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The product polarization for the beam-gas chemiluminescent reaction ,Ca( 1 So) + F2 ~ CaF(B 2 E+) + F is found to be 
vary by more than a factor of two over the B-X band system. This reveals a strong dependence of CaF(B) state alignment 
on vibrational level. 

1. Introduction 

To follow the consequences o f  the conservation of 
energy in reactive scattering, experiments need only 
determine scalar quantities: rate constants, cross sec- 
tions as a function of  velocity, product state distribu- 
tions, etc. [ 1 ]. To follow the consequences of  the 
conservation of  momentum demands, in addition, 
analysis of  vector quantities having both magnitude 
and direction [2,3]. To date such studies have em- 
phasized the determination of  product angular dis- 
tributions, i.e. the relation of  product orbital angular 
momentum to reagent relative velocity [4]. In this 
paper we examine a less widely studied vector quan- 
tity: the partitioning of  total angular momentum into 
internal angular momentum of  products. 

Our experiments use the technique of  chemi- 
luminescence polarization measurements to assess 
product rotational alignment about Jc, the initial rela- 
tive velocity vector [5 -8 ] .  I f ) '  is the direction of 
the product internal angular momentum, the rota- 
tional alignment in the center-of-mass frame is de- 
fined as 

(P2(d ~ • k)) = ~(3 (cos2x) - 1 ), (1) 

with ( ) denoting the ensemble average and X the 
angle between J '  and Jc. A previous publication [6] 
develops the procedure to extract this quantity from 
beam-gas chemiluminescence polarization measure- 
ments. The polarization of  discrete features of  the 

dispersed chemiluminescence can yield the rotational 
alignment o f  individual product vibrational states. In 
the absence of  kinematic constraints imposed by the 
relative masses of  the reagents, this detailed informa- 
tion severely tests models of  the reaction dynamics 
[2,6,9]. 

Here we present a study of  the chemiluminescent 
reaction [10,11] 

Ca(1S0) + F 2 ~ CaF(B 2E +) + F. (2) 

This system was chosen for three reasons. First, the 
CaF B 2 E + - X  2E+ emission stems from a parallel- 
type transition, allowing product alignment to be de- 
termined in the absence of  rotational resolution [6]. 
Second, the reaction is highly exoergic, permitting 
product alignment to be determined over an energy 
range of-~160 kJ mole -1  , corresponding to ~27 vi- 
brational levels [11]. Third, the mass of  the departing 
F atom allows it to carry off  considerable orbital 
angular momentum; hence product rotational align- 
ment is in no way constrained by kinematics. 

2. Experimental 

A schematic of  the beam-gas apparatus employ- 
ed is given in fig. 1. The calcium beam source re- 
sembles that described previously [5,12]. A resis- 
tively heated graphite tube maintains a graphite 
oven at 1200 K in a differentially pumped chamber. 
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Fig. 1. Arrangement for polarization measurements of resolved beam-gas chemiluminescence. 

Under normal conditions there are no metastables 
in the beam. However, application of a small voltage 
between the (1 mm) oven orifice and the surround- 
ing heater tube produces a metastable discharge and 
the metastable species are readily detected by moni- 
toring atomic emission. Fluorine gas (Matheson) 
is passed through a NaF trap to remove any HF 
present and enters the reaction chamber through a 
monel needle valve (Granville-Phillips model 203- 
015). The F 2 pressure is held at ~,1 X 10 -4  Torr. The 
gas temperatures may be either ambient (295 K) or 
~77 K, maintained by a liquid-nitrogen-filled copper 
shroud which almost completely surrounds (~11 sr) 
the reaction zone. 

A single 8 cm focal length lens images the chemi- 
luminescence onto the slits of a 43- m monochromator 
(Spex 1702). The dispersed emission is detected by a 
cooled photomultiplier tube. Both chemilumines- 
cence spectra and polarization ratios are recorded 
using pulse counting techniques. Spectra are obtained 
by feeding the amplified and discriminated photo- 
multiplier output to a ratemeter, which in turn drives 
a stripchart recorder. 

Polarization ratios are determined with the aid 
of a photoelastic modulator (Hinds International, 
PEM-3) and a sheet polarizer (Polaroid HN38) [13]. 

The PEM houses a vibrating calcium fluoride crystal. 
This device is placed at the entrance slit of the mono- 
chromator in front of the sheet polarizer, which is 
aligned to transmit light polarized parallel to the 
calcium beam axis (see fig. 1). At minimum compres- 
sion the crystal transmits light without retardation 
and the system passes incident light polarized parallel 
to the beam axis. At maximum compression the crys- 
tal retards light by k/2 and the system now passes in- 
cident light polarized perpendicular to the beam axis. 
By gating two counters to sample at the minimum 
and maximum compression points, we simultaneous- 
ly measure the intensities Of the parallel (Ill) and per- 
pendicular (I±) polarization components of the 
chemiluminescence. The degree of polarization is: 

P = (III - I±)1(III + I±). (3) 

We have calibrated this polarimeter with fully polariz- 
ed light using a sheet polarizer and with unpolarized 
light using the 657.3 nm metastable emission, 
Ca 1S 0 +- 3P 1 . 

3. Results 

Fig. 2a presents the CaF B 2 2+_X 2 2+ chemi- 
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Fig. 2. Plot of (a) the Ca + F 2 chemiluminescence spectrum, 
(b) the CaF(B 2 Z+) product polarization and (c) the 
CaF(B 2 Z+) product alignment in the center of mass as a 
function of wavelength. The band origin positions of each Ao 
sequence are indicated, but do not imply an assignment of 
the observed features in (a). Nearly identical rotational con- 
stants for the X and B states cause bandheads to appear up 
to 1.5 nm to the red of the band origins [14]. 

luminescence spectrum obtained for room-tempera- 
ture F 2 and with an oven temperature of  1200 K ~:. 
The spectrum was recorded at a resolution of  0.1 nm, 
providing peak count rates o f ~ 1 0 3  s - 1 .  The Av = 0 

and +1 sequences are shown. Bandheads are formed 
in the R 1 and R 2 branches while the P1 and P2 
branches contribute to the underlying background. 
Though complete assignment awaits a full analysis, 
band origins are shown to suggest the identification 
of  spectral features. The F r a n c k - C o n d o n  factors for 
this system allow us to see emission in the Av = +1 
sequences only for high vibrational levels [ 11,14]. 
Cooling the F 2 gas to 77 K served to slightly decrease 
the relative intensity of  the long-wavelength tail at 
~550  nm. 

Fig. 2b shows the degree of  polarization of  the 
chemiluminescence as a function of  wavelength. Each 
point was obtained with a bandpass of  0.5 nm. Error 
bars reflect the total  number of  counts accumulated 
for each measurement. Polarization values display a 
marked variation with wavelength. At lower vibra- 
tional levels, CaF(B) product  becomes slightly more 
depolarized with increasing vibrational energy. This 
trend reverses at higher vibrational levels and polariza- 
tion begins to rapidly increase with increasing vibra- 
tional energy. The pat tern is duplicated in both vibra- 
tional sequences. 

4. Discussion 

Center-of-mass product  alignment (P2 ( f  - k)  ) may 
be extracted from a polarization measurement.  For  a 
parallel-type transition we obtain from ref. [6] 

( P 2 ( f "  k)) = 4P 1 
e -  3 L>' (4) 

where the term (P2(/~- Z ) ) - I  properly accounts for 
the beam-gas  averaging, with Z along the beam axis. 
This factor depends only on the masses and tempera- 
tures of the beam and gas species through one.re- 

duced parameter. The values of (P2(k • Z')) have been 

* Introduction of metastables into the beam served to slight- 
ly decrease the chemiluminescence intensity but did not 
noticeably change the observed spectrum. This is contrary 
to the observations reported in ref. [ 11 ]. 
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tabulated elsewhere [6]. Eq. (4) permits us to trans- 
form the chemiluminescence polarizations displayed 
in fig. 2b to center-of-mass alignments, presented in 
fig. 2c. Clearly the CaF(B) alignment depends strong- 
ly on its vibrational state. Indeed the value of  
( P 2 0 '  Ik))changes by more than a factor o f  two over 
the wavelength range o f  the B - X  Ao = 0, -+ 1 band se- 
quences. 

Although the Ca + F 2 chemiluminescent reaction 
is not  kinematically constrained, we have observed 
that the CaF(B 2~+)  product is significantly aligned. 
Indeed, our alignment when averaged over all vibra- 
tional levels, (P2(J •/~))av = - 0 . 1 4  + 0.01, might be 
compared to the value of  - 0 . 1 2  for K + Br 2 from 
electric deflection measurements [15] and - 0 . 1 2  for 
Xe (m) + Br 2 from crossed beam chemiluminescence 
studies [8]. Note that  all three of  these reactions are 
thought to proceed by an electron jump mechanism 
[2]. However, the present study unmasks for the first 
time the dependence of  the alignment on product  vi- 
bration. 

It is common to imagine that the total  energy re- 

leased, Etot, in a bimolecular exchange reaction, 
A + BC ~ AB + C, can be divided into repulsive and 
attractive components,  denoted by ~ and Q~, respec- 
tively [16]. Let -~ be the energy released along the 
A - B  product coordinate and let Q~ be the energy 
along the B - C  reagent coordinate. In this conceptual 

framework _~ ,  which equals Eto t - Q~, appears 
largely as product  vibration. Because M is directed 
along the product coordinate,  it cannot exert a 
torque on AB. Thus the product  alignment depends 
only on the magnitude ofC~. In our reaction a large 
range of  repulsive energy release is anticipated by 
comparison with reactive and photodissociative 
studies of  F 2 [2]. This implies some corresponding 
spread in product  vibration. Consequently the 
product alignment (P2(J'  • k)) must depend on 
product  vibrational level o, consistent with data pre- 
sented here. Thus, these measurements reflect the re- 
pulsive energy release as a function of  product  vibra- 
tional level. Preliminary studies indicate that  simple 
impulsive models [ 17] are inadequate to explain 
our observations for Ca + F 2. 
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