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It is shown that the quality of the fit of frequencies for the (4, 4) band of the b48;-&II, 
transition of O:, obtained in an ion-beam experiment, can be significantly improved by the 
inclusion of a fine structure term of the form L,S: in the effective Hamiltonian for the a411u 

state, where L, and S, are respectively the components of the total orbital and spin angular 
momenta along the internuclear axis. The various contributions to this term in the Hamil- 
tonian are assessed from a general standpoint by the use of a new order-of-magnitude 
scheme. The separate contributions to the parameter involved, I). are then considered in 
detail by means of a perturbation treatment of the spin-orbit and spin-spin interactions 
through third order. Attempts to interpret the parameter values determined for the a*& 
state of 0: are severely limited by the present lack of detailed knowledge of the properties 
of the various electronic states of 0:. 

1. INTRODUCTION 

Recent high-resolution studies (l-3) of the b”Z;-u”Il, transition of 0: have 
led to a notable improvement in the molecular constants of the states involved. In 
the fitting of the data, however, there remained small but systematic residuals 
correlated with the components of the u411U state, the mean residuals being -0.0018, 
+0.0122, -0.0269, and +0.0047 cm-l for the F;‘, F!, F’j, and F; components, 
respectively (2). The Fi and Fi residuals in particular are quite significant com- 
pared with the estimated experimental precision of 0.0028 cm-‘. 

Since the a4H, state is a good case (a) state with A/B = -47, the absence of an 
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observed correlation with J” indicates that the residuals are due to a rotation- 
independent term in the molecular Hamiltonian. In the fit, the parameters describ- 
ing the three intervals between the 411 components of the nonrotating molecule 
were the spin-orbit coupling constant A,, and the spin-spin coupling constant 
A,, (or E,, = 2h,,/3), where the subscripts refer to the vibrational state v of elec- 
tronic state II. These correspond to terms respectively linear and quadratic in the 
operator S,, the former having a factor L, as required by time-reversal and other 
symmetry requirements. The next term, which is cubic in S,, we take in the 
(unnormalized) tensor form, 

r),,L,s,[s: - (1/5)(3S? - l)], (1) 

where the new molecular constant q,, is a higher-order fine structure constant. 
The theoretical interpretation of Q,, requires third-order perturbation theory, 
discussed in Section 4. First, in Section 2, we confirm that the introduction of the 
term (1) removes the systematic residuals found previously. 

2. DATA FITTING 

The general Hamiltonian for diatomic molecules has been discussed extensively 
in the literature, for example, by Zare et al. (4), by Mizushima (_5), 
and by Brown et al. (6). The specific case of “II states has been considered 
by Veseth (7). The present treatment and notation follow Brown et al. (6) and 
Brown and Merer (8). The introduction of term (1) into Eq. (18) of Ref. (6) 
gives for the rotation-spin Hamiltonian of the vibronic state 11~ 

H,,lhc = T,, + B,,N2 - D,,N4 + (1/2)[A.,, + A,,,N*, L,S,]+ + yn,N2N.S 

+ 2h,,(SZ - (1/3)S2) + 7),,LZSa[S: - (l/5)(3?? - l)] 

- (1/2)0,,(&52 + Als:) + (1/2)p,,(A:S_N_ + AZS+N+) 

- (1/2)q.,(A:N? + A%:), (2) 

when [ , ]+ indicates an anticommutator and the higher-order terms ynuF, h,lL)r, 
onDu, pnDr, and qnoL. are omitted. The matrix elements of this Hamiltonian were 
evaluated in a parity-projected case (a) basis set, as in Table II of Ref. (8). The 
resulting matrices (of dimension 4 x 4 except for J < 5/2) were diagonalized 
numerically to yield the set of term values. 

The experimental data come from the very precise measurements by Cosby 
et al. (2) of Doppler-tuned laser absorption by an 0: beam. Many lines in four 
different vibrational bands of the b4X;-u411, system were measured, of which the 
(4, 4) band is the most extensive. Cosby et al. published the results of a least- 
squares fit of 201 lines of this band, employing the Hamiltonian of Zare et al. (4) 
and Albritton et al. (9). The parameter values they obtained are given in the first 
column of Table I. The standard deviation, 0.0136 cm-‘, is significantly larger than 
the estimated experimental precision, 0.0028 cm-‘. 

We have performed two unweighted fits of the same 201 lines with the Hamil- 
tonian of Eq. (2). In the first qnr was constrained to zero and the Hamiltonian 
was essentially equivalent to that employed by Cosby et al. (2), the differences 



HIGHER-ORDER FINE STRUCTURE 141 

TABLE I 

Some Results from Least-Squares Fits of Data from the (4, 4) Band 
of the b48i-a4rI, System of 0: 

Cosby et ala 
Present work 

Fit 1 
Present work 

Fit 2 

*o 17177.085(lz)b 

B’ 1.186523(82) 

lo6 D’ 6.662(110) 

103 y’ -1.338(110) 

h’ 0.2088(10) 

A” -47.6925 (45) 

lo4 ADN 1.90(130) 

B” 1.034982(77) 

lo6 D” 5.222(100) 

lo2 y” -0.78(31) 

h” 0.9425(33) 

0” -0.02177 c.d 

103 p,’ 3.78(37) 

105 q" -1.4(23) 

a’, 0.1949(47) 

102 r)” 0.0 c 

f 
‘fit 0.0136 

17178.175(S) 

1.186527(82) 

6.66(11) 

-1.35(11) 

0.2088(10) 

-47.6706(30) 

2.1(13) 

1.034989(76) 

5.22(10) 

-1.00(30) 

0.9537(26) 

0.1514(20) 

3.73(37) 

-1.6(23) 
e - 

0.0 c 

0.01365 

17178.159(3) 

1.186414(26) 

6.513(34) 

-1.337(35) 

0.20854(32) 

-47.68131(99) 

0.32(41) 

1.034861(24) 

5.081(32) 

-0.537(95) 

0.94675(84) 

0.14950(63) 

3.90(12) 

-2.33(72) 
e - 

5.60(13) 

0.0043 

_--___ ~. 

aTaken from ref. (2). The parameters determined in the fit are defined in 

refs. (4) and (9); they differ slightly from those used in the present work, 

which are defined in ref. (6). 

b -1 Parameter values quoted in cm The figures in parenthesis are one standard 

deviation of the least-squaresfit, in units of the last quoted decimal place. 

‘Parameter constrained to this value in the fit 

d This is a calculated value, derived from 0 = Q(AlB)p. Note however that this 

formula, which is based on a unique perturber model, is actually the second 

order correction to the spin orbit coupling constant, A C2) (6). 

?here is no equivalent to the parameter a in the model used in this work. The 

quantity (2a + 20) used by Albritton <‘L (1. 1 (3) corresponds to our lambda 

doubling parameter o. 

f 
The standard deviation of fit of 201 data points of equal weight. 

being mainly in the definitions of the parameters. The results, collected in column 
2 of Table I, show that the standard deviation, 0.01365 cm-‘, is essentially the 
same as in column 1. Furthermore, the pattern of residuals was identical in the 
two fits. In our second fit the parameter nnv was freed, with the results shown in 
column 3 of Table I. The standard deviation, 0.0043 cm-‘, is greatly reduced and 
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is now comparable to the estimated experimental precision. The mean residuals 
for the F’;, F!, F!, and F;’ components are -0.00018, 0.00056, -0.00112, 0.00026 
cm-l, respectively, indicating that the previous systematic pattern of residuals has 
been almost entirely removed. 

Without exception, the standard deviations of individual parameters are reduced 
in the second fit. This applies both to the parameters Ai, and hi,. associated with 
the quartet splitting in the nonrotating molecule and to parameters such as Axe,, 

Y IlL’Y and q’& associated with rotation. The standard deviation of qzL, is now less 
than the parameter value. Of particular interest is the fact that both A;,,. and ril. 
are determined in these fits. Thus indeterminacies of the type discussed for ZIl 
states by Brown et al. (6) do not occur in the 411 Hamiltonian in Eq. (2). 

These fits show that the introduction of term (1) accounts satisfactorily for the 
pattern of residuals found previously. The high precision of the ion-beam experi- 
ment, which is largely a result of the kinematic compression of the velocity dis- 
tribution for large Doppler tuning, has therefore led to the determination of a new 
molecular parameter, r),,,.. In the following sections we consider the theoretical 
interpretation of this and other parameters. 

3. ORDER-OF-MAGNITUDE CONSIDERATIONS 

The calculation of a theoretical formula for 7 requires the use of third-order 
perturbation theory. As in all applications of higher-order perturbation theory, 
it is convenient to have a general picture of the relative orders of magnitude of the 
energy contributions of different terms. For example, the spin-rotation constant 
y is usually dominated by the second-order contribution y”’ (6, IO). What is desired 
is some general scheme that makes the relative sizes of different contributions, 
such as y(l) and y’“‘, readily intelligible. 

(i) Dependence on a 

The first step consists essentially of expressing the various terms in the Hamil- 
tonian in atomic units. Relative to an atomic unit of energy, which we take as the 
Rydberg RH, each term depends on some power of the dimensionless fine structure 
constant (Y = 0.007297. For example, the spin-orbit and spin-spin coupling 
operators are of order a2RH in this classification. 

(ii) Dependence on K 

Consideration of the nuclear motion introduces the nuclear masses, of order 
m,. The orders of magnitude can be expressed in terms of the Born-Oppenheimer 
parameter K = (m,/m,)1’4. For example, if the equilibrium bond length Y, is of the 
order of the Bohr radius a,, the rotational constant B, is of order (mJm,)R,, 
= KARL. If nuclear displacements are measured in units of a,, the nuclear kinetic 
energy is of order KARL and the harmonic potential of order RH. The usual harmonic 
oscillator solution then gives vibrational energy levels whose order of magnitude is 
the geometric mean of these quantities, K~R “, and typical vibrational displacements 
of order KU,,. The vibrational matrix elements of the cubic, quartic, . . . poten- 
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tials are then of order KERN, K~R”, . . . , respectively. Similar results can be 
applied to the matrix elements of the expansions of other operators, such as the 
electric dipole moment or the spin-orbit coupling operator, in powers of the nu- 
clear displacement. 

(iii) Dependence on Z 

The dependence on atomic number Z is more difficult to estimate. For example, 
the total electronic energy increases rapidly with Z but the quantity of interest is 
usually the separation between low-lying electronic states, which is largely inde- 
pendent of Z and therefore to be classified of order RH. 

The dependence of the spin-orbit coupling on Z is responsible in atoms for the 
change from typical LS coupling at low Z to jj coupling at higher Z, and in 
molecules for the change from case (b) at low Z to case (u) at intermediate 
Z and case (c) at higherZ. The quantitative representation of this trend is discussed 
by Landau and Lifshitz (I I). The relevant part of the spin-orbit constant is a sum 
over terms proportional to Z,(r,:j), where ria is the distance between unpaired 
electron i and nucleus (Y. Integrals of the type (~2~) can be regarded as consisting 
of a contribution from the immediate vicinity of nucleus (Y and a contribution 
from the remainder of space. Since an unpaired electron is generally in an outer 
orbital of approximate radius a,, independent of Z, the latter contribution is of 
order ~6’~. Near the nucleus, the nucleus is almost unscreened and the former 
contribution consists of the unscreened integral (-Z;a;“) multiplied by the rela- 
tive probability (Z;‘) of finding an outer electron in the vicinity of the nucleus. 
Thus the two contributions are of order Z:-%;” and u;“, respectively. For 
n = 3 the former contribution Zop~~ is dominant while for n = 1 the latter con- 
tribution a;’ is dominant (assuming Z, > 1). For n = 2 the two contributions are 
comparable, a,‘. Curl (10) has drawn attention to this distinction by stating that 
(v,-,“) is a property of the wavefunction in the immediate neighborhood of nucleus 
CY, (ran) is a property of the wavefunction of atom (Y, and (r&l) is a property of 
the wavefunction of the whole molecule. 

(iv) General 

From the above considerations the first-order spin-orbit coupling function A”)(r) 
is of order ZZaZRH, where Z is normally the atomic number of the heavier nucleus 
(unless the unpaired electrons are localized on the lighter nucleus). For most 
functions of internuclear distance it can be assumed that the derivative with re- 
spect to ,$ = (r - r,)/r, is of the same order as the function itself. However, 
special considerations arise for dA”‘/ds because A”’ is dominated by the behavior 
of the electronic wavefunction in the vicinity of the nucleus, and this varies less 
rapidly with 5 than for typical functions. The variable part ofA”’ is the “molecular” 
contribution, which is of order Za2RR, rather than ZWRH. 

The second-order part A”’ is of order [A”‘lZIAT, = Z4a4R,. The derivative 
dA’“‘/dt then has contributions of order Z3a4R, and Z4a4R,, from differentiation 
of the numerator and denominator, respectively. The latter will be dominant at 
high Z. Also, while AC2’/At1’ - Z2a2 is generally small, the derivative of A’“’ be- 
comes relatively more important, AC2)‘/At1)’ - Z3a2. 



144 BROWN ET AL. 

Matrix Elements 

TABLE II 

Orders of Magnitude” 

<n(Hi@In'> = Z2a2RH <"lHf;'In'> = Z~'K~R~ 

<n(HssIn'> = a2RH <"lH 1 rot .‘> = K4R 
H 

Parameters 

Au) Z2u2R 
H 

A 

nu) ? 

n n(2) Z2a4R 

11(3) ZVR" 
H 

ou) 
a2RH 

0 

o(2) Z4a4R 
H 

A(l) a2R 
H P Z202K4 

A 
RH 

A(2) Z4a4R 
H 4 

Yu) Za2r4R 
H 

Y 

Y(2) Z2a2K4 
51 

aNotation: 51 = Rydbeq constant. 

Z = atomic number, usually of heavier atom. 

a = fine-structure constant = 0.007297. 

K = Born-Oppenheimer parameter ^ 0.1. 

The above considerations have been applied to matrix elements of various terms 
in the Hamiltonian, and the proposed orders of magnitude are presented in Table 
II. Since the terms also contain numerical factors that are not necessarily close 
to 1, it should be appreciated that the expressions do not have absolute quantitative 
significance but indicate general trends. For example, returning to the problem of 
y = Y”’ + Y”‘, we see from Table II that yVy”’ - Z, and therefore the dominance 
of y”’ increases with increasing Z. 

4. PERTURBATION CONTRIBUTIONS TO vn” 

The parameter qn,, is the effective coefficient for the vibrational level v of elec- 
tronic state n of the operator in Eq. (1). As discussed previously for other operators 
(6), the dependence on v can be obtained by a vibrational perturbation treatment of 
terms in the effective Hamiltonian H, for electronic state 12 [cf. Eq. (10) of Ref. (6)]. 
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There is a first-order contribution, 

from the operator q,(r) to be discussed below. There is also a second-order 
contribution 

r)$?) = 4Re C’ (V(A,(r)(v’)(v’(h,(r)Iv)/(G~ - G,V) 
1” 

(4) 

involving the operators A,(r) and X,(r) given previously (6). From Eq. (4), the 
equilibrium value q(,u,2) is found to be 

(V2j _ _ 4A;Jb,B,, 
rlne - 2 9 (5) 

on, 

where Ai,, and AL, are the derivatives (dAJd& and (d&,/d&,, respectively. 
From Section 3, q$$’ contains principal contributions of order Za4RH and Z5a6R,. 

The operator 7,(r) in Eq. (3) is obtained from a purely electronic perturbation 
calculation. The contributions to qn(r) are considered below according to the 
different orders of perturbation theory, 

q,(r) = 7&“(r) + 7#‘(r) + 7$‘(r). (6) 

(1) First Order 

The fundamental Hamiltonian employed previously, 

H = He,ec + L PF + hcB(r)(N - L)2 + 
1 

2P 
- P’ + H;;’ + Hi,“’ + H;;’ + H;;‘, 
2M 

(7) 

contains terms up to quadratic in the spins. (See Ref. (6) for definitions of the 
terms). This Hamiltonian therefore does not provide a first-order contribution 
cubic in the spins, as required for q(nl’(r). However, this Hamiltonian consists 
merely of the early terms of a nonrelativistic expansion, and is only an approxima- 
tion to the “true” molecular Hamiltonian, if such a thing exists. Further terms 
will be obtained by a higher-order treatment of the radiative corrections. This 
would be an extension of the calculation of the spin-spin terms in Eq. (7) which 
come from the Breit operator, which is itself obtained by a perturbation treatment 
of the radiative terms (12,13). Higher-order radiative corrections may be expected 
to yield, among others, a term with the form of Eq. (1). The expectation value of 
this for the electronic state n gives the first-order contribution v?)(r). The detailed 
form of these higher radiative corrections does not appear to have been considered 
in the literature, and it is difficult to estimate the order of magnitude of 7)(,‘)(r). 
Clearly, however, a quantitative treatment of small effects like r),(r) which can now 
be measured experimentally would require an extension of the basic molecular 
Hamiltonian to include higher terms. 

(2) Second Order 

In second order the Hamiltonian (7) can produce terms cubic in the spins from 
the cross-terms between the spin-orbit and spin-spin coupling terms. The largest 
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spin-orbit effects are associated with H,, , W’ the part depending on the electronic 
velocities. This is a first-rank tensor in the spins. In order to generate a third-rank 
tensor overall, we must use H ii), the second-rank tensor part of the spin-spin 
coupling. The contribution n1;L)(r) is therefore contained in 

2Re 1’ (nA(S)~~H~~‘In’A’(S’)C’)(n’A’(S’)C’IH~’,’Inh(S)~) + (V,, - V,,), (8) 

where the factors are all functions of I’. 
To isolate the third-rank tensor part of (8) we use a projection technique to 

eliminate the first- and second-rank tensor parts. From angular momentum theory 
(14) the right side of (8) contains terms proportional to the 3 j symbols (2: f;: $) 
with k = 1, 2, 3. By multiplication by (L”, i $ ) and use of the orthogonality rela- 
tion (Ref. (14, p. 136)) 

we can isolate the k = 3 part. The explicit 3 j symbol required here is 

( 

s 3s 

1 

= (-)s-z+12o[c3 - (l/5)(3.?? + 3s - l)C] 

. -z 0 c [(2S + 4)!/(2S - 3)!]1’3 

The projected result gives 

(9) 

2800 (2s - -q;;‘(r) 3)! = - 

hcA (2s + 4)! r 
Z” - f (3s” + 3s - 1)C 1 

x (2Re 1’ (nA(S)I:jH$‘~‘In’A’(S’)C’) 
ll’.&‘X’ 

x (~‘A’(s’)~‘IHB~‘I~A(s)C)/(V,, - v,,,)}. (lo) 

The intermediate states n’ in this formula can have S’ = S, S L 1 and A’ = A, 
A + 1. Thus if n is a 411 state the perturbing states can be 2,4*6C*, z*q*611 and 
9.4.6A, and the perturbation is summed over all such states. The order of magni- 
tude of ~)Y)(Y) is Z”a4R,. 

(3) Third Order 

The linear terms H’,‘, can produce in third order a contribution cubic in the 
spins, of order ZWR,. With the projection technique described above, the ex- 
pression obtained for q:)(r) is 

q:?‘(r) = 
2800(2S - 3)! 

hcA(2S + 4)! z 
C” - ; (3&Y? + 3s - 1)C 1 

x { 1’ (,zA(S)~~H~~‘~n’A’(S’)C’)(n’A’(S’)~’~H~~’~n”A”(S”)~“) 
U“1’i’ 
11”‘2”X” 

x (n”A”(S”)Y(H~‘~nA(S)~)I(V, - V,,,)(V, - V,.) 
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_ Re 1’ (nA(S)~~/HQ~‘(nA’(S)~,‘)(nA’(S)C’(H~~’(n”~(S”)C”) 
A’S 

,,Y,,“\‘” 

x (n”l2”(S”)C”IH$:;‘InA(S)~)/(V, - v,Z,!)2}, (11) 

where the first sum in the braces is restricted by n’ # II, n” # n and the second 
sum by n” # n. Each matrix element must satisfy the spin-orbit selection rules 

AS = 0, 21, 

AA = -AZ = 0, 51. (12) 

Obviously a large number of different sets of intermediate states are allowed by 
these rules. 

5. DISCUSSION OF THE dIl, STATE OF 0; 

The recent measurements of the b”X;-a’II, system of 0: by the laser-ion-beam 
technique (I -3) have provided detailed information on the rotational structure of 
the a411, state, which is accurately fitted by the present parameters. These param- 
eters are of interest both on their own account and in relation to the important 
isoelectronic molecule NO, for which the quartet states are less well characterized. 

In general, each effective parameter consists of a first-order part determined 
purely by the u411u wavefunction, and second- and higher-order parts produced 
by interactions with other electronic states. For some parameters (e.g., p, 4) the 
first-order part vanishes. A qualitative discussion of the effective parameters there- 
fore requires some information on the perturbing electronic states. Unfortunately 
the experimental knowledge of the other states is limited at present (15). Although 
ab initio potentials of many states have been computed (/6), the required matrix 
elements of the interactions are almost entirely unknown. A simplifying feature 
for O,+ compared to NO is the center of symmetry, which means that a411, is only 
perturbed by other u states. 

The various parameters differ in the degree of complexity of the perturbations, 
and it is appropriate to consider them in order of increasing complexity: 

(i) A. The ordinary spin-orbit coupling constant A is dominated by the first- 
order part A”‘. The single configuration . . . ( 1 nTT, )3( 1 v~TTY)~ probably provides a 
good representation of this state, and gives 

A”‘(a”II,) = -( 1/3)a( 1x,(), 

where u(lnP1) is the contribution for the single orbital 17~~. The observed value, 
A = -47.68 cm-‘, is reasonably consistent with the ab initio estimate u(l~,~) 
= 126 cm-’ (17). 

The part A”’ results from spin-orbit interactions with other states. From the 
expressions in Ref. (6) it can be shown that 

,4’2’ = 
1 , 1 (nA(s)llH~~‘lJn’A’(s’)> ) ‘(A’ - A) 

?I 
4AS(S + 1)(2S + 1) ,,:. (V,, - V,?) 

x [S(S + 1) - S’(S’ + 1) + 21, (13) 
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where the partially reduced matrix elements are defined by 

(nn(s>I:IH~‘In’A’(S’)Z’) 

= (-IS-” TX *, y * f: j ( (nA(s)llH~‘l)n’A’(s’)). (14) 

Note that the partially reduced matrix elements still depend on the component 
quantum numbers A, A’. From Eq. (13) it is seen that, because of the factor (A’ 
- A), perturbing states with the same value of A do not contribute to A?). This 
is important for u411U of 02+, since the nearest possible perturber is ATI,. The 
above selection rule means that A%, does not contribute to A’“‘(a411,). From a 
rough estimate of the effects of the 2,4*6Zz and 2,4,6A,, states, the probable order of 
magnitude ofA”’ is 0.1 cm-‘, negligible compared to A”‘, although large compared 
to the experimental uncertainty. 

The observed value of AD could provide the derivative dA/ds, but is at present 
not significantly determined. 

(ii) 4. The h-doubling constant 4 is purely second order, due to “Zc,’ states. 
On the assumption that all such states are above the u411U state, the sign of q indi- 
cates that the “2: states predominate over the 4C; states. The ab initio potential 
curves (16) show that at this bond length the lowest “2, state is a repulsive 
“2,’ state. Several other “C, states, both “C: and “C;, have slightly higher 
energies. On the simplest assumption, that the repulsive “Xl state is responsible 
for q, the orbital matrix element obtained is 

1 (&I, IL+ p:) 1 = 0.66. 

The order of magnitude seems reasonable. The most one can conclude, however, 
is that the q value does not appear to be anomalous. 

(iii) p and y. The A-doubling constant p is also entirely due to the second-order 
effects of “2,’ states. The spin-rotation constant y has first- and second-order 
parts. The first-order part y”’ is an “atomic” property in Curl’s terminology 
(10). An approximate estimate by the method of Ref. (18) suggests that y(l) is 
much smaller than the observed y, which can therefore be regarded as y”). 

There are three contributions to yc2), 

Y (2) = f’(42,:) + y’“‘(4x;) + y’“‘(4Au) 
(19 

whilep is given by 
p = -2y'"'(4c;) + 2y'"'(4C,). (16) 

Here the states in parentheses are the perturbing states, and each contribution is 
summed over all states of the indicated type. The observed relationship y/p 

= - 1.38 is not consistent with a unique type being dominant. Examination of the 
ab initio potential curves (16) suggests that “2,’ and 4AU may dominate “2;. 
Neglecting the effects of the latter completely, we obtain 

yY4XL) = -1.95 X 10m3 cm-‘, (17) 

Y’~‘(~A~) = -3.42 x 10m3 cm-‘. (18) 
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On the unique perturber approximation for r’*‘(?+C~), using the previous orbital 
matrix element, the off-diagonal spin-orbit matrix element obtained is 

1 (“C~,,,~H~‘~a4~,,,,) / = 57 cm-‘. (19) 

This is of the same order as A(a411,). It is difficult to proceed further with y’2’(4Au), 
since neither the orbital nor the spin-orbit matrix elements are known. However, 
the fact that the 4A, contribution is of similar magnitude to the “C: contribution 
is consistent with the fact that the lowest 4A,, and “Z?.,: states have similar energies. 

(iv) o. The A-doubling constant o has first- and second-order parts. The latter is 
due to 2.4?%,’ states. Of these, the lowest at this bond length are “2: and “2:. 
It is likely that o(l) and cP’ are comparable in magnitude, and it is therefore difficult 
to make any useful comments. However, an ab initio calculation of 0”’ would 
obviously be of great interest. 

(v) A. The spin-spin constant A is even more complicated, since the second-order 
contributions are due to 2*4*6Cz, 2,4s6111u, and 2*4.fiAu states. Of these, easily the 
closest is the A”& state. The ab initio matrix element 

1 (A*&,,, IH,, IQ~II,~,~) I = 72 cm-l (20) 

has been estimated by Roche (17). From this, the contribution of the A state to 
A(2) is 

I(AjfLla)/2 = +0.17 cm-‘. 
4(V;1 - V,) 

(21) 

The second-order effects of other states are probably much smaller. By subtrac- 
tion, the value of X”’ is 

A”’ = 0.78 cm-‘. (22) 

For comparison, the ab initio value of A’” for the X”C; state of 0, is 0.7079 cm-’ 
(19). The value for A”’ for 0: can be estimated from semiempirical formulas given 
by Field and Lefebvre-Brion (20). For a homonuclear molecule in a 411 state arising 
from a &P configuration, A”’ = 2 Q, where nA is an atomic spin-spin parameter 
(for atom A), not to be confused with the spin-orbit parameter nnll introduced in 
this paper. Using the values for q0 of 0.250 cm-’ and for no+ of 0.372 cm-l cal- 
cuiated by Yamanouchi and Horie (21), the value for A”’ is 0.62 cm-’ which is 
slightly smaller than the value given in Eq. (22). Nevertheless, it suggests that our 
interpretation is reasonable. 

(vi) 7. From Eq. (4), the second-order vibrational contribution ntv2) is estimated 
to be of order lop4 cm-‘, and therefore negligible compared to the observed 7. 
If the unknown #I) is also ignored, the new constant r) consists of second- and 
third-order parts due to perturbations by 2.4.fiCz, 2z4.6IIu, and 2,4*6Au states. It is 
probable that AW, is the dominant state. The unique perturber approximation gives 

77 
(3) = *(A, - A.,) = -3.8 x 10m3 cm-‘. (23) 

Here A, and A.a are the spin-orbit constants of the a and A states. Since this is an 
order of magnitude smaller than the observed 7, it seems likely that r) is dominated 
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by qc2’. This is consistent with the relative order of magnitudes of q(z) and qc3’, 
Table II. For the unique perturber approximation, we have 

2 
rl (2) = - 

(V.4 - V,) 
(alHS~‘IA)(AIH$~‘la). (24) 

Setting this equal to the observed 7) implies 

( (A211u3,2 IH~~Iu~~I,~,~) ( = 2.8 cm-‘. (25) 

This off-diagonal spin-spin matrix element is somewhat larger than the diagonal 
matrix element 

( a4nu3,, IH6t,‘ja4&,2) = -2h’” = - 1.56 cm-‘, (26) 

but may not be unreasonable. The values for the matrix elements in Eqs. (25) 
and (26) have been estimated ab initio by Lefebvre-Brion and Roche (17) as 
1.11 cm-l and - 1.16 cm-‘, respectively. The calculation was performed at the 
single configuration SCF level with neglect of two-center spin-spin integrals. 

6. SUMMARY 

The above discussion of the properties of the u411, state of 0: is largely specula- 
tive, and serves mainly to indicate the lines along which progress may be made. 
Clearly, ab initio computations of the off-diagonal matrix elements of the spin- 
orbit and spin-spin operators with neighboring electronic states would be valuable. 
Also, an extension of the fundamental molecular Hamiltonian to higher-order 
terms such as 7(l) is desirable. 

The inclusion of the r) term has led to an improved fit of the data, the standard 
deviation being comparable with the experimental error. This in turn has resulted 
in improved precision of the other parameters. The values of the parameters appear 
consistent with the present, rather limited, knowledge of the various other states 
and their interactions with the u411U state. 

In fitting the data for a state such as the u411, state of O$, with a rather complex 
set of possible perturbing states, it is obviously impractical to employ the full 
Hamiltonian matrix between these states, particularly considering the shortage of 
data for the other states. The present results demonstrate how the effective Hamil- 
tonian method satisfactorily overcomes this difficulty. The practical fitting of the 
spectrum is achieved in terms of a set of effective parameters, without assump- 
tions regarding the perturbing states. These parameters can then be interpreted 
according to existing theories of the electronic structure of the molecule. 
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