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Absolute multiplet strengths have been calculated for electric dipole transitions involving the ground 
state and/or several lower-lying excited-state configurations of Mg I, Al II, Si III, P IV and Ca IX. Configura­
tion mixing is taken into account by using linear combinations of Hartree-Fock-Slater (HFS) deter­
minantal wavefunctions. Dipole length and dipole velocity expressions for the transition probability are 
evaluated, and in most cases these alternative formulations agree to within 25% of each other. Three 
modifications of the "universal" exchange potential used in the HFS self-consistent field method are in­
vestigated, and the differences in the calculated transition probabilities are found to be quite small, with 
perhaps a slight preference for the variational adjustment proposed by Lindgren. Calculated absolute 
multiplet strengths are compared with the available experimental measurements, and with other cal­
culations. 

INTRODUCTION 

In recent years much work has been devoted to the 
calculation of atomic transition probabilities. Interest 
has been stimulated not only by the practical need to 
estimate oscillator strengths in such fields as astro­
physics, plasma physics, and space research, but also 
by the fact that transition probabilities provide a quite 
sensitive measure of the reliability of approximate so­
lutions to the many-electron problem of atomic struc­
ture. Most calculationsl in the past are based on the 
use of the central-field approximation in which it is 
assumed that each electron moves independently in the 
field of the nucleus and in a central field made up of 
the spherically averaged potential fields of each of the 
other electrons. The solutions to the Schrodinger equa­
tion are then separable and are given by a set of one­
electron wavefunctions u;(nlms) , customarily called 
spin orbitals. The central-field Hamiltonian gives rise 
to a series of configurational energies Ek , each associated 
with a corresponding set 1/;k of spin orbitals. The most 
elaborate and well-known procedure of this type is the 
Hartree-Fock self-consistent field method2 in which 1/;k 
is built up from determinantal wavefunctions of the 
spin orbitals so that the antisymmetry requirement is 
automatically satisfied. However, transition prob­
abilities calculated by even the most accurate inde­
pendent particle models appear to be unreliable and 
inconsistant in many instances,1,3 especially for tran­
sitions originating from or terminating on energy levels 
which are strongly perturbed. 
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1 B. M. Glennon and W. L. Wiese, "Bibliography on Atomic 

Transition Probabilities," Nat!. Bur Std. (U.S.), Misc. Pub!. 
278, 1 (1966); W. L. Wiese, M. W. Smith and B. M. Glennon, 
"Atomic Transition Probabilities," NSRDS-NBS 4 (U.S. Govern­
ment Printing Olflce, Washington, D.C., 1966), Vo!' 1. 

2 D. R. Hartree, The Calculation of Atomic Structures (John 
Wiley & Sons, Inc., New York, 1957). 

3 R. H. Garstang. Intern. Astron. Union 26,57 (1966). 

In this paper we report the calculation of atomic 
transition probabilities in which we take into account 
through the method of configuration interaction, the 
dynamical correlation in the motion of the electrons 
arising from their mutual Coulomb repulsion. In an 
earlier paper,4 hereafter referred to as I, we investigated 
the effects of configuration interaction on the spacings 
of the energy levels, and the form of the wavefunctions 
for the ID and 3D multiplets of the magnesium iso­
electronic sequence. In I we used a variant to the 
Hartree-Fock procedure to generate a suitable basis 
set for the expansion of \{I-, namely, the Hartree-Fock­
Slater (HFS) procedure5,6 in which the central-field 
potentials for different orbitals are replaced by a uni­
versal central-field potential found by treating the 
charge density of the atom as a free-electron gas. This 
paper is an extension of I to the lPO, 3PO, IS, and 3S 
multiplets for which we have also calculated over sixty 
absolute multiplet strengths for the IS-IPO, 3S_3PO, 
ID_IpO, and 3D-3po transitions occurring in Mg I, AI II, 
Si III, P IV, and Ca IX. We will show in several instances 
that the inclusion of correlation effects strikingly alters 
the predicted atomic transition probabilities. 

Following a brief review of theory and method, we 
tabulate the calculated absolute multiplet strengths 
and compare them to measured oscillator strengths 

• R. N. Zare, J. Chern. Phys. 45, 1966 (1966). Errata: In the 
second form of Eq. (17) replace _V2 by -d2/dr2+l(l+1)/r2 ; in 
Eq. (18) replace 

by 
(~ ; ~) 

-(~ ~ ~yj 
in Table I, entry B3, replace A (nele, ndld) by A (nJb, ndlJ) and 
in entries B4 and B5 replace E(nJa, nJb; nele, ndld) by E(nJa, 
nJb; nd1d, nele). Table I entries B2 and B3 are written for non­
equivalent electrons; for equivalent electrons an additional factor 
of V'1 must multiply I and A. A am indebted to Mr. Donald R. 
Beck, Department of Physics, LeHigh University, Bethlehem, 
Pa., for pointing out these corrections to me. 

• J. C. Slater, Phys. Rev. 81, 385 (1951). 
6 F. Herman and S. Skillman, Atomic Structure Calculations 

(Prentice-Hall, Inc., Englewood Cliffs, ~.J., 1(63). 

3561 

Downloaded 13 May 2011 to 171.66.80.173. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



3562 RICHARD K. ZARE 

that exist and to other calculations. Recently, Weiss7 

has completed a computation of some of the same 
transition probabilities, using a seemingly quite differ­
ent procedure for including the effects of correlation. 
The close agreement of our results in many cases with 
his more extensive and more accurate calculations is 
quite heartening and encourages us to believe that the 
means are at hand for determining oscillator strengths 
to an accuracy of perhaps 20 or 30% for most strong 
transitions connecting low-lying levels of light atoms. 

METHOD AND RESULTS 

Russell-Saunders Multiplet Strengths 

The basic theory of electric dipole radiation in atomic 
systems is given in Condon and Shortley,8 and we 
follow their terminology closely. Using the assumption 
of Russell-Saunders coupling in a central-field potential, 
the energy levels of an atom are characterized by the 
set of quantum numbers aSLM 8M L (or alternatively 
by aSLIM, which is a linear combination of aSLM 8M L 

with various M 8M L)' Here a denotes the electronic 
configuration, S the vectorial resultant of all the elec­
tron spins, L the vectorial resultant of all the electron 
orbital angular momenta, and M s, ML are the pro­
jections of S, L, respectively, on the axis of quanti­
zation. For an electric dipole transition connecting the 
multiplets aSL and a'SL', Condon and Shortley intro­
duced the quantity S(aSL; a'SL') , called the absolute 
multiplet strength. It is defined in terms of the electric 
dipole moment operator P by 

S(aSL; a'SL') 

= L: L: I (aSLMsMLIPla'SL'Ms'ML')12, 
Ms,ML Ms',ML' 

(1) 

where from Eq. (1) the absolute multiplet strength is 
seen to be symmetrical in the indices for the upper and 
lower energy levels and to be independent of the wave­
length of the emitted or absorbed radiation. The tran­
sition/value and Einstein A coefficient is related to S by 

/(aSL-->a'SL') = (304/ gA) S(aSL; a'SL') , (2) 

and 

A (aSL-->a'SL') = (2.02X 1018/ g'A3) S(aSL; a'SL') , 

(3) 

where in Eqs. (2) and (3) we measure wavelengths A 
in Angstrom units (X), and the absolute multiplet 
strength S in atomic units (e2llo2); g is the statistical 
degeneracy of the SL multiplet: 

g= (2S+ 1) (2L+ 1). (4) 

7 A. W. Weiss,]. Chern. Phys. 47, 3573 (1967), following article. 
8 E. U. Condon and G. H. Shortley, The Theory of Atomic 

SPectra (Cambrioge University Press, New York, 1935). 

The dipole moment operator is a one-electron tensor 
operator of the first rank which does not act on the 
spin coordinates. The following selection rules result: 
ilS=O, ilL =0, ±1(~), and electric dipole tran­
sitions are allowed only between those configurations 
of opposite parity which differ from each other by one 
electron. From matrix mechanics9 we can readily obtain 
several different expressions for P, of which the dipole 
length and dipole velocity forms are the most well 
known: 

and 

P(L) = L: eri, 

P(V)=2(E[-EF)-1 L: eVi. 
i 

(5) 

(6) 

The sum in Eqs. (5) and (6) is over all the electrons 
of the atomic system. In Eq. (5) ri is the displacement 
vector of the ith electron measured from the center of 
the nucleus; in Eq. (6) Vi is the gradient operator 
of the ith electron, and Er and EF are the initial and 
final energies, measured in Rydbergs, for the transition. 

If exact electronic wavefunctions 1/;,,8L and 1/;"'8L' were 
available for the multiplets aSL and a'SL', the absolute 
multiplet strength calculated by Eq. (1), using either 
expression for the dipole moment operator, would agree 
identically. For approximate wavefunctions unequal 
values of S result in general because the dipole length 
and dipole velocity operators P(L) and p(V) emphasize 
different regions of the electron coordinate space. From 
a theoretical viewpoint this presents us with some 
embarrassment, for if the calculated values of 
(P(L) )a8L;a'8L' and (P(V) )"SL;"'8L' disagree by the 
smallest amount, it is then possible to construct an 
expression for the dipole operator which still gives the 
correct result when exact wavefunctions are used, but 
which gives any numerical value of the absolute multi­
plet strength we desire, e.g., 

P=nP(L)+mP(V), (7) 

where I n+m 1=1. Thu~ if the calculated dipole length 
and dipole velocity expressions differ, we have no 
theoretical grounds for believing that the "true" abso­
lute multiplet strength lies in between S(L) and s(V) or 
even close by. Nevertheless, if our electronic wave­
functions have been constructed in some nonpatho­
logical manner, the close agreement between the alter­
native dipole length and dipole velocity formulations 
provides us with a convenient means (although im­
perfect) for judging the accuracy and reliability of the 
approximate wavefunctions. 

Explicit expressions for the absolute multiplet 
strength are derived in Condon and Shortley,8 and 
tables of relative multiplet strengths compiled by Gold­
berg/o and Menzel and Goldbergll may also be found 

9 H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One­
and Two-Electron Atoms (Academic Press Inc., New York, 1957); 
S. Chandrasekhar, Astrophys. J. 102, 223 (1945). 

10 L. Goldberg, Astrophys. ]. 82, 1 (1935). 
II D. H. Menzel and L. Goldberg, Astrophys. J. 84, 1 (1936). 
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in a book by AUen.I2 More recently Rohrlichl3 has 
extended these tables and reformulated the calculation 
of absolute multiplet strengths by using the Racah 
algebra for angular momentum coupling. In this more 
compact notation the absolute multiplet strength for a 
transition between two configurations having the two 
electrons nln'l' and nln"l" outside a core of clo~ed 
shells reduces to the simple form 

S(aSL; a'SL') 

= I A (nln'I'SL; nln"l" SL') R(n'l'; n"l") 12. (8) 

Here the angular factor is given by 

A (nlnll'L; nlnll"L' ) = (-1)/+1> 

II' L Ill, X[l>(2S+1) (2L+1) (2L'+l)J1/2 (9) 
L' I" 

where I> is the greater of (l', I") and the expression 
enclosed in brackets is a 6-j symboU4 Equation (9) 
must be modified for transitions of the type 12-tll' by 
replacing I' by I, I" by I' and multiplying the resultant 
expression by V1 to take into account the normalization 
of the wavefunction for equivalent electrons. Thp radial 
factor R(n'l' j n"l") in Eq. (8) is the radial matrix 
element of the dipole operator, and its form depends 
on the representation chosen for P: 

R(L) (n'l'; n"l") =jOO Pn'I,(r)rPn"I,,(r)dr (10) 
o 

is the dipole length expression; and 

R(V) (nil" n"l") = 2 
, EasL - Ea' SL' 

x roo Pn'I'(r)[~+~Jp""I"(r)dr (11) Jo dr r 

is the corresponding dipole velocity expression where 

a=l"+ 1, 
and 

a= -I", 

if I' = I" -1, 

if I' =1" + 1. 

(12a) 

(12b) 

In Eqs. (10) and (11) the Pn1(r) are the radial parts 
of the nl spin orbitals and have the normalization and 
orthogonality properties 

fro Pn1(r)Pn'I,(r)dr=Onl.n'I', (13) 
o 

So far we have restricted our discussion to the as­
sumption of a central-field potential. However, once 
independent-particle wavefunctions have been deter­
mined for some central-field model of the atom, we can 

12 C. W. Alien, Astrophysical Quantities (Athlone Press, London, 
1955) . 

13 F. Rohrlich, Astrophys. J. 129,441,449 (1959). 
14 M. Rotenberg, R. Bivins, N. Metropolis, and J. K. Wooten, 

Jr., The 3-j and 6} Symbols (Technology Press, Cambridge, 
Mass., 1959). 

improve upon our calculation of atomic properties by 
the so-called method of configuration interaction.15 In 
this method we treat the mutual Coulomb repulsion 
among the electrons as a perturbation, calculate the 
nondiagonal matrix elements connecting configurations 
of the same parity, and diagonalize the atomic Hamil­
tonian JC within more than one configuration. Inclusion 
of these noncentral potential terms in JC results in 
displacing the energies of multiplets from the positions 
in which they would be found in the absence of such 
interaction. It also causes the wavefunction of each 
multiplet to become a linear combination of wave· 
functions associated with the interacting configurations: 

'¥aSL= L CafjY;fjSL. (14) 
p 

Equation (14) can be viewed equally as well as arising 
from the expansion of the total wavefunction 'II for 
the system in the configuration wavefunctions Y; as a 
basis set. The coefficients C are found by solving the set 
of simultaneous equations 

L Ca l1(JCfJ'p- Eon) =0 
11 

(15) 

which resultI6 when the expression for 'II in (14) is 
substituted into the Schrodinger equation JC'¥=E'lt. 
Explicit expressions for the electrostatic matrix ele­
ments of the atomic Hamiltonian operator between 
determinantal wavefunctions have been previously pre· 
sented in I for atoms having two valence electrons 
outside a core of closed shells. 

By substituting configuration interaction wave­
functions given by Eq. (14) into Eq. (1), the absolute 
multiplet strength may be rewritten in the generalized 
forml7 

S(aSLj a ' SL') = IL L( -1) P{3{j'Ca {3Ca 'I1' 
11 fjl 

XA 1w (nln'l'SL; nln"l" SL') R fJl1 , (n'l'; n"l") 12. (16) 

Each term in the summation describes a transition 
between a pair of configurations in which an electron 
"jumps" from the quantum state n'l' in the configur­
ation {3SL to the quantum state n"l" in the configur­
ation{3' SL'. The term PrJIi' is the number of permutations 
required to reorder the spin orbitals in the configur-

15 J. C. Slater, "Accurate Methods of Atomic Calculation," 
in Qttantum Theory of Atomic Structure (McGraw-Hill Book Co., 
New York, 1960), Vol. II, Chap. 18. 

16 Equation (15) may also be shown to be equivalent to varia­
tionaIly determining the constants Cap in (14) so that the energy 
of the atomic system is made an extremum. See J. C. Slater, 
Quantum Theory of Atomic Structure (McGraw-Hill Book Co., 
New York, 1960), Vol. I, Appendix 9. 

17 An expression for the calculation of absolute multiplet 
strengths from configuration interaction wavefunctions was first 
given by (a) C. Froese, Astrophys. J. 140, 361 (1964). A mis­
print in Froese's equation was corrected by (b) R. J. S. Crossley 
and A. Dalgarno, Proc. Roy. Soc. (London) 286A, 510 (1965). 
Our Eq. (16) differs from Crossley and Dalgarno's in that it 
contains the phase factor (-1) Pf3'f3 which is required when 
wavefunctions are used which do not belong to configurations 
built up from spin orbitals of the same principal quantum number. 
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ations f3 and f3' so they stand in the same ordering. IS 

Thus, the inclusion of correlation effects in the form 
of the wavefunction introduces interference terms which 
may either reinforce or cancel each other in the calcu­
lation of the absolute multiplet strength. Moreover, 
the noncentral character of the electron repulsion terms 
in the atomic Hamiltonian allows transitions, which 
ostensibly appear to occur only through the simul­
taneous jump of more than one electron, to take place 
between the multiplets aSL and a'SL'. As first pointed 
out by Condon,19 these transitions are made possible 
by the fact that the configuration names are no more 
than an approximation. With the help of Eq. (16) 
absolute multiplet strengths are calculated for the mag­
nesium isoelectronic sequence. Their accuracy will de­
pend on how rapidly the configuration interaction wave­
functions we use converge to the exact wavefunctions 
for the initial and final transition states. 

Hartree-Fock-Slater Configuration Interaction 
Wavefunctions 

In principle we can determine 'l', and hence S, as 
accurately as we wish, provided the basis set Y;fJ is a 
complete one. However, if the method of configuration 
interaction is to be a practicable procedure for including 
correlation effects in the form of the atomic wave­
function, we must be able to approximate 'l' rapidly 
by a truncated series in the functions Y;fJ so that Eq. 
(15) reduces to the solution of a finite secular equation 
of modest size: 

I X fJ'fJ- Eo{J'{3i=O. (17) 

Thus, it is more important to choose a set of inde­
pendent-particle wavefunctions Y;fJ for which the ex­
pansion of 'l' in that set is rapidly convergent than a 
set for which the first term in the expansion gives a 
better approximation to the total energy. 

Consequently as in I, we use the Herman and Skill­
man version6 of the HFS procedure.6 The total wave­
function is then expanded in determinantal wave­
functions built up from the HFS spin-orbitals rf>i which 
are the "occupied" and "unoccupied" bound state 
solutions to the one-electron wave equation 

[V'?+ VCr) ]rf>i=Eirf>i. (18) 
Here 

V (r) = Vo(r) + Vexch (r) (19) 

for r<ro, and 

VCr) = -2(Z-N+1)/r (20) 

for r~ro. In Eq. (18) VCr) is a "universal" central-field 
potential in which all the electrons move, and Vo(r) 

18 Reference 8, pp. 168-169. See Table I of I for explicit values 
of (-1)vfJfJ' for atoms having two electrons outside a core of 
dosed shells. 

19 E. U. Condon, Phys. Rev. 36, 1121 (1930). 

and Vexch(r) are given in terms of the radial wave­
functions Pnl(r) of the HFS spin orbitals by 

Vo(r) = -2Z +~ 1T L[P,./(t)]2dt 
r r 0 nl 

+2 f" L [Pnl (t)]2 dt, (21) 
o nl t 

and 

(22) 

A Coulomb tail is joined to the potential at the critical 
distance ro for which Eq. (19) equals Eq. (20), so that 
VCr) is forced to have the correct asymptotic behavior 
at large r. 

In I we limited the extent of the basis set by and 
large to those configurations nln'l' whose principal 
quantum numbers are n = 3 and n' = 3 or 4. The rationale 
for this choice was the hope that such orbitals would 
have a compact spatial extent over the region in which 
the electrons interact, and thus accelerate convergence. 
We follow the same procedure here by restricting the 
basis set to include (a) the ten configurations 3s3d, 
3s4d, 3s5d, 3s6d, 3p2, 3p4P, 3d2

, 3d4d, 3P4J, and 3d4s 
which are solutions to the V383d (r) potential for the 
ID and 3D multiplets; (b) the nine configurations 3s3p, 
3s4p, 3sSp, 3s6p, 3p3d, 3p4s, 3p4d, 3d4p, and 3d4J 
which satisfy the V383p(r) potential for the Ipo and 3po 
multiplets; (c) and the eight configurations 3s2, 3s4s, 
3s5s, 3s6s, 3p2, 3p4p, 3d2, and 3d4d which satisfy the 
V382(r) potential for the IS and 3S multiplets. 

We have calculated in I the energy spacings and 
wavefunctions of the ID and 3D multiplets of the mag­
nesium isoelectronic sequence, using the configuration 
basis set constructed from spin orbitals which are self­
consistent solutions to the central-field potential defined 
by Eqs. (19) and (20). Since then, two basic modifi­
cations to the HFS scheme have been proposed. These 
involve better approximations of the universal exchange 
potential given in Eq. (22). By introducing statistical 
considerations at an earlier stage in the derivation of 
the HFS variational equations, Kohn and Sham,zo and 
Cowan et al.21 have shown that the Slater exchange 
potential is then replaced by an exchange potential of 
two-thirds the magni tude 

(23) 

Numerical comparisons21 •22 of charge density integrals 
and total energies calculated with this modification and 
with the original HFS procedure appear to indicate 
that the use of Eq. (23) gives improved results. 

20 W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965). 
21 R. D. Cowan, A. C. Larson, D. Liberman, J. B. Mann, and 

]. Waber, Phys. Rev. 144, 5 (1966). 
22:8. Y. Tong and L. J. Sham, Phys. Rev. 144, 1 (1966). 
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Quite recently Lindgren23 has investigated the use 
of a universal exchange potential of the general form 

V"exch(r) = -C(81/4rj1/3r(n-3)f3{ L:[pn/(r)]2lm/3. (24) 
nl 

The adjustable parameters C, n, and m, which equal 
unity for the Slater exchange potential, are varied to 
make the energy an extremum. Lindgren has carried 
out this variational procedure for the ground states of 
several atoms and reports that the parameter values 
are not particularly sensitive, since the energy mini­
mum is quite fiat. Furthermore, he found that the 
values of the adjustable parameters changed little from 
atom to atom. Accordingly, we have adopted the 
parameter set24 

C=O.8 

n=1.15 

m=l 

for all the atoms of the magnesium isoelectronic se­
quence. 

We might wonder which one of the modifications to 
the HFS procedure leads to a more rapidly convergent 
basis set for the method of configuration interaction. 
To help settle this question, transition probabilities 
have been calculated using the three different universal 
exchange potentials given in Eqs. (22)-(24), and the 
dipole length and dipole velocity values of the absolute 
multiplet strength are compared in Table I for some of 
the better known transitions occurring in Mg I and 
Al II. The remarkable thing about Table I is that the 
absolute multiplet strengths found by these methods 
agree among each other fairly well, so that it is quite 
difficult to choose between these alternative HFS pro­
cedures. However, on closer examination of these and 
other transitions, it appears that the variationally ad­
justed potential proposed by Lindgren gives results 
somewhat more consistent. Consequently we have used 
the universal exchange potential defined in Eqs. (24) 
and (25) in all subsequent calculations reported here. 

In Table II we present calculated IS, 3S, !PO, 3PO, ID, 
and 3D multiplet energies and compare them to the 
available spectroscopic data:!.> for the first four members 
of the magnesium isoelectronic sequence and for Ca IX. 

Rather than calculate the total energy of the multiplet 
states, we have equated in Table II the calculated and 
observed lowest-lying 3D, 3P, and 3S multiplets as 

231. Lindgren, Arkiv Fysik 31,59 (1965). 
.4 This parameter set was suggested by 1. Lindgren and A. 

Rosen (private communication) . 
25 Our sources of spectroscopic data are the following: (a) for the 

Mg I spectrum G. Risberg, Arkiv Fysik 28, 381 (1964); (b) for 
the Al II, P IV and Ca rx spectra, C. E. Moore, Nat!. Bur. Std. 
(U.S.) Circ.467, 1 (1949), and the references contained therein; 
and (c) for the Si III spectrum, Y. G. Toresson, Arkiv Fysik 
18, 389 (1960). For the Si III spectrum see also C. E. Moore, 
"Selected Tables of Atomic Spectra" NSRDS-NBS 3 Sec. 1 
(U.S. Government Printing Office, Washington, 1965). 

TABLE I. Comparison of the use of different universal exchange 
potentials in the configuration interaction calculation of absolute 
mUltiplet strengths. The first entry in each column is the dipole 
length value; the second entry is the di)ole velocity value. The 
values of S given in atomic units (e2ao' have been rounded to 
three significan t figures. 

Transition V •• oh(r) V' •• oh(r) V" •• oh(r) 

Mgr 3s3p lpo-3s21S 19.1 22.1 16.1 
10.7 12.0 12.2 

Mgr 3s3p 1 PO-3s4s 1 S 38.1 24.1 33.3 
9.18 16.1 5.69 

Mgr 3s3p 3po-3s4s 3S 21.9 18.5 18.7 
19.4 18.3 19.0 

AlII 3s3p lpo_3s21 S 10.6 11.4 10.1 
8.79 8.63 9.2 

AlII 3s3p lpo-3s4s 1 S 5.98 3.72 5.00 
3.75 3.95 2.81 

AlII 3s3p 3po-3s4s'S 7.25 6.08 7.02 
6.30 6.31 5.90 

reference energies.26 Inspection of Table II reveals that 
the agreement between the calculated and observed 
mUltiplet energies is better for multiplets arising from 
low-lying configurations than those arising from highly 
excited configurations. This is not surprising, since the 
choice of basis set configurations emphasized those 
configurations which might interact most strongly with 
the lower-lying configurations. However, this fact cau­
tions us to regard with some reservation calculated 
transition probabilities involving higher-lying multi­
plets, especially those multiplets for which the calcu­
lated energies are in poor agreement with observation. 

In Table III we present configuration interaction 
wavefunctions for several of the lower-lying multiplets 
of the magnesium isoelectronic sequence. The expansion 
coefficients listed in Table III have the property that 
the sum of their squares equals unity. Thus, we may 
regard the actual multiplet states as resonating between 
the different electronic configurations given in Table 
III. The probability of finding a certain multiplet 
associated with a particular configuration of electrons 
is given by the square of the corresponding expansion 
coefficient. This heuristic interpretation holds much 
charm for us by providing a simple means of visualizing 
the complex collective motion of the electrons that is 
easily identified with our traditional configurational 
viewpoint. Moreover, the configuration interaction 
wavefunctions can be written explicitly in terms of the 
interelectronic coordinates rij. The form of this relation­
ship!6 is quite illuminating in understanding the manner 
in which spatial correlation is introduced by the method 
of configuration interaction into the properties of the 
wavefunction. 

26 See J. E. Lennard-Jones and J. A. Pople, Phil. Mag. 43, 581 
(1952)' J. E. Lennard-Jones, Proc. Natl. Acad. Sci. (U.S.) 38, 
496 (1952) for a general discussion of spatial correlation in two­
electron atoms. 
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TABLE II. Comparison of calculated and observed IS, 3S, IPO, 3PO, ID, and 3D multiplet energies for the magnesium isoelectronic 
sequence. We list here only those multiplets with energies which ~lie below the ionization continuum. The energies are given in 
Rydberg units. 

Configu-
ration IS •• l• ISobs 3S •• I• 3Sob• 

Configu-
ration 1 rocalo IPOob • apO

ea1o 3 POobo 

MgI P IV 

3s2 -0.54585 -0.56177 3s3p -2.78831 -2.81693 -3.15232 -3.15232 
3s4s -0.14556 -0.16574 -0.18665 -0.18665 3s4p 1.42158 -1.42880 1.42808 -1.43646 
3s5s -0.07266 -0.08304 -0.08283 -0.08927 3s5p -0.87167 -0.85886 -0.82776 -0.85854 
356s -0.04261 -0.04986 -0.04674 -0.05265 3s6p -0.53373 -0.56669 -0.54672 

3p3d -0.90844 1.05694 -1.20287 1. 21362 
AlII 3p45 -0.74937 -0.92252 -0.86551 -0.87638 

3p4d -0.21033 -0.27136 
3s2 -1.37276 -1.38385 3d4f -0.09886 -0.16600 
3$4s -0.49364 -0.51498 -0.55213 -0.55213 CalX 3$5$ -0.26532 -0.27789 -0.28212 -0.28952 
3$6s -0.16619 -0.17391 -0.17346 -0.17904 3s3p -11.85849 -11.88758 -12.51384 -12.51384 
3p2 -0.32040 3s4p -6.26687 -6.27481 

Sim 3s5p -3.70201 -3.77432 
3s6p -2.56390 -2.56926 

3s2 -2.44995 -2.46169 3p3d -7.83181 -8.40713 
3s45 -0.98796 -1.01214 -1.06402 -1.06402 3p4s -5.14482 -5.25131 
3s55 -0.55367 -0.56740 -0.57468 -0.58288 3p4d -3.86692 -3.87596 
3s6s -0.35510 -0.36245 -0.36391 -0.36921 3d4f -3.32166 -3.45317 
3p2 -1.03386 -1.06340 3d4p -2.28653 -2.42537 
3p4p -0.05895 -0.10170 -0.19210 -0.19471 

.-----~.-" .. ~- --

PlV Configu-
ration ID •• l• IDob, 3D •• l• 3Dob• 

3s2 -3.76167 -3.77549 
3s45 -1.62176 -1.64317 -1.70793 -1.70793 

MgI 3s5s -0.92564 -0.89017 -0.94998 -0.95874 
3s6s -0.60255 -0.61384 -0.61638 3s3d -0.14007 -0.13913 -0.12497 -0.12497 
3p2 -1.97839 -2.00227 3s4d -0.07968 -0.07779 -0.07125 -0.06815 
3p4p -0.43761 -0.59709 3s5d -0.05118 -0.04887 -0.04738 -0.04285 

Carx 3s6d -0.03690 -0.03324 -0.03437 -0.02942 

3s2 -13.80115 -13.84214 AlII 
3s4s -6.76982 -6.91649 -6.91649 3s3d -0.36923 -0.38066 -0.51316 -0.51316 3s5s -4.00906 -4.10300 3s4d -0.23586 -0.24667 -0.28414 -0.27684 
3s6s -2.70755 -2.73515 3s5d -0.16382 -0.16354 -0.18321 -0.17351 3p2 -10.21626 3s6d -0.11621 -0.11458 -0.12915 -0.11891 
3p4p -4.39291 -4.65015 3p2 -0.62031 -0.60491 
3d2 -5.60838 
3d4d -1.27104 -1.70370 Sim 

3s3d -0.92666 -0.95113 -1.15908 -1.15908 
Configu- 3s4d -0.59752 -0.59969 -0.63424 -0.62459 
ration ipO.alo IPOoh, 3 PO •• I. a POob, 3s5d -0.39602 -0.38705 -0.40398 -0.39234 

3s6d -0.28235 -0.26964 -0.28463 -0.27197 
MgI 3p2 1.37750 -1.34799 

3p4p -0.15227 -0.20234 -0.24088 -0.22960 
3s3p -0.21457 -0.24256 -0.36249 -0.36249 P IV 3s4p -0.10227 -0.11229 -0.12678 -0.12593 
3s5p -0.06067 -0.06351 -0.07014 -0.06758 3s3d -1. 74895 -2.04965 -2.04965 
3s6p -0.04014 -0.04547 -0.04237 3s4d 1.08919 -1.07124 -1.11482 -1.10328 

AlII 3s5d -0.70837 -0.66803 -0.71633 
3s6d -0.46938 -0.48143 

3s3p -0.80499 -0.83846 -1.04198 -1.04198 3p2 -2.37316 -2.33443 
3p4p -0.56940 -0.65157 -0.68048 354p -0.39873 -0.40043 -0.41626 -0.42289 3p4/ -0.25080 -0.20705 3s5p -0.22973 -0.23687 -0.23386 -0.23828 3d2 -0.05850 3s6p -0.14988 -0.15440 -0.15028 -0.15350 CalX 3p3d +0.11181 -0.00667 -0.04795 

3p4s -0.00536 -0.03516 -0.04088 -0.05435 3s3d -9.56112 -10.09076 -10.09079 
3s4d -5.48962 -5.50469 -5.48717 

Sim 3s5d -3.48851 -3.42998 -3.47302 
3s6d -2.36215 -2.37344 

3s3p -1.67661 -1.70639 -1.97886 -1.97886 3p2 -10.84801 -10.78762 
3s4p -0.84417 -0.85342 -0.85569 -0.86424 3p4p -4.55374 -4.73482 
3s5p -0.49822 -0.50673 -0.49719 -0.50254 3p4f -3.39121 -3.56577 
3s6p -0.35164 -0.37762 -0.32007 -0.32537 3d2 -6.09648 
3p3d -0.26584 -0.32579 -0.47842 -0.49116 3d4s -2.96846 -3.05486 
3p4$ -0.28229 -0.31155 -0.38392 -0.39607 3d4d -1.52183 -1.79490 
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TABLE III. Configuration interaction wavefunctions for some low-lying IS, IpO and ID multiplets of the magnesium isoelectronic 
sequence. An asterisk has been placed by those multiplets for which the spectral purity is less than 0.75 and two asterisks for those less 
than 0.50. 

Designation 

Mgr 
AlII 
SiIII 
Prv 
Carx 

Mgr 
AlII 
SiIII 
Prv 
Carx 

0.972 
0.971 
0.975 
0.977 
0.983 

0.217 
0.213 
0.205 
0.195 
0.170 

Designation 

Mgr 
AlII 
Si III 
P IV 
CalX 

MgI 
AlII 
Si III 
P IV 
CalX 

3s3p -0.930 
3s3p -0.969 
3s3p -0.972 
3s3p -0.975 
3s3p -0.982 

3p3d* -0.098 
3p3d* -0.165 
3p3d* -0.180 
3p3d -0.184 
3p3d -0.183 

Designation 

MgI 
AlII 
Sim 
PIV 
Calx 

MgI 
AlII 
Sim 
PIV 
Carx 

3s3d 
3s3d** 
3s3d* 
3s3d* 
3s3d 

0.902 
0.664 
0.804 
0.846 
0.892 

0.306 
-0.662 
-0.561 
-0.513 
-0.440 

0.048 
0.004 
0.027 
0.031 
0.019 

-0.069 
0.003 

-0.296 
-0.065 
-0.023 

0.286 
0.080 
0.035 
0.018 
0.001 

0.049 
0.040 
0.047 

-0.111 
0.063 

0.132 
-0.516 
-0.222 
-0.103 

0.010 

0.268 
-0.112 
-0.082 
-0.057 
-0.013 

IS Wavefunctions 

Configurations 

0.019 
0.008 
0.005 
0.001 
0.007 

-0.063 
0.006 

-0.001 
-0.005 
-0.010 

0.010 
0.012 
0.017 
0.005 
0.003 

-0.051 
0.020 
0.003 

-0.001 
-0.002 

I po Wavefunctions 

0.206 
0.221 
0.214 
0.203 
0.179 

-0.953 
-0.954 
-0.908 
-0.955 
-0.969 

Configurations 

0.113 
0.036 
0.018 
0.008 

-0.000 

0.016 
0.018 
0.063 

-0.301 
0.021 

0.066 -0.142 
0.019 -0.206 
0.009 -0.215 
0.005 -0.212 

-0.000 -0.185 

0.014 0.755 
0.018 0.859 
0.194 0.835 
0.041 0.898 
0.001 0.978 

ID Wavefunctions 

Configurations 

-0.093 
-0.037 
-0.021 
-0.017 
-0.007 

0.320 
0.265 
0.402 

-0.164 
0.020 

-0.095 
0.072 
0.052 
0.041 
0.017 

-0.101 
-0.000 
-0.044 
-0.009 

0.001 

-0.073 
-0.089 
-0.072 
-0.054 
-0.009 

-0.471 
-0.269 
-0.101 
-0.097 

0.003 

-0.002 
-0.012 
-0.020 
-0.025 
-0.027 

-0.121 
0.176 

-0.194 
-0.201 
-0.176 

-0.034 
-0.036 
-0.030 
-0.025 
-0.011 

0.190 
0.132 
0.078 
0.026 

-0.007 

-0.001 
-0.009 
-0.013 
-0.013 
-0.004 

-0.091 
-0.102 
-0.085 
-0.069 
-0.015 

-0.005 
-0.013 
-0.019 
-0.022 
-0.023 

-0.240 
-0.270 

3.218 
-9.136 
-0.066 

0.066 
-0.160 

0.042 
-0.089 

-0.401 0.028 -0.011 -0.027 -0.031 0.010 
0.493 0.007 0.091 0.015 -0.077 0.046 

-0.078 
-0.017 
-0.000 

0.228 
-0.060 
-0.036 
-0.018 
-0.004 

-0.039 
-0.021 

0.007 

0.193 
-0.036 
-0.021 
-0.013 
-0.000 

0.514 -0.023 
0.488 -0.033 
0.426 -0.013 

0.817 -0.242 
0.731 0.012 
0.816 0.026 
0.850 0.026 
0.894 0.002 

0.143 0.014 -0.095 0.038 
0.156 0.008 -0.093 0.025 
0.141 0.000 -0.061 -0.000 

0.095 
0.056 
0.077 
0.084 
0.084 

0.059 -0.052 0.051 
0.061 0.022 -0.012 
0.059 0.012 -0.011 
0.048 0.007 -0.011 
0.015 -0.001 -0.011 
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FIG. 1. Variation of the pair-correlation difference function 
P (fl, f2, f12) for the 1 S ground multiplet of Si III as a function of 
interelectronic distance f12 of the valence electrons for fixed values 
of fl and '2. Note that for fl=f2, the valence electrons lie on the 
surface of a sphere and can only avoid each other through angular 
correlation terms. 

For example, let us consider the expression for the 
spatial part of the IS multiplet wavefunction in which 
we ignore the position of the core electrons. Let the 
valence electrons denoted by 1 and 2 be located at 
rl and r2 with the angle 812 included between them and 
at a distance r12 from each other, given by 

(26) 

The spatial part of the configuration interaction wave­
function ..pCI (IS) can then be written in terms of the 
radial wavefunctions P nl and expansion coefficients 
Cnln'I' by 

..pCI (I S) = (1/471') 1/2 (C3. ,E38 ,+ C384.E3848 + C38ooE3858 

+C3868E3868)PO( COS(12) - (3/471') 1/2 

X (c3p,E3p3p+3p4pE 3p4p)PI (cos012) + (5/471') 1/2 

X (C3d,E3d3d+C3d4dE3d4d)P2(cos812), (27) 

where the angular factors Pz(COs012) are Legendre poly­
nomials in the cosine of the included angle and the 
radial factors E are given by 

Enlnl =P nl( 1) P nl(2) 

for equivalent electrons and 

(28a) 

En 1 .. ' I' = 2-1I2 (PnZ (1)P n'I' (2) + P n'I' (1)Pnl (2)) (28b) 

for nonequivalent electrons. In Eq. (27) we can recog-

nize two rather different types of correlation, first 
pointed out by Lennard-Jones and Pople26 with regard 
to the IS ground state of helium. First an angular corre­
lation is brought about by the terms in Pj(COs012) for 
l> O. Here the electrons avoid each other by "hiding" 
on opposite sides of the nucleus for fixed values of 
'1 and '2. Second a radial correlation within each 
angular term is brought about by the radial factors 
Enln'l' arising from the series configurations nln'l'. Here 
the electrons avoid each other by increasing the prob­
ability of finding one electron close to the nucleus if the 
other one is far away. 

We can put this discussion on a more quantitative 
bal"is by introducing the concept of the pair correlation 
difference junction, given by the square of the configur­
ation interaction wavefunction in (27) minus the square 
of the central-field HFS wavefunction for the same 
multiplet: 

P(rl, r2, r12) =1 ..pm (IS) 12_1 ..pHFS(1S) 12. (29) 

Equation (29) is interpreted as giving the difference in 
probabilities with and without correlation in the dy­
namical motion of the electrons for finding electron 1 
between rl and rl+drl, electron 2 between r2 and r2+dr2 
with the interelectronic separation between rl2 and 
r12+drI2. In Fig. 1 we have plotted P(rl, '2, r12) as a 
function of r12 for several fixed values of rl and r2 for 
the IS ground multiplet27 of Si III. The negative values 
of perl> r2, r12) in Fig. 1 correspond to electron deficient 
regions in ..pm (IS) over the results from the HFS pro­
cedure and vice versa. Figure 1 shows that the method 
of configuration interaction can lead to a smoothly 
varying correlation in the spatial position of the valence 
electrons and that by and large the most important 
form of correlation is angular correlation rather than 
radial "in-out" correlation. 

Table III in conjunction with Table II can also be 
used to reassign certain multiplets to configurations 
which more appropriately classify the behavior28 of the 
multiplet. As we discussed in I, the extent to which we 
are justified in assigning configuration labels to multi­
plets which simultaneously partake of the character of 
several different configurations may become a difficult 
problem, particularly when the same multiplets of two 
strongly interacting configurations would nearly coin­
cide in the absence of configuration interaction. As in I 
it is then convenient to introduce the concept of the 
spectral purity of a mUltiplet term, given by the square 
of the leading coefficient in the expansion of the multi­
plet wavefunction in HFS determinants. If the spectral 

27 Table III indicates that the expansion coefficients enln'I' 

change slowly in general along the isoelectronic sequence, so 
that the results shown in Fig. 1 for the I S ground state of Si III 
are quite similar to what is found for Mg J or Al II for example. 
Note in Fig. 1 for the curve fl ='2 the formation of a so-called 
"Coulomb hole" due to the avoidance of the electrons. 

28 For example, the lowest-lying ID multiplet in the Ca IX 

spectra should be assigned to the configuration 3p' and not to the 
configuration 3s3d, as shown in Ref. 2S(b). In Table II we have 
made the best assignments we' could based on the configuration 
interaction wa vefunctions. For further discussion see r. 
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purity is 0.9 or higher, there is no difficulty in making 
a meaningful configurational assignment. However, if 
the spectral purity of a multiplet drops below 0.9, there 
is substantial "contamination" from other interacting 
configurations; and if the spectral purity drops below 
0.5, then it follows that the use of a single configuration 
label is a fiction, sanctioned by tradition but devoid of 
much significance. For such multiplets we can expect 
large deviations in the calculated oscillator strength 
from the values we would obtain using a central-field 
model,29 Due to the extensive configuration mixing 
present in such multiplets, the calculation of absolute 
multiplet strengths also serves as a severe test of the 
validity of the limited basis set expansion we use. 

CALCULATED TRANSITION PROBABILITIES 

Using configuration interaction wavefunctions of the 
form of Eq. (14), we have calculated30 with the help of 
Eq. (16) some 1395 absolute multiplet strengths for 
all transitions of the type !S-!po, 3S_3PO, !P-!po and 
3D-3po for Mg I, Al II, Si III, P IV and Ca IX which 
can occur between the configurations that constitute 
our basis sets. Most of these transitions involve either 
one or more states which lie above the ionization 
continuum, or belong to highly excited configurations 
for which correlation effects have been inadequately 
taken into account. Or they involve transitions between 
configuration labels which seemingly require the jump 
of more than one electron. Many of these transition 
probabilities are not expected to be of high reliability, 
but some of these transitions are of astrophysical 
in terest.3! ,32 

In Table IV we present dipole length and dipole 
velocity values for some of the electric dipole allowed 
transitions between multiplets belonging to the lower­
lying configurations of the magnesium isoelectronic 
sequence. It is quite difficult to assess the accuracy of 
these calculated absolute multiplet strengths. As a 
check on the consistency of our results, it is useful to 
define a percentage error E between the dipole length 
SeLl and dipole velocity stY) values: 

(30) 

29 Indeed this is confirmed by this work and the work of Weiss 
(Ref. 7). In particular Weiss has given the Hartree-Fock values 
for many of the absolute multiplet strengths. In the case of the 
3s3p I PO-3p2 I D transition in Al II, the Hartree-Fock and con­
figuration interaction values differ by over two orders of mag­
nitude. 

30 A good portion of these programs have been documented 
in R. N. Zare, JILA Rept. No. 80 (Joint Institute for Laboratory 
Astrophysics, Boulder, Colorado, 1966). As an indication of the 
practicability of these calculations, it is worthwhile to mention 
some timing considerations. For example, the time required per 
element to calculate all energy levels, to find all wavefunctions 
and to compute dipole length and dipole velocity values of the 
absolute multiplet strengths for all possible transitions between 
the multiplets is about 10 min on a CDC-3600 computer. 

31 For example, see J. W. Swenson and G. Risberg, "Mg I lines 
in the Solar Spectrum," Arkiv Fysik 31,237 (1965). 

32 Further information on correlated wavefunctions and oscilla­
tor strengths for the magnesium isoelectronic sequence may be 
obtained from the author on request. 

where S> is the greater of (S(Ll, S(V»). In Table IV 
there are only 68 transitions for which a comparison 
can be made between SeLl and sty) since experimental 
energy differences [see Eg. (l1)J are lacking for the 
other transitions. For most of these transitions we find 
the agreement is better than 20%. In particular there 
are 23 transitions for which O%<E<lO%, 17 tran­
sitions for which 10%<E<20%, 9 transitions for which 
20%<E<30%, 10 transitions for which 30%<E<40%, 
and an additional 10 transitions for which E exceeds 
40%. As we have stressed before, this in itself does not 
demonstrate that the transition probabilities appearing 
in Table IV have been calculated to the same degree of 
accuracy. However, the closeness of agreement and the 
fact that intermediate calculations tend to show a 
somewhat smooth approach to these values of seLl and 
stY) encourage us to believe that the dipole length and 
dipole velocity results given in Table IV are converging 
to the actual absolute multiplet strength. 

After such calculations the practical question always 
arises as to which value of SeLl or stY) is to be preferred. 
It has been noted elsewhere33 that the dipole length 
operator weights the portion of the wavefunction at 
relatively large distances from the nucleus. However, 
the dipole velocity operator emphasizes portions of 
the wavefunction closer to the nucleus in the region 
of the wavefunction's largest magnitude, but requires 
the calculation of the gradient of the wavefunction. 
At present we have little reason to believe that we can 
calculate more accurately the gradient of the wave­
function closer in or the wavefunction itself further out. 
Consequently, if we are pressed for a "best" value, we 
would suggest taking the mean 

(31) 

in the hope that seLl and S(Y) are converging equally 
as rapidly to (S)AV' However, when SeLl and S(V) differ 
by more than a factor of two, the assignment of a best 
value for S will be of doubtful significance. 

Ideally, the most convincing check of our calculated 
transition probabilities would be a comparison with 
accurately determined values. Unfortunately there have 
been very few experimentally measured oscillator 
strengths reported for the magnesium isoelectronic se­
quence, and of these there is not wide agreement about 
which oscillator strengths represent first-class data.! 
Nevertheless we have collected in Table V the best 
experimental gf values known to the author for the 
magnesium isoelectronic sequence. These have been 
compared with calculated gfvalues found from Eg. (2), 
using the mean value (S)AV derived from Table IV. 

33 S. Chandrasekhar, Astrophys. J.102, 223 (1945); S. S. Huang, 
ibid. 108, 354 (1948); D. R. Bates, J. Chern. Phys. 19, 1122 
(1951) ; H. Shull, ibid. 20, 18 (1952); M. Wolfsberg ibid. 23, 793 
(1955); G. Berthier, J. Chim. Phys. 51, 137 (1954); S. Ehrenson 
and P. E. Phillipson, J. Chern. Phys. 34, 1224 (1961); S. R. La 
Paglia and O. Sinanoglu ibid. 44, 1888 (1966). I would like to 
thank Professor Paul Phillipson for suggesting to me the com­
putation of the dipole length and dipole velocity forms of the abso­
lute multiplet strength. 
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TABLE IV. Calculated absolute multiRlet strengths for some of the low-lying transitions in Mg I, Al II, Si III, P IV, and Ca IX. The 
first entry is the value of S(aSL; a'SL) calculated using the dipole length expression; the second entry is for the dipole velocity ex-
pression. All values of S, given in atomic units (ao2e2) have been rounded to three significant figures. By writing "Forbidden" under-
neath them, we have marked those transitions which appear to require the simultaneous jump of two electrons and which thus can only 
occur through the noncentral nature of the potential. 

Transition MgI AlII Sim P IV CalX 

3s3p Ipo_3s2 IS 16.1 10.1 6.75 4.84 l.65 
12.2 9.22 6.26 4.55 l.52 

3s3p Ipo-3s4s IS 33.3 5.00 0.591& 0.699 0.116 
5.69 2.81 0.357- 0.569 

3s3p Ipo_3p2 IS 3.77 3.95 2.23 0.764 
3.85 2.29 

3s3p 3po-3s4s 3S 18.7 7.02 3.23 l.83 0.436 
19.0 5.90 3.17 l.91 0.395 

3p3d lpo-3p2 IS 8.53 3.59 l.35 
8.33 4.36 

3s4p JX-3s2 IS l.65 0.0196 0.0377 0.0738 0.105 
l.20 0.00911 0.0324 0.0752 

3s4p Ipo-3s4s IS 68.4 27.6 14.0 9.76 2.67 
54.3 22.5 13.6 10.1 

3s4p 3 po-3s4s 3S 209. 9l.4 53.2 35.4 10.2 
182. 79.0 45.7 30.3 

3s4p lpo-3p2 IS ("forbidden") 0.000185 l.20 0.0617 0.00569 
l. 73 0.131 

3s3p Ipo-3s3d ID 4l. 7 24.6 19.5 13.3 3.51 
16.9 19.3 17.8 

3s3p lpo-3s4d ID 7.02 8.00 l.05 0.0397 0.140 
4.25 6.27 0.894 0.0375 

3s3p IP"-3s5d ID 2.77 3.26 0.0794 0.0000 0.0654 
2.53 2.04 0.0532 

3s3p 3 po-3s3d 3D 72.4 46.2 29.2 19.5 5.99 
63.4 42.4 28.3 19.7 5.12 

3s3p 8po-3s4d 3D 12.8 2.09 0.150 0.0490 0.832 
11.5 1.91 0.0990 0.0588 0.705 

3s3p 3po-3s5d 3D 6.06 2.92b 0.00585 0.759 0.182 
4.47 0.283b 0.00414 0.107 

3s3p Ipo_3p2 ID 0.0779 l. 51 l.91 l.17 
0.0122 l.02 l.48 l.01 

3s4p Ipo_3p2 ID ("forbidden") 8.21 2.51c l.14 0.129 
9.44 2.72c l.13 

3p3d lpo-3s3d ID 5.94 l. 81 1.40 
4.63 

3p3d 3po-3s3d 3D 22.7 13.4 10.3 3.77 
15.2 8.34 7.00 

3p3d lpo-3p2 ID 0.000466 0.257 0.0142 
0.0588 0.138 

- Using V ... h(r) in the HFS procedure, we obtain Instead S(L) =0.142 
and S (V) =0.333. 

bUsing V ... h(r) in the HFS procedure, we obtain instead S(L) =0.551 
and S (V) =0.420. 

C This "Forbidden" transition which we find to have a sizable oscillator 
strength has been observed by V. G. Toresson (Ref. 25c) with a plate 
blackening of (9) on a scale of (0) to (10). 
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The general agreement shown in Table V is quite 
gratifying, although there are differences present. The 
poorest comparison is the gf value for the 3s3p IpL 
3s4d ID transition. For this transition our calculated 
values of gf range from 0.38 to 0.23 for SeLl and S(V), 

compared to the reported value of 0.18. For the same 
transition Trefftz34 found the value gj=0.02 by using 
configuration interaction (but with a smaller basis set) 
and including a core polarization correction. This tran­
sition is thus quite sensitive to the calculational scheme. 
Further investigation shows that there is large cancel­
lation present in the calculation of S, so that our 
accuracy must be considered low. This example illus­
trates a general failing in our computational technique; 
namely, small oscillator strengths tend to be inaccurate 
from the loss of significant figures due to the interaction 
of configurations causing heavy cancellation in the 
computation of the absolute multiplet strength. 

From Table V we see that no experimental oscillator 
strengths have been determined for the higher stages 
of ionization along the magnesium isoelectronic se­
quence. For these transitions we have no means of 
directly verifying the validity of our calculations and 
must rely instead upon the results of other calculations 
as a check on the reasonableness of our methods. We 
are fortunate to have available the calculations of 
A. W. Weiss7 who has computed absolute multiplet 
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FIG. 2. Comparison of absolute multiplet strengths calculated 
by the Z-expansion method and by the dipole length and dipole 
velocity expressions using configuration interaction wavefunc­
tions. 

3. E. Trefftz, Z. Astrophys. 28, 67 (1950). Trefftz's work rep­
resents one of the earliest studies of correlation effects on the 
calculation of oscillator strengths, and she found significant devia­
tions from Hartree--Fock values when configuration interaction 
wavefunctions were used. The calculated values of S by Trefftz 
and this paper are in reasonable agreement by and large, at 
least if one includes only the configurations Trefftz used as her 
basis set. Besides the 3s3p I PO-3s4d I D transition, another ex­
ception is the 3s3p I PO-3sSd I D transition for which Trefftz found 
gf=0.06 as compared to our value of gf=0.18 in Table V. 

TABLE V. Comparison of calculated and observed g~ values. 
The calculated gf values given are a mean of the dipo e length 
and dipole velocity results listed in Table IV and have been 
rounded to the same number of significant figures as the reported 
experimental values. 

Wave- Observed Calculated 
Atom Transition length gfvalues gfvalues 

1.6a 
1.2±0.3b 

Mgr 3s2 IS-3s3p IpO 28521 1. l1±O.OSc 1.55 
1. 8S±0. 007d 

1.81±0.OOSe 
3s3p IPL 3s4s IS 118281 O.Sa 0.5 
3s3p 3 PO-3s4s 3S 51831 1.05- 1.11 
3s3p lpo-3s3d ID 88061 1.1a 1.0 
3s3p 3po-3s3d 3D 3838 1 4.9a 5.4 
3s3 p I po-3s4d I D 55281 0.18a 0.31 
3s3p 3PL 3s4d 3D 30961 1.1a 1.2 
3s3 p I PL 3sSd I D 47021 0.19- 0.18 

• Quoted from C. W. Allen. Astrophysical Quantities (Athlone Press. 
London. 1963) in which proper reference citations are given. 

b Yu. 1. Ostrovskii. N. P. Penkin. and L. N. Shabanova. Dokl. Akad. 
Nauk SSSR 120, 66 (1958) [English transl.: Soviet Phys.-Doklady 3, 
538 (1958)1. 

C W. DemtrOder. Z. Physik 166, 42 (1962) . 
d A. Lurio. Phys. Rev. 136, A376 (1964). 
e W. W. Smith and A. Gallagher. Phys. Rev. 145, 26 (1966). Preference 

should be given to the experimental values reported in this and the pre­
ceding reference for the Mg I 3s3p IP'-3s' IS resonance line. 

strengths for many of the same transitions given in 
Table IV. Weiss has used configuration superposition 
wavefunctions which consist of a set of pseudonatural 
orbitals generated by applying the Schmidt orthogonali­
zation procedure to a linear combination of Slater-type 
orbitals that satisfy the Hartree-Fock equations for 
the atomic state in question. With this procedure he 
has effectively included in his calculations all con­
figurations nlnl' up to n, n' = 6. Comparison of Table 
IV with the calculated absolute multiplet strengths of 
Weiss, which are probably the more accurate values, 
shows good agreement within the uncertainties of Table 
IV. A more detailed investigation shows that the agree­
ment between Weiss' dipole length and dipole velocity 
values is closer in general than the agreement between 
our calculated values of SeLl and S(V), especially for 
transitions of Mg I. A possible explanation of this be­
havior is that the HFS procedure we use does not take 
into account electron exchange terms which differently 
affect the calculation of the 3s3p Ipo and apo multiplets, 
but treats as identical the radial wavefunctions (ex­
cluding configuration interaction) for both multiplets. 
However, the Hartree-Fock solutions for the 3s3p Ipo 
and apo multiplets of Mg I show appreciably different 
radial functions.a5 The result then is an extra burden on 

3. A classic example of this effect is provided by the I po and 
3 po states belonging to the configuration 1S2 2s2p of the Be atom. 
If the self-consistent field problem is solved separately for each 
state, it is found that the peak for the 2p orbital for the I po 
state occurs at twice the distance that it occurs for the 3 po state. 
See D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London) 
AIS4, 588 (1936). 
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our configuration interaction procedure which slows 
the rate of convergence. Evidently for Al II and higher 
stages of ionization these differential exchange effects 
on the multiplet wavefunctions are much less important. 

Until the calculation of Weiss7 and this paper, the 
Z-expansion method has offered the only guide to the 
behavior of transition probabilities along an isoelec­
tronic sequence. In that procedure,3s a perturbation 
solution to the Hartree-Fock radial equations is found 
in inverse powers of the nuclear charge Z. Here all the 
configurations which can be formed having the same 
principal quantum number n are included in the calcu­
lations. These configurations, called a complex by 
Layzer,37 are degenerate in the limit of infinite Z and 
to a large extent are responsible for the angular corre­
lation in the motion of the electrons. The absolute 
multiplet strength in the Z-expansion method can also 
be shown to have the form of a series in inverse powers 
of Z: 

(32) 

where the parameters a. depend upon the transition 
multiplets. Calculations of transition probabilities for 
L-shell electrons have been performed by Cohen and 
Dalgarno,38 and the method has been extended to 
M-shell electrons by Crossley and Dalgarno.39 In par­
ticular the latter authors have calculated, using an 
approximation to the first two terms of Eq. (32), 
absolute multiplet strengths for all transitions between 
multiplets belonging to the n=3 complex of the mag­
nesium isoelectronic sequence. 

There is little doubt that Eq. (32) should be an 
accurate representation of the absolute mUltiplet 
strength £ when Z is large. For example Crossley and 
Dalgarno have compared their Z-expansion absolute 
multiplet strengths with thosefor Fe xv (Z =26) found 
by C. Froese40 who used numerical Hartree-Fock wave­
functions in which the mixing of the degenerate n=3 

38 A. Dalgarno, Proc. Phys. Soc. (London) 75, 439 (1960); 
J. Linderberg and H. Shull, J. Mol. Spectry. 5, 1 (1960); J. 
Linderberg, Phys. Rev. 121, 816 (1961); M. Cohen and A. 
Dalgarno, Proc. Roy. Soc. (London) A261J 565 (1961). 

37 D. Layzer, Ann. Phys. (N.Y.) S, 271 ~1959). 
33 M. Cohen and A. Dalgarno, Proc. Roy. Soc. (London) 

A2S0, 258 (1964). 
39 Reference 17 (b) . 
40 Reference 17 (a). 

configurations was included. The agreement was found 
to be in general most satisfactory. The validity of the 
Z-expansion method for small Zhas not been adequately 
investigated. However, we are in a position to determine 
quantitatively where along the isoelectronic sequence 
and by how much the Z-expansion absolute multiplet 
strengths deviate from the "correct" values. 

In Fig. 2 we have plotted the values of Z2£ against 
1/ Z for the 3s3p 3 P L 3s3d 3D transition. A more com­
plete set of curves of the same type as well as further 
discussion of the Z-expansion method is to be found 
in Weiss paper? Figure 2 is typical of these plots 
showing excellent agreement between the configuration 
interaction calculations and the Z-expansion method 
at high Z but large departures for the first few stages 
of ionization. The reason for this discrepant behavior is 
not surprising if we look at the configuration interaction 
wavefunctions in Table III. Here we find the coefficients 
of the subordinate configuration wavefunctions not 
contained in the complex are largest for the first few 
stages of ionization. However they rapidly decrease 
with increasing stages of ionization as the configurations 
built up from spin orbitals of the same principal quan­
tum number cluster together. Thus, we must be wary 
of the predictions of the Z-expansion method when it 
is applied to the neutral member or to the first few 
ionization stages of an isoelectronic sequence.41 As we 
see from Fig. 2 this warning pertains as well to tran­
sitions among the triplets as well as the singlets. How­
ever, as shown in Fig. 2, we do find that our calculated 
absolute multiplet strengths approach the Z-expansion 
values for the higher stages of ionization. It remains to 
be shown, though, whether Russell-Saunder coupling 
calculations rather than intermediate coupling calcu­
lations will suffice for these heavier atoms. 
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41 For as an example of the misleading nature of the Z-expan­
sion method for low Z, see E. Godfredson [Astrophys. J. 145, 
308 (1966) ] who calculated atomic term energies for atoms and 
ions with 11 to 28 electrons by the Z-expansion technique. In 
particular, Godfredson concludes that the lowest-lying ID of 
the Mg I spectra should be reassigned to the configuration 3p2. 
This is at variance with the findings of I. 
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