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ABSTRACT: Lipid profile changes in heart muscle have been
previously linked to cardiac ischemia and myocardial infarction, but
the spatial distribution of lipids and metabolites in ischemic heart
remains to be fully investigated. We performed desorption electrospray
ionization mass spectrometry imaging of hearts from in vivo myocardial
infarction mouse models. In these mice, myocardial ischemia was
induced by blood supply restriction via a permanent ligation of left
anterior descending coronary artery. We showed that applying the
machine learning algorithm of gradient boosting tree ensemble to the
ambient mass spectrometry imaging data allows us to distinguish
segments of infarcted myocardium from normally perfused hearts on a
pixel by pixel basis. The machine learning algorithm selected 62
molecular ion peaks important for classification of each 200 ym-diameter
pixel of the cardiac tissue map as normally perfused or ischemic. This

approach achieved very high average accuracy (97.4%), recall (95.8%), and precision (96.8%) at a spatial resolution of ~200
pm. In addition, we determined the chemical identity of 27 species, mostly small metabolites and lipids, selected by the
algorithm as the most significant for cardiac pathology classification. This molecular signature of myocardial infarction may
provide new mechanistic insights into cardiac ischemia, assist with infarct size assessment, and point toward novel therapeutic

interventions.

Ischemic heart disease is a leading cause of death
worldwide," whereas acute myocardial infarction (MI, or
heart attack) is the first manifestation of ischemic heart disease
in approximately 50—70% of patients.” Silent myocardial
infarctions are heart attacks with no typical symptom
manifestation but with similar clinical significance,” and they
account for almost 50% of incident MIs." Both symptomatic
and silent MIs can go undetected by an electrocardiogram; ™
hence, ideally, a simple chemical screening should be
established to detect the presence of infarcted myocardial
tissue (myocyte necrosis). Clinical tests that are currently
being employed for MI diagnostics detect elevated levels of a
few protein biomarkers in blood, mostly cardiac troponin and
creatine kinase.” The levels of these proteins rise rapidly
following infarction onset but also return to baseline within
several days, making later diagnostics impossible.” Uncovering
additional biomolecules whose levels are perturbed as a result
of MI may potentially improve our long-term diagnostic
capabilities and may allow prediction of residual cardiac tissue
viability. Moreover, identifying the molecular signature of
infarction in affected myocardium may provide new mecha-
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nistic insights into cardiac ischemia and point toward
therapeutic intervention to limit viable tissue loss and heart
remodeling following ML®’

In previous works, lipid profile changes were shown to have
a strong correlation to cardiac ischemia and ischemic
reperfusion injury.””'* The mammalian heart acquires lipids
both from circulating free fatty acids (FAs) and esterified FAs
bound to lipoproteins.'> Being the most energy-requiring
organ of the body, the heart heavily relies on fatty acid
oxidation for energy metabolism." During ischemia, the heart
switches to ATP generation from glucose through excessive
glycolysis, which drastically modifies the lipid and small
metabolite profile in the myocardium."> However, owing to the
complexity of molecular events accompanying cardiac
ischemia, variability in individual lipid marker levels, and
inability to directly monitor myocardial metabolic modifica-
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Figure 1. Representative mass spectra of full infarct region (upper spectrum) and perfused myocardium (lower spectrum).

tions, no specific lipid biomarkers of cardiac ischemia are
currently in clinical use.'®

Mass spectrometry (MS) holds much promise as a tool for
MI biomarker interrogation, including lipids and metabolites.
Recently, GC/MS and LC/MS-based metabolite profiling was
used to elucidate possible markers in post-infarction serum,
cardiac tissues, and cardiac tissue homogenates,”_19 alongside
with the more established MS proteomics profiling of ML*"*'
A pioneering study of spatially resolved MS imaging analysis of
MI-bearing cardiac tissue sections was performed a few years
ago using matrix-assisted laser desorption/ionization
(MALDI) MS imaging.” This study allowed delineation of
infarcted tissue from normal myocardium in a MI rat model.
Specifically, imaging in positive ion mode uncovered an
increase in ion signals from lysophospholipids and a decrease
in the ion signals from intact phospholipids in the infarcted
area, consistent with known accelerated activity of the
phospholipase A2 enzyme in MI Creatinine abundance
decrease was also detected in infarcted areas owing to the
release of creatine kinase enzyme following ML’

In the present study, we employed an ambient condition
imaging method, desorption electrospray ionization mass
spectrometry imaging (DESI-MSI) 2 operating in negative
ion mode to study the spatial distribution of various lipids and
metabolites in murine ischemic heart muscle vs adjacent
perfused myocardium. DESI-MSI enables a high-throughput
monitoring of lipids and metabolites with very high sensitivity,
because the mass-to-charge (m/z) ratios of the analytes lie
within the optimal detection range of this method. Briefly, a
beam of charged, solvent droplets is directed onto the

myocardium surface to desorb and ionize molecules, while
the splash of these droplets carries the resultant ions into a
mass spectrometer for analysis. A 2D imaging stage moves the
myocardium section at a controlled speed to scan the
specimen, while the mass spectra are recorded as a function
of x,y-position on the tissue, allowing this information to be
subsequently converted into 2D images of molecular ion
distributions. Thousands of molecular species, whose absolute
and relative intensities change according to myocardium
pathology, are detectable from the specimen within each run
at spatial resolution of ~200 um, and a 2D distribution image
with relative signal intensity can be generated for any of those
species.

The immense amount of chemical information obtained in
the process of imaging invites employing machine-learning
techniques to develop algorithms capable of predicting
myocardial pathology based on mass spectral fingerprints. In
this study, we explored the ability of the rnachlne learning
algorithm, gradient boosting tree ensemble,*® to process
imaging data and select features (mass spectral peak patterns)
discriminative between normally perfused and infarcted tissue.
We recently reported developing a machine learning technique
to categorize mass spectra obtained from the sweat of human
volunteers.’® In this present study, we extended this machine
learning technique to imaging data by including the spatial
localization of each pixel, which enabled us to use the
information obtained from adjacent pixels to make a better
prediction. We further compared the performance of the
algorithm we established with other classification algorithms
frequently used in mass spectrometry. The developed
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Figure 2. 2D distribution images of various molecular ions in myocardial sections throughout regions with various pathologies: (A) infarct section,
(B) normal myocardium section, and (C and D) sections with mixed pathology. Histological staining is shown in the far-right column, whereas
infarcted regions are delineated in red; normal myocardium is marked in green, and epicardium tissue is marked in dark blue.

algorithm was applied to mass spectra extracted from 2D ion
distribution images in accordance with pathological evaluation
of each 200-um diameter picture element (pixel). This feature
selection combined with tandem mass spectrometry allowed us
to uncover ion species important for molecular recognition of
cardiac ischemia vs normally perfused myocardium.

B RESULTS

Animal Models of MI. Controlled apical Mls were
successfully induced in mice by a permanent ligation of the
left anterior descending coronary artery (LAD). The LAD was
ligated with one single stitch, forming immediate ischemia in a
confined region at heart apex while the surrounding myocardial
tissues were nearly unaffected.”’ This surgical procedure
resulted in controlled heart attacks imitating well the
pathophysiological processes occurring in infarction-related
myocardial ischemia.”" Post-sacrifice, the infarct locations were
macroscopically confirmed, and harvested hearts were
cryosectioned to slices that included apical sections (from
the infarct region), sections from the infarct border, and
sections from the normal myocardium distant from the
ischemic area (three sections from each region for each
mouse).

Molecular Imaging. For the construction of 2D imaging
maps, the sections of myocardium were imaged in a negative
ion mode, in a m/z range of 50—1200. In this range a wide
variety of molecular ions can be detected, including amino
acids and small metabolites (m/z 50—200), free fatty acids

(FAs) (m/z 200—400), and complex glycerophospholipids
(m/z 700—1000). The sections were histologically stained
after imaging using hematoxylin and eosin (H&E) staining
protocol for unfixed tissue.”” Striking differences between MS
spectra of infarcted and normally perfused myocardium were
observed (Figure 1). Specifically, infarcted myocardium had
diminished relative and absolute abundances of glycerophos-
pholipids (m/z 700—1000), and elevated relative abundances
of monounsaturated and some saturated fatty acids (FAs)
(Figures 1 and 2). On the other hand, the abundances of
polyunsaturated FAs and some small metabolites were
markedly decreased in infarct. Thus, the most abundant ion
in the infarct spectra was identified as the deprotonated oleic
acid, (FA(18:1), at m/z 281.248). Prominent peaks of
deprotonated palmitoleic (FA(16:1), at m/z 253. 217), stearic
(FA(18:0), at m/z 283.264), and palmitic (FA(16:0), at m/z
255.232) acids were also detected in the infarct region.
Normally perfused myocardium presented prominent peaks of
many glycerophospholipids, e.g., deprotonated phosphatidyli-
nositol (PI), (PI1(22:4/16:0), at m/z 885.546), phosphatidyl-
glycerol (PG), (PG(16:0/18:1), at m/z 747.516), and
phosphatidylethanolamine (PE), (PE(22:6/18:0), at m/z
790.538), as well as of polyunsaturated FAs, such as
docosatrienoic acid (FA(22:6), at m/z 327.232), and of
small metabolites, such as the amino acid taurine at m/z
124.007. Though some changes in the spectra and correspond-
ing 2D images could be detected by the naked eye (Figures 1
and 2), the immense amount of chemical information obtained
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Figure 3. Visualization of the selected features by t-SNE embedding. The red-colored point clouds show perfused myocardium, while the blue-
colored ones show infarct samples. The boxes show the mass spectra corresponding to sample points.

in the process of imaging required development of a machine
learning algorithm to be adequately processed.

Machine Learning Model. A machine learning algorithm
of gradient boosting tree ensemble (GBDT)” was developed
to be applied to the mass spectra extracted from 2D images of
the specimens using MSIReader software in accordance with
each segment’s pathology. This algorithm enabled classification
of mass spectral features (peak intensities) originating from
each pixel as characteristic of normally perfused heart or infarct
segments. Instead of looking at all peaks available, we only
focused on the peaks that appear in more than 0.1% of the
samples in the data set, which allowed us to generalize our
prediction model better. GBDT was also trained to localize
each pixel and extract the information from adjacent pixels to
improve its prediction abilities. This is based on the
assumption that if all neighboring pixels are infarct, the center
pixel is more likely to be infarct. Boosting is a technique that
generates a prediction model in the form of an ensemble of
weak predictors, in our case, decision trees. It combines these
weak predictors into a single, strong prediction model in an
iterative way. It uses an additive strategy: fixes what was
learned and adds one new predictor at a time. The whole data
set was separated into a training set, a cross-validation set, and
a test set with ratio of 7:1:2. A discriminative prediction model
was trained on the training set of randomly selected infarcted
or normal regions and was optimized on the cross-validation
set. The algorithm selected 62 peaks important for
classification of each 200 pm-diameter pixel of heart image
as normally perfused or infarcted myocardium. These peaks
were assigned with a relative weight of their importance for
discriminative prediction model and arranged in the
descending order of their weight (Table S1). The difference
between the mean relative abundance of each peak in the
infarct and in the normal heart was also calculated (Table S1,
mean difference column). This difference was negative if the
molecular ion was more abundant in the normal myocardium
and positive if its abundance was increased in infarct (Table
S1). We visualized the features selected by our model using t-
SNE (t-distributed stochastic neighbor embedding)33 as
shown in Figure 3. Each point represents a 2D projection
from 62-dimensional vectors of selected features. We can see
the clusters of normal and infarct points with an obvious
decision boundary between them, demonstrating the effective-
ness of our algorithm.

The performance of the trained model was evaluated on the
test set. Overall using the developed machine learning
algorithm resulted in a very high average accuracy of 97.43

+ 0.45% of correct diagnosis for each 200 ym-diameter pixel.
High values were also obtained for the average precision and
average recall (or sensitivity), which reflect the fraction of
correctly diagnosed pixels out of all pixels with a certain
diagnosis, and the fraction of correctly diagnosed pixels out of
all pixels with a certain pathology, respectively (Table 1).

Table 1. Statistical Analysis on Pixel-to-Pixel Basis Using
Developed GBDT Algorithm

prediction infarct vs normal for each pixel %
average accuracy 97.43 £ 0.45
average recall 95.82 + 1.46
average precision 94.84 + 0.96

We compared the GBDT model described above with
several other classification techniques or algorithms that have
been previously used for data analysis in mass sgectrometry,
namely, principal component analysis (PCA)**> combined
with linear discriminant analysis (LDA),*® support vector
machines (SVM),””** L1 regularized logistic regression,”
recursive maximum margin criterion (RMMC), =% and
random forest (RF).*** GBDT outperformed all other tested
methods in average accuracy, average recall, and average
precision when applied to our data (Table S2). Specifically,
compared to the algorithm that shows the second highest
accuracy (RF), the error rate using GBDT was decreased by
25%, which is significant for pathological diagnosis.

Peak Identification. We used collision-induced dissocia-
tion (CID) experiments and isotopic peak distribution for
identification of molecular ions selected as important for
myocardial pathology by GBDT algorithm. Twenty-six peaks
with a relative importance greater than 0.01 were identified,
whereas the most prevalent tandem MS fragmentation pattern
was used to assign each peak’s molecular identity. The
identified molecular ions for each peak are listed in Table 2
and selected CID patterns with proposed fragments are shown
in Figure 4. For saturated fatty acids and fatty acids with up to
three unsaturated bonds, fragmentation was dominated by
elimination of H,O from the carboxyl moiety, whereas longer
fatty acids bearing three or more double bonds, fragmented
both by elimination of water and loss of CO, from the carboxyl
moiety. Complex phospholipids showed characteristic losses of
acyl chains as ketenes from the precursor anion, neutral losses
of carboxylic acid chains from the anion, and neutral losses of
both carboxylic acid chain and phosphate group substituent.
We used isotopic distribution patterns (listed in the far-right
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Table 2. High Mass Resolution, Isotopic Distribution, and Tandem Mass Spectrometry Data Used for Identification of
Molecular Ions

observed mass error proposed ion selected isotopic
m/z" main fragment ions ion attribution” exact m/z (ppm) formula“ peaks”
124.0071  106.98, 79.96 taurine 124.0068 2.4 C,H¢NO;S 126.0028 (3*S)
2532168 23521 palmitoleic FA(16:1) 253.2168 0 C1H,00,
327.2323  283.24, 309.22 docosahexaenoic FA(22:6) 327.2324 -0.3 C,,H;,0,
2812481  263.24 oleic FA(18:1) 281.2481 0 C,sH3;0,
282.2514 oleic FA(18:1) (*3C) 282.2514 0 C,3H330, (BC)
309.2793  265.29, 291.27 eicosenoic acid FA(20:1) 309.2794 -0.3 CyH3,0,
3032323 259.24, 285.22 arachidonic FA(20:4) 303.2324 -0.3 CyoHs,0,
790.5377  480.31, 327.23, 283.26 PE(22:6/18:0) 790.5386 —1.1 C4sH,,NOGP
329.2479  285.26, 311.24 docosapentaenoic FA(22:5) 329.2481 —0.6 C,,H330,
284.2671 stearic FA(18:0) (**C) 284.2671 —-0.6 C,3H;350, (BC)
283.2637 265.25 stearic FA(18:0) 283.2637 0 C3H350,
299.2010 255.21 retinoic acid 299.2011 -0.3 C,oH,,0,
304.2357 arzf}hi%onic acid FA(20:4) 304.2357 0 C,oH;,0, (BC)
C
89.0241 lactic acid 89.0239 22 C,H,0, 90.0277 (1*C)
328.2356 do(clg(s:a)hexaenoic FA(22:6) 328.2357 -0.3 C,,H;,0, (BC)
255.2328 237.22 palmitic FA(16:0) 255.2324 0.4 CH3,0,
331.2636  287.27, 313.25 docosatetraenoic acid FA 331.2637 -0.3 C,,H;350,
(22:4)
307.2637  289.25 eicosadienoic acid FA(20:2)  307.2637 0 CyH;50,
2272013 209.19 myristic FA(14:0) 227.2011 0.9 Cy,H,,0,
297.2429  279.23 hydroxyoleic acid 297.2430 -0.3 CsH330;
2772167  259.21 linolenic acid 277.2168 —0.4 CisH,0,
280.2358 linoleic FA(18:2) (*3C) 280.2357 0.4 CysH;,0, (BC)
2562358 palmitic FA(16:0) (**C) 256.2357 0.4 CiH;,0, (BC)
885.5476 599.32, 581.31, 439.22, 419.26, 303.23,  PI(18:0/20:4) 885.5493 -1.9 CyHg,045P
283.26
2792324 26122 linoleic FA(18:2) 279.2324 0 CysH;,0,
3052480  261.26, 287.24 dihomo-y-linolenic FA(20:3)  305.2481 -03 CyH3;,0,
importance < 0.01
747.5158  483.28, 391.22, 281.25, 255.23 PG(16:0/18:1) 747.5176 —2.4 C4oH;60 1P

“High mass resolution analysis was performed with the Orbitrap mass analyzer. “FA = fatty acid; PE = glycerophosphoethanolamine; PI =
glycerophosphoinositol; PG = glycerophosphoglycerol. (X:Y) denotes the total number of carbons and double bonds in the fatty acid chains,
respectively. The most abundant isomer based on the fragments is listed. “Proposed formula for the ion detected. 9Selected isotopic peaks listed in
this column are important for molecular ion characterization. All ions have abundant isotopic peaks such as *C peaks.

column of Table 2) to prove identification of species at m/z
124.0071 as taurine, based on the presence of #S.M]”
isotopic peak, and identification of species at m/z 89.0241 as
lactate, based on *C-[M]~ distribution characteristic of singly
charged lactic acid anion.”® However, '3C-[M]~ isotopic peaks
that were chosen by GBDT as important for myocardial
pathology classification were listed in Table 2 as separate
features.

B DISCUSSION

Despite documented dysregulation of lipid levels following
myocardial infarction, there is no routine use of lipid and small
metabolites as cardiac pathology predictors. We show that
applying a machine learning algorithm of GBDT on imaging
data collected by DESI-MSI allows selection of 62 ion signals
important for cardiac pathology detection and predicts with
high accuracy (97.4%) the location of infarcts in murine heart
tissues. GBDT showed a superior performance when applied to
our imaging data compared with several other classification
algorithms. Molecular ions selected by GBDT mostly originate
from lipids and small metabolites, and some of these molecules
can also shed light on pathophysiological processes occurring
within ischemic heart. DESI-MSI/GBDT revealed, for

example, that the small amino acid taurine is more abundant
in normally perfused myocardium than in infarct. Taurine is a
physiologically ubiquitous sulfur-containing amino acid that
does not participate in peptide bond formation.*” Tts
concentration in mammalian hearts is higher than that in
most other tissues,”® and it is easily detected in whole blood.*
Taurine plays an important role as mitochondrial matrix buffer
for stabilization of mitochondrial oxidation.”® A growing body
of evidence points out that taurine depletion in diet leads to
the development of a cardiomyopathy, whereas its supple-
mentation attenuates cardiac remodeling after myocardial
infarction and reduces generation of reactive oxygen species
within cardiomyocytes,”>” suggesting taurine’s protective
function.*”*' Other animal studies have shown, however,
that taurine is released from the heart during episodes of
cardiac ischemia to prevent Ca®>* overload and minimize
cardiac damage’” and is elevated in blood following ischemia.*’
Moreover, detection of elevated levels of taurine in blood of
patients with an acute cardiac pain suggests the diagnosis of
either myocardial infarction or unstable angina pectoris.*”>*>*
The concentration of taurine may help to differentiate between
the two conditions.”” The taurine in blood is elevated probably
owing to its release from the infarcted heart muscle. In our
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Figure 4. CID identification of selected molecular ions identified by GBDT as significant for cardiac pathology identification: (A) taurine; (B)
docosahexaenoic acid FA(22:6), (C) phosphatidylethanolamine PE(22:6/18:0), (D) arachidonic acid FA(20:4), (E) palmitoleic acid FA(16:1),

and (F) docosapentaenoic acid FA(22:5).

study, we identified taurine as one of the 62 molecular ion
markers, whose changes in the collective abundance pattern
may predict MI with very high accuracy, thus potentially
improving predictive potential of taurine alone.

Another molecular species prominently depleted in infarcted
areas are the polyunsaturated long-chain fatty acids, such as
docosahexaenoic acid FA(22:6), docosapentaenoic acid
FA(22:5), and docosatetraenoic acid FA(22:4). Recent
evidence shows that infusion of docosahexaenoic acid
(DHA) before or after the onset of cardiac ischemia in rats
protects the heart from damage.> Moreover, adequate dietary

12203

intake of DHA is associated with reduced cardiovascular
mortality in humans.*® High blood levels of docosapentaenoic
acid (DPA) were also demonstrated to prevent episodes of
ML>” On the other hand, monounsaturated and saturated fatty
acids have increased abundancy in infarct. Prominent rise in
plasma levels of free fatty acids during MI as well as FA
deposition in ischemic areas are well-documented and can be
partially caused by the release of norepinephrine during MI
episodes.”®*” Combined with other molecular ions identified
by DESI-MSI/GBDT, the aforementioned species generate a
molecular signature characteristic of MI and may promote
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diagnostic capabilities in silent MI and cardiac ischemia.
Whereas MS imaging process directly on a patient heart
muscle is extremely challenging, the signature we uncovered
may reflect some changes in the blood-born metabolites during
cardiac ischemia and improve diagnostic capabilities based on
molecules detected in other tissues, e.g., pericardial fat tissue,
which are readily accessible through routine cardiac procedures
such as valve replacement, angioplasty, and artery bypass
surgeries. The combination of DESI-MSI/GBDT offers a high
prediction accuracy of MI based on the cardiac tissue-specific
markers, but future studies are required to assess the
applicability of this signature to early detection of infarct
through analysis of blood, plasma, or pericardial fat in humans.

B EXPERIMENTAL SECTION

MI Induction and Specimen Collection. Controlled
apical MIs were induced in 11 female mice (8—10 weeks) by a
permanent ligation of the LAD. Mice were sacrificed 5 + 2
days postligation; the infarct locations were macroscopically
confirmed, and harvested hearts were snap-frozen and later
cryosectioned to 12 pm-thick sections. When not analyzed
immediately, these fresh specimens were stored at —80 °C and
briefly dried in vacuum desiccator before DESI-MS analysis.

DESI-MS Analysis. A custom build DESI-MS imaging
stage coupled to an LTQ-Orbitrap XL mass spectrometer
(Thermo Fisher Scientific) was used for DESI-MSI. The mass
spectra were acquired in the negative ion mode using the
Orbitrap as the mass analyzer at 60 000 resolving power, with
the spray voltage set to —5 kV, the capillary voltage set to —65
V, and the tube lens voltage set to —120 V. Ion injection time
was 100 ms, and one microscan was performed. At least three
cardiac muscle sections for each sample were imaged. We used
tissue nondestructive solvent system dimethylformamide:ace-
tonitrile [1:1 (vol:vol)] at a flow rate of 0.8 #L/min assisted by
a nebulizing gas (N2) at a pressure of 175 psi to desorb and
ionize molecules of interest from the tissue. This allowed a
subsequent histological evaluation of the same specimen to
delineate infarcted regions. DESI-MS spray tip-to-surface
distance was 2 mm; spray incident angle of 56°, and spray-
to-inlet distance was 6.5 mm. Step size in the moving stage was
set to 0.2 mm, and automatic gain control of mass
spectrometer was switched off. These parameters were
empirically found to yield the optimal MS signal from cardiac
tissues. All experiments were carried out under identical
experimental conditions to allow comparison between the
measurements.

The software ImageCreator (ver. 3.0) was used to convert
the Xcalibur 2.2 mass spectra files (Thermo Fisher Scientific)
into a format compatible with BioMap (freeware, ver. 3.8.0.4,
http://www.ms-imaging.org) to construct spatially accurate
2D ion images. Rainbow color palette was used in the BioMap
for signal intensity visualization.

After DESI-MS imaging, the same cardiac section was
subjected to H&E staining for unfixed tissue’” and
histopathologic evaluation. The location of delineated infarcted
regions was compared with DESI-MS images. Another
software, MSIReader (ver. 0.09), was employed to extract
regions of interest for GBDT analysis. To use the MSIReader,
an additional freeware tool, MSConvert (tool of ProteoWizard
software, ver. 2.1)(.),61 was utilized to convert the Xcalibur 2.2
mass spectra files (.raw files) into .mzML format files, and then
imzMLConverter (ver. 1.3.0)62 was used to combine .mzML
files into .imzML format file, readable by the MSIReader.

For further structural identification of lipids and metabolites,
tandem MS analyses were performed. Heart sections obtained
from both ischemic and normally perfused regions were used;
they were carefully removed from the glass slides, and the
analytes were extracted in 500 uL of methanol:water 70:30
solution. The undissolved tissue was separated from the extract
by centrifugation at 4000 g for S min. Supernatant was
collected and introduced into the mass spectrometer for
tandem MS analysis via electrospray at the solvent flow rate of
S uL/min. Nebulizing gas pressure was set to 120 psi, and
other parameters remained the same. A normalized collision
energy of 20—40% was applied; the isolation window width
was set to 1.0 m/z, and an activation Q value was 0.2—0.25.
Ion injection time was 1000 ms, and one microscan was
performed. Lipid and metabolite compositions were assigned
based on high mass resolution analysis, isotope distribution,
and the most prevalent tandem MS fragmentation pattern. The
LipidMaps (http://www.lipidmaps.org/), MassBank (http://
www.massbank.jp), and Metlin (https://metlin.scripps.edu/)
databases were employed to assist with species identification. It
should be noted that, while tandem MS experiments elucidated
the exact length of acyl groups in glycerophospholipids, they
could not accurately assign the position and stereochemistry of
the double bonds in FAs and glycerophospholipids.

Machine Learning Algorithm. The 2D mass spectra files
obtained by DESI-MS imaging were converted to Microsoft
excel files and exported for GBDT analysis according to
regions of interest of varying pathology using the MSIReader
(see above).

Regions of interest were delineated within the specimens to
categorize each 200-um-diameter pixel of investigated heart
muscle map as infarct or normally perfused myocardium. For
the purpose of GBDT analysis, we defined each individual pixel
as a “sample”. The number of normal samples was 2427, while
the number of infarct samples was 107S5. Each sample was
vectorized by a hand-written peak finding algorithm with a
resolution of 0.05 m/z. A total of 938 peaks were found in all
samples. Notably, the peak vectors around a pixel are
concatenated to the feature vector of that pixel as well.

Mathematically, let P € R™"™ 4 be a mass spectrometry
image, where #n is the width of the image, m is the length of
the image, and d = 938 is the number of peaks included in each
pixel P;. Then, the feature vector of P; is constructed as [Py,
Py Pivyp Piggery P,-(}-_l)], where the brackets denote vector
concatenation. Here, concatenation stands for the operation of
joining vectors end-to-end. For example, concatenating the
vectors (0, 1) and (2, 3) will yield the vector (0, 1, 2, 3).
The samples were then shuffled to compose the data set, and
the whole data set was randomly separated into a training set, a
cross-validation set, and a test set with ratio of 7:1:2. Samples
were normalized by I, norms of each samples vector, where I
norm of a vector is the maximum absolute value of elements in
the vector. Classification algorithms of logistic regression,
support vector machines, random forests, gradient tree
boosting, nearest neighbors, and Bayesian regression were
tested. Model selection was based on the performance of the
cross-validation set. The algorithm adapted from XGboost®®
yielded the best result and was chosen as the final classifier.
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