
A= B = tridiag (~1-6 4 —1+0)
-1 B I
-1 B
400 x 400 20 x 20
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Numerical results (SSY 1988)

B -
-1 B -l
A= B:tridiag(—1—5 4 —1+5)
-1 B -l
-1 B
400 x 400 20 x 20

Megaflops to reach ||r|| < 107°||b|:

5 00]001 01 10 100 100.0
ORTHOMIN(5) | 0.31 | 057 0.75 0.83 255 211
LSQR 028 | 1.38 148 080 057 027
USYMQR 030 | 1.88 1.98 141 099 0.64
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Numerical results (SSY 1988)

B -l
-1 B -l
A= B = tridiag (—1—6 4 —1+9)
-1 -1
-1 B
400 x 400 20 x 20
Megaflops to reach ||r|| < 107°||b|:

0 00]001 01 1.0 100 100.0
ORTHOMIN(5) | 0.31 | 057 075 083 255 211
LSQR 028 | 1.38 148 0.80 0.57 0.27
USYMQR 0.30 | 1.88 198 1.41 0.99 0.64

Bottom line:

ORTHOMIN sometimes good, can fail. LSQR always better than USYMQR

Oct 3, 2007

SOL, Stanford University
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Numerical results (Reichel and Ye 2006)

@ Focused on rectangular A and least-squares
(Forgot about SSY88 and USYMQR — hence GLSQR)
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@ Focused on rectangular A and least-squares
(Forgot about SSY88 and USYMQR — hence GLSQR)

@ Three numerical examples (all square!)
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Numerical results (Reichel and Ye 2006)

@ Focused on rectangular A and least-squares
(Forgot about SSY88 and USYMQR — hence GLSQR)

@ Three numerical examples (all square!)

@ Remember x; xx ¢
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Numerical results (Reichel and Ye 2006)

Focused on rectangular A and least-squares
(Forgot about SSY88 and USYMQR — hence GLSQR)

Three numerical examples (all square!)

Remember x; «x ¢
Focused on choice of ¢
stopping early
looking at xx = (xkl Xko ... an)
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Numerical results (Reichel and Ye 2006)

Focused on rectangular A and least-squares
(Forgot about SSY88 and USYMQR — hence GLSQR)

Three numerical examples (all square!)

Remember x; «x ¢
Focused on choice of ¢
stopping early
looking at xx = (xkl Xko ... an)

Example 1: We know x ~ constant. Choose ¢ = (1 1 ... l)T

true x GLSQR
X1
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Example 2 (Star cluster)

@ 256 x 256 pixels (n = 65536), 470 stars
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Example 2 (Star cluster)

@ 256 x 256 pixels (n = 65536), 470 stars

@ Square Ax =~ b, choose c =b
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Example 2 (Star cluster)

@ 256 x 256 pixels (n = 65536), 470 stars
@ Square Ax ~ b, choose c = b

e Compare error in x,I:SQR and XE'LSQR for 40 iterations
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Example 2 (Star cluster)

@ 256 x 256 pixels (n = 65536), 470 stars

@ Square Ax ~ b, choose c = b
GLSQR

e Compare error in x,I:SQR and x, for 40 iterations
Iba = X11/11l
0.9
LSQR
_GLSQR
0.1 I
0 20 a0k
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Conclusions

SOL, Stanford University Oct 3, 2007 Slide 27/29



History Tridiag 1 Bidiag Tridiag 2 Original aim Symmetric Ax = b Unsymmetric Ax = b Yip's aim Results Conclusions

Subspaces

@ Unsymmetric Lanczos generates two Krylov subspaces:

Ue¢ € span{b Ab A*b ... Aflp}
Vi € span{c A'c (AT?c ... (AD)k1c}
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Subspaces

@ Unsymmetric Lanczos generates two Krylov subspaces:

U¢ € span{b Ab A’b ... Alp}
Vi € span{c A'c (AT?c ... (AD)k1c}

e Bi-tridiagonalization generates

Uk € span{b AATb ... (AAN"1b Ac (AATAc ...}
Vo, € spanf{c ATAc ... (ATAYlc ATb (ATA)ATH ...}
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Functionals ch,bTy

@ Lu and Darmofal (SISC 2003) use unsymmetric Lanczos with
QMR to solve Ax = b and ATy = ¢ simultaneously and to

estimate ¢ 'x and b’y at a superconvergent rate:

16— Axllllc — ATyl

T T T T
CXk—CX%b k—b ~

SOL, Stanford University Oct 3, 2007 Slide 29/29



History Tridiag 1 Bidiag Tridiag 2 Original aim Symmetric Ax = b Unsymmetric Ax = b Yip's aim Results Conclusions

Functionals ch,bTy

@ Lu and Darmofal (SISC 2003) use unsymmetric Lanczos with
QMR to solve Ax = b and Ay = ¢ simultaneously and to

estimate ¢ 'x and b’y at a superconvergent rate:

16— Axllllc — ATyl

T T T T
CXk—CX%b k—b ~

@ Golub, Stoll and Wathen (draft 2007) plan to use
bi-triagonalization with GLSQR to do likewise
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Functionals ch,bTy

@ Lu and Darmofal (SISC 2003) use unsymmetric Lanczos with
QMR to solve Ax = b and ATy = ¢ simultaneously and to

estimate c'x and by at a superconvergent rate:

16— Axilllc = ATyi]|
Umin(A)

lcTx — x| ~ |bTyx — bTy| =~

@ Golub, Stoll and Wathen (draft 2007) plan to use
bi-triagonalization with GLSQR to do likewise

Thanks for your patience!!
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