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A bivariate polynomial representation of rovibrational population distributions is developed. 
This representation permits direct reduction of diatomic fluorescence spectra from chemical 
dynamics experiments to estimates of rotational and vibrational parameters by means of a linear 
least squares procedure. 

I. INTRODUCTION 

In principle, the use of laser fluorescence excitation or 
chemiluminescence emission under single collision condi­
tions allows determination of the product internal state dis­
tribution of chemical reactions. In practice, however, experi­
ments often cannot resolve the spectral features that directly 
report individual product state populations. 

In cases where individual rovibrational populations are 
not resolved, the traditional approach for inferring popula­
tion information has been computer simulation of a spec­
trum. 1,2 The simulated and empirical spectra are then com­
pared and the population distribution varied iteratively until 
a suitable fit of the experimental data is obtained. Historical­
ly this approach has been implemented in an ad hoc fashion. 
Different groups have written simulation codes tailored to 
the spectroscopic transitions studied in their own experi­
ments. A variety of functional forms have been used to de­
scribe the rovibrational population distributions. 

There are, however, inherent shortcomings of the simu­
lation approach which go beyond the historical lack of stan­
dardization. Guessing an appropriate population distribu­
tion and iterating by trial and error to a best-fit involves 
much effort and uncertainty. Error bounds of estimated pa­
rameters and sensitivity of the fit to the variation of estimat­
ed parameters are not quantitatively defined. Perhaps most 
importantly, simulation provides no protocol for assessing 
the level of population information which may be realistical­
ly inferred from a given set of experimental data. 

The use of regression techniques for the analysis of che­
miluminescence spectra has already been introduced.3

-6 

Johnson, Kvaran, and Simons3 have considered bound-free 
emission. Wright and Leone4 and Ishikawa and Parsons 
have treated bound-bound transitions. However, in none of 
these studies has provision been made for fitting the form of 
the rotational distribution. This omission can lead to misesti­
mation of the population parameters when the form of the 
spectrum depends on the rotational distribution. 6 

The ambiguities of population information extracted us­
ing existing methods have discouraged rigorous dynamical 
interpretation of experiments which produce highly over­
lapped spectra. This is especially frustrating because many 
of the systems most amenable to study by optical tech-
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niques-such as those reactions which produce alkaline 
earth monohalide products-are often characterized by very 
narrow rotational line spacings and hence exhibit highly 
congested spectra. 7,8 

In this work, we develop a comprehensive approach for 
the characterization and extraction of population informa­
tion from incompletely resolved laser fluorescence excita­
tion or chemiluminescence spectra. Our treatment brings to­
gether the following elements: development of linear 
functional forms for representing rovibrational population 
distributions which are not specific to a particular product 
or reaction; application of linear regression techniques for 
estimation of population parameters; and reconstruction of 
rovibrational population distributions using the estimated 
parameters. The regression procedure remedies the deficien­
cies inherent in simulation: it automates the search for a best­
fit parameter set, gives confidence limits on estimated pa­
rameters, and defines the level of population information 
which may be extracted from a particular spectrum. A linear 
parametrization of the population distribution considerably 
reduces the computational cost of the regression procedure: 
only a single calculation of the spectrum is required for ex­
traction of a best-fit parameter set. 

We have written a general computer program which in­
corporates these features. Required as input are the molecu­
lar constants and vibrational band strengths for the transi­
tions to be studied. In the simulation mode the program 
allows descriptions of the population distribution according 
to a number of functional forms; the inversion mode pro­
vides for direct reduction of digitized experimental spectra. 

The use of the inversion procedure is illustrated with 
synthetic spectra typical of chemiluminescence emission 
from the reaction Ca + F2 _ CaF(B ) + F. This reaction has 
been studied in our own laboratory9,l0 as well as else­
where. ll,I2 It is an appropriate candidate for an inversion 
approach because the sheer number of states populated in 
CaF(B )-at least 30 vibrational levels and up to 200 rota­
tional states in each of these vibrational levels-makes 
guessing a distribution particularly problematic. The behav­
ior of the inversion procedure is investigated for variation of 
spectral resolution, signal to noise ratio, and sensitivity to 
the accuracy of molecular constants. 

II. THEORY 

A.lntenslty as a function of wavelength 

It may be shown that in the absence of saturation effects 
that intensity as a function of wavelength in both chemilu-
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minescence and laser fluorescence excitation spectra is given 
by7,l1,13 

I(A) = 2:NPIP)2:S(p,t)R [A -A (p,t)], (1) 
p t 

where p labels the states populated by the reaction, t the 
states optically coupled to the populated states, I (A ) is the 
intensity of light measured at wavelength A in units of pho­
tons/s, PIP) is the relative population in state p, N is a norma­
lization factor which scales the relative population to an ab­
solute number of molecules, A (p,t ) is the wavelength of the 
p __ t transition, S (p,t) is the strength of the transition in 
photons/s per molecule, andR [A - A (p,t )] is the instrumen­
tal response function. 

In the case of chemiluminescence, p labels the upper 
states and t labels the lower states which are optically cou­
pled top. The instrumental response is given by a monochro­
mator slit function-we represent this as a triangle func­
tion14: 

R [A -A(p,t)] = 1-I[A -A(p,t)]!al 

for I [A -A (p,t)] I <a and 

R [A -A(p,t)] =0 

(2a) 

(2b) 

for I [A - A (p,t)] I>a, where a is themonochromatorreso­
lution, 

In the case of laser fluorescence excitation, p labels the 
lower states and t the states optically coupled top by the laser 
radiation field. The measured intensity must be integrated 
over observation direction and laser polarization and cor­
rected for laser power and photomultiplier response. 15 Here, 
we represent the instrumental response function by a Gaus­
sian: 

R [A-A(p,t)] =exp{ - [A-A(p,tW/aj, (3) 

where a is the laser bandwidth. 14 We note that in laser flu­
orescence excitation the validity of Eq. (1) depends on the 
uniformity of detector response for all states t at a given 
pump wavelength. 

All further analysis derives from application ofEq. (I), 
Description of the generalized calculation of line positions 
and strengths in diatomic spectra has been given else­
where,I6,17 In what follows, we develop a linear representa­
tion of the rovibrational population distribution, apply lin­
ear regression to estimate the population parameters, and 
use the estimated population parameters to reconstruct the 
rovibrational distributions. 

B. The bivariate polynomial representation 

A rovibrational distribution will in general depend on 
the vibrational quantum number v and the rotational quan­
tum number J. Representing the distribution in terms of 
these independent variables is, however, inconvenient be­
cause the maximum v and J will differ for each reaction. 
Moreover, we must specify the rotational distribution for 
each vibrational state. Zamir, Levine, and Bernstein13 intro­
duce the following reduced forms for the independent varia­
bles of vibration and rotation: 

f = Evib/(E - Eel), 

g = Erot/(E - Eel - Evib ), 

(4) 

(5) 

where Eel is the electronic energy, EVib is the vibrational 
energy, and Ero! is the rotational energy of the molecule, all 
measured from the minimum of the ground state potential 
curve, and E is the reaction exoergicity. The f and g variables 
range between 0 and 1 and label states by the fraction of 
energy disposed into vibration or rotation. We note that the 
population in state v,J will be given by 

P(v,J) = P(f,g)f[(f,g)/(v,J)], (6) 

where P (f,g) is the probability of a given f and g and the 
second term is the Jacobian off and g with respect to v and J. 
Thefandgvariables allow comparison between the popula­
tion distributions of different reactions and provide a plausi­
ble means of globally describing the rovibrational distribu­
tion. 

A bivariate polynomial in the reduced variables f and g 
yields a linear parametrization of the population distribu­
tion. Such a representation has the following form: 

P(f,g) = 2:aJigi. (7) 
iJ 

The coefficients aij are the linear parameters of the fit. We 
note that the value of aoo affects only the normalization and 
may be set to a constant. The relative populations are a linear 
transformation of the coefficients; hence p populations de­
termine p - 1 coefficients and a normalization factor. For 
the systems we have considered p is a very large number. In 
practice, the sum over i andj is terminated at a finite value. 

In order to intuitively understand the meaning of the 
bivariate functional form we consider the case in which 
P(f,g) = P(f)·P(g), i.e., P(f,g) is the product of two univar­
iate distributions, P (f) and P (g). Let the univariate distribu­
tions be given by the quadratic forms: 

P(f) = Co + cJ + cd2
, 

PIg) = do + dig + d~. 
The bivariate polynomial formed as the product is 

P(f,g) = 2:cidj'igi. 
ij 

(8) 

(9) 

(10) 

The interpretation of the bivariate coefficients involving sep­
arable and finite series univariate distributions is transparent 
and provides a rough guide to the meaning of the coeffi­
cients. 

In the general case univariate distributions are deter­
mined by sums over the bivariate distribution: 

P(f) = 2:P(f,g), 
g 

PIg) = 2: P(f,g). 
f 

(11 ) 

(12) 

It will prove convenient to introduce the variables Fi = 2fi 
f 

and Gj = D j
• Then the univariate distributions in f and g 

g 

may be written as 

(13) 

and 
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Pig) = Li"LaijFi. (14) 
J i 

In the case where all coefficients of the bivariate distribution 
are determined Eqs. (13) and (14) may be used to exactly 
define the univariate distributions. When fitting the popula­
tion parameters, we do not expect full determination of the 
bivariate distribution-therefore the form of the univariate 
distribution will have to be inferred from partial knowledge 
of the bivariate distribution. 

C. Inversion of population distributions 

For a detailed discussion of the formalism and assump­
tions oflinear least-squares parameter estimation, the reader 
is referred to a number of standard texts. 18-20 Our concern 
here is to show the application of this formalism to the esti­
mation of population parameters from fluorescence spectra. 

1. Spectral intensity: A linear transformation of population 
parameters 

We begin by recasting the expression for intensity as a 
function of wavelength into an appropriate form for linear 
regression. Substituting the bivariate functional form into 
Eq. (1) we find 

1(,1) = "Laij"LN/igS(p,t)R [A -A (p,t)]/[(/,g)/(v,J)], 
iJ P.t (15) 

where alj are the unknown bivariate polynomial coefficients 
and the interior sum over p,t may be calculated from molecu­
lar constants and instrumental parameters. 

Define the vector I to be the set of n calculated intensi­
ties such that: 

(16) 

and the vector b to be the set of k bivariate polynomial coeffi­
cients such that 

(17) 

A common error in the formulation of inversion problems is 
the attempt to fit too many model parameters. For the fitting 
procedure to be meaningful, the number of observations n 
should be much larger than the number of parameters k to be 
optimized. Though this condition is usually easily fulfilled in 
fluorescence spectra-there are generally hundreds of mea­
sured intensities-we point out that it is best to construct a 
model which carefully chooses the parameters to be opti­
mized. 

The calculated spectrum may now be represented in ma­
trix notation by 

I=Mb, (18) 

where M is the model matrix of dimension n by k. This ma­
trix is called the model matrix because it contains our expla­
nation for the observables. The elements ofM are given by 

p,t 

XS(p,t)R [A -A (p,t)], (19) 

where index r refers to the wavelength position and index s 
determines the particular combination of i andj chosen. 

2. Population parameters through linear regreSSion 

Call the vector of intensities measured in the experiment 
Y. Because of measurement uncertainties and imperfections 
in the model, we expect that the measured spectrum will 
differ from the calculated spectrum. The true variance of the 
measurement errors will in general be unknown at the outset 
and must be estimated as part of the regression procedure. 

We write 

Y=Mb+E, (20) 

where E is the vector representing the difference between the 
measured and calculated intensities. We wish to find the set 
of parameters b which minimizes the square of the difference 
between measured and calculated intensities. This may be 
shown to be given by20 

b = (MTM)-IMTy, (21) 

where superscript T indicates the transpose of the matrix, 
superscript - 1 indicates the inverse of the matrix, and su­
perscript circumflex is the standard statistical notation for 
the estimated value. In linear regression, the best-fit param­
eter set is uniquely determined. 

The best-fit parameter set b fixes the minimum root­
mean-square ofthe residuals. This is given by (n- 1ei)1/2 so 
that 

(22) 

An unbiased estimate may now be derived for the unknown 
variance of the measured observables such that 

(23) 

The associated estimate of the standard deviation of the mea­
surement error is simply the square root of the variance. The 
quantity (n - k ) determines the number of degrees of free­
dom in the least squares fit. 

We now describe the errors in the best-fil parameters. 
Let us define the variance-covariance matrix 9 by 

e=02(MTM)-I. (24) 

The diagonal elements 8.... define the estimated variances in 
the best-fit parameters. The standard error in estimated pa­
rameter s is given by 8 :;2. The 95% confidence limits for the 
true value of the estimated parameter, assuming errors are 
normally distributed about the mean value, are given by 

ba ± 28 :;2. (25) 

In general, if the confidence limits for an estimated pa­
rameter include zero, then this parameter cannot be signifi­
cantly fitted. The parameter in question should be set to zero 
and the linear regression redone. This protocol defines, in a 
practical sense, the maximum extent of information with 
statistical significance that one may extract from an over­
lapped spectrum. 

The off-diagonal elements of the variance-covariance 
matrix 8 sw determine the estimated covariances. These are 
often normalized and reported as 

A A A(J A 1/2 (26) 
Caw = (Jsw/( .. (Jww) , 

where Csw is the correlation between the estimate of param­
eter s and parameter w. The correlation coefficient ranges 
between - 1 and + 1. If the estimates of the two parameters 
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are closely correlated then ICsw I approaches 1; ifuncorrelat­
ed it approaches O. The values of the correlation coefficients 
are a function of the model structure rather than measure­
ment precision. If two parameters are closely correlated, 
then they cannot be independently determined. An example 
of this would occur in the case of a bivariate distribution 
formed by two independent univariate distributions: we 
would expect the cross terms to be highly correlated with the 
terms of single variables. 

Linear least squares formally assumes that the model 
perfectly describes the physical situation and that differ­
ences between model predictions and experimentally mea­
sured intensities are due to random (i.e., noise distributed 
according to a Gaussian distribution) errors. Systematic er­
rors may be introduced from two sources: inability of the 
bivariate polynomial to exactly reproduce the functional 
form of the actual distribution and inaccuracies in the calcu­
lated line positions and strengths. In practice, we find the 
later cause to be the major source of systematic error as will 
be illustrated in the examples. Inaccuracies in the calculated 
line positions and strengths may come from insufficient pre­
cision in the molecular constants, errors in the rotational line 
strengths and positions due to perturbations, and inaccura­
cies in the vibrational band strengths due to rotational de­
pendence of Franck-Condon factors and variation of the 
transition dipole moment with internuclear distance. While 
the inversion method developed here does not provide for 
optimization of molecular constants and Franck-Condon 
factors, the method may be used to distinguish the relative 
quality of different input data sets. The strength of the calcu­
lated model and the relative quality of the input data may be 
evaluated by consideration of the RMS deviation between 
model and data. 

3. Estimation of univariate populations 

The linear regression analysis will, in general, yield a 
partial set of significantly fitted coefficients. For a given 
functional form, this partial set is uniquely determined, i.e., 
changing the value of any of the fitted coefficients will cause 
the root-mean-square of the residuals to increase. Though 
the regression procedure properly estimates population pa­
rameters rather than distributions, we would like to recon­
struct the distributions from the estimated parameters. 

Two seeming ambiguities, however, now arise. First, 
significant parameter values may be estimated for a number 
of different functional forms, i.e., those involving different 
powers inland g. Second, neither the bivariate population 
distribution nor the univariate distributions will be uniquely 
determined by a given partial minimum variance set of coef­
ficients. 

A full treatment of these questions is outside the scope of 
this paper and will be developed in a companion article.21 

For the spectra which we have considered, the choice ofbi­
variate polynomial terms is largely determined by the pa­
rameters which can be significantly fitted: generally this in­
volves terms at most third order in J, first order in g, and 
cross terms linear in g. In practice, we find that one very 
quickly develops an intuition for which terms can be signifi­
cantly fit. 

The partial set of fitted coefficients incompletely deter­
mines both the bivariate and univariate distributions. Any 
method for reconstruction of the actual distributions will 
rely on extrapolation of this partial information. The sim­
plest extrapolation is to take the truncated bivariate func­
tional form determined by the significantly fitted parameters 
to represent the actual distribution. The univariate distribu­
tions are determined by truncating the sums given in Eqs. 
(13) and (14) to only include significantly fitted terms. The 
standard errors in the propagated estimates of the univariate 
are given by 

(27) 

E (g) = DjIeijFj , (28) 
j j 

where e ij = 0 !{2, the standard error in the estimated value of 
aij or parameter s. 

III. RESULTS AND DISCUSSION 

In this section, we illustrate the sensitivity of emission 
spectra to the form of the population distribution, demon­
strate the practicability of the inversion technique, and con­
sider the sensitivity of the recovered popUlation distributions 
to parameter choice, resolution, noise, and the accuracy of 
molecular constants. We use synthetic spectra representa­
tive of the chemiluminescence emission from the reaction of 
Ca + F2 --+ CaP(B ) + p9,22 to characterize the inversion 
technique and to understand the sensitivity of population 
information to experimental conditions. The population 
analysis of empirical spectra using the inversion technique 

(a) P(f) -constant 

P(g) = constant 

WAVELENGTH (nm) 

FIG. 1. Sensitivity of the simulated CaF B-X av = 0 chemiluminescence 
spectrum to thefonn of the vibrational distribution: (a) P (f) = constant; and 
(b) P (f) = 1 - f. In these cases P (g) is constant. The intensity is in arbitrary 
units. 
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(a) 

531 537 543 549 
WAVELENGTH (nm) 

0.2 

and the details of using the inversion program which we have 
written are described elsewhere. 9 

All CaF B 21;-X 21; spectra presented share the follow­
ing characteristics: only the av = 0 sequence is considered, 
spectral resolution is set at 0.05 nm unless otherwise stated, 
molecular constants for the synthesis of the spectrum are 
taken from Bernath, Dulick, and Field,23 Franck-Condon 
factors are obtained from the work of Menzinger,11 the ex­
oergicity of the reaction is set to 35 ()()() cm -1, the maximum 
v level to 35, and the maximum J level to 250. 

A. Sensitivity of spectra to the form of the population 
distribution 

The sensitivity of the emission spectrum to the form of 
the vibrational distribution is shown in Fig. I. In both spec­
tra, the rotational distribution in g is set such that 
Pig) = constant. In Fig. l(a), note the vibrational distribu­
tion is also constant, while in Fig. I(b), the vibrational distri­
bution is set to a straight line of the form P (I) = I - f As 
expected, the spectrum shows strong dependence on the 
form of the vibrational distribution: attenuation of high-ly­
ing vibrational levels is mirrored in attenuation of the emis­
sion spectrum to the red. 

The sensitivity of the emission spectrum to the form of 
the rotational distribution is shown in Fig. 2. We note that, in 
general, the shape of the spectrum is less sensitive to the form 
of the rotational distribution than it is to that of the vibra­
tional distribution. The example shown here, however, dem­
onstrates that changes in the form of the rotational distribu­
tion can visibly alter the shape of the overall emission 
spectrum. 

The above examples demonstrate that certain tradition­
al assumptions concerning emission spectra are not suffi­
cient for quantitative characterization of population infor­
mation. First, even in the case where the form of the rotation 
distribution is held constant, it is difficult to characterize the 
form of the vibrational population distribution by the rela-

(c) 

1 

9 

FIG. 2. Sensitivity of simulated CaF 
B-X 4V = 0 chemiluminescence spec­
trum to the form of the rotational dis­
tribution. The rotational distribution 
for (a) and (b) differ and are presented 
in (c) and (d), while the vibration distri­
butions are the same and given by 
P(f) = I - 2.32/ + 4.52/2 

+ 6.17/3 + 3.04/4
• 

tive peak-to-valley height of the vibrational bandheads. Spe­
cifically in Fig. I(a), the peak-to-valley height is not given by 
the product of the Franck-Condon factor times the vibra­
tional population. Second, the overall shape of the spectrum 
reflects the rotational distribution. The broad form-as op­
posed to the individual sharp features-appears to carry 
much of the population information. 

B. Inversion of test spectra 

We demonstrate the inversion technique by using the 
linear regression procedure to recover population informa­
tion from CaF B-X synthetic emission spectra. A noise level 
corresponding to I % of the maximum peak height is added 
to the spectra. These spectra are inverted to estimates of 
population parameters. The univariate distributions are 

..... 
OJ ...... 

a.. 

(b) 

O~~~ __ ~ __ ~~~L-~ 
0.2 0.6 

9 

FIG. 3. Inversion ofCaF chemiluminescence spectrum: (a) vibrational dis­
tribution and (b) rotational distribution. The solid circles are the input pop­
ulations; the solid lines are the recovered distributions. 
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...... -...... Q. 

• 
0 

0.2 
f 

0.6 

... ', ... (b) , . , , ...... , 
CI , ...... , 
Q. , , , , 

\ 
\ 

0 
0.2 0.6 

9 

FIG. 4. Inversion of simulated CaP B-X spectrum using different popula­
tion parameter sets: (a) vibrational distribution; and (b) rotational distribu­
tion. The solid circles are the input populations; the dashed lines represent 
the recovered populations when all parameters of a quadratic polynomial in 
land g are allowed to vary; and the solid lines represent the recovered popu­
lations when the statistically insignificant g2 parameter is removed. 

then reconstructed from a truncated bivariate polynomial 
using the estimated parameters. 

We begin by considering examples in which all param­
eters of a quadratic bivariate distribution are fitted. Figure 3 
shows the ability of the program to recover information in 
the undemanding cases where the rotational distribution is 
held constant and the vibrational distribution is set to 
P (f) = 1 - f The population distributions in this instance 

1.0 (a) 

~ -;r 
~ .. 
:t: c: 
" 
>-

~ 0.6 
:t: 0 
.c 
~ 
> 
!:: en z w 
I-
~ 

0.2 

530 534 538 
WAVELENGTH (nm) 

(b) 

0.2 

are recovered almost exactly. 
Not all distributions allow significant determination of 

every parameter of a quadratic bivariate polynomial. In such 
cases, we eliminate the parameters whose confidence limits 
include zero and allow the remaining parameters to vary . 
This situation is illustrated in Fig. 4. The spectra are synthe­
sized such thatP (f) = (1 - f3)1/2 andP(g) = (l_g)1/2. The 
dashed lines represent the recovered population distribu­
tions when the parameters of the bivariate distribution are 
allowed to vary. Inspection of the variance-covariance ma­
trix reveals that terms involving g2 are not significantly fit­
ted. When these terms are omitted, and other terms allowed 
to vary, the solid line is obtained . 

The omission of the insignificant terms results in a better 
fit to the vibrational distribution and a nominally better fit to 
the rotational distribution. Note again that the form of the 
rotational distribution can influence the accuracy with 
which the vibrational populations are determined. 

The form of the presumed population distribution can 
influence the choice of parameter terms for fitting. This can 
be seen by considering the inversion of a synthetic spectrum 
constructed from a bimodal distribution in vibration, as il­
lustrated in Fig. 5. Recovery of a bimodal distribution re­
quires a function form infwhich al~ows for two extrema, i.e., 
is at least of cubic order. A first attempt to invert the spec­
trum using terms only up to quadratic order in f yields a 
RMS fit of 17.2 in arbitrary units. The recovered distribution 
indicates bimodality but does not reproduce the form of the 
initial distribution. A second attempt incorporating terms 
up to cubic order reduces the RMS variance to 3.3 and sub­
stantially recovers both the original vibrational and rota­
tional distributions. The dramatic reduction in the RMS is 
the signature of finding the best distribution. 

0.6 
f 

• 

FIG. S. Recovery of a bimodal distri­
bution: (a) input CaP B-X emission 
spectrum: resolution 0.05 nm. The 
spectrum has been synthesized ac­
cording to the input distributions 
shown in panels (b) and (c) of this fig­
ure, nonna1ized to a maximum peak 
height of 1.0, and been given a 1% 
noise level relative to the maximum 

1.0 peak height; and (b) vibrational distri-
bution: input distribution is indicated 
by solid circles; recovered distribution 
when the linear and quadratic terms in 
I are fit is indicated by a dashed line, 
when the linear, quadratic, and cubic 
terms inl are fit is indicated by a solid 
line; and (c) rotational distribution: in­
put distribution is indicated by solid 
circles; recovered distribution by a 
dashed line or a solid line, the same as 
in (b). 

o~--~----~--~----~--~ 
0.2 0.6 1.0 

9 
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000 

00 
00 

o 
00 

00 
00 

00 
00 

(c) 

o 

oL----o~.~2----~--~0~.6~--~----~ 

FIG. 6. (a)Input CaF B-X emission 
spectrum: resolution 0.05 nm. The 
spectrum has been synthesized ac­
cording to the input distributions 
shown in panels (c) and (d) of this fig­
ure, nonna1ized to a maximum peak 
height of 1.0 and been given a 1 % 
noise level relative to the maximum 
peak height. (b) Recovered CaF B-X 
emission spectrum: resolution 0.05 
nm. This spectrum has been synthe­
sized according to the recovered rovi­
brational distributions shown in pan­
els (c) and (d) of this figure. Input and 
recovered spectra are distinguished 
only by subtle fluctuations about the 
peak amplitudes. 

>-

i 
...... 
.!?J a. 

(d) 

o 0 
o 0 0 

o 

OL---~~--~L---~=---~ ____ ~ 
0.2 0.6 

WAVELENGTH (nm) 

C. Resolution, noise, and molecular constants 

We now consider the sensitivity of the inversion method 
to the resolution, signal-to-noise ratio, and accuracy of the 
molecular constants. Our point of comparison is a synthetic 
chemiluminescence spectrum of the CaF B 2~X2l: transi­
tion characterized by 0.05 nm resolution, 1 % noise level rel­
ative to the maximum peak intensity, and a rovibrational 
population distribution given by 

P(f)P(g) = (1 - f) 1/2exp( - f)(l - g) 1 12exp(g). (29) 

The characteristics of the reference spectrum strongly re­
semble those of the experimental spectrum.9,I0,22 The syn­
thesized spectrum having the above characteristics is dis­
played in Fig. 6(a). 

Figure 6(b) shows the spectrum synthesized according 
to the population distributions recovered from the inversion 
of the spectrum in Fig, 6(a); Figs. 6(c) and 6(d) show the 
synthesized and recovered vibrational and rotational distri­
butions, respectively. The inversion procedure is used to de­
termine all eight terms of quadratic bivariate polynomial inf 
and g: all recovered coefficients are significant to one stan­
dard error. The estimated variance is 2.4 in arbitrary units. 
The input spectrum and the spectrum synthesized according 
to the recovered distributions are essentially visually indis­
tinguishable-the differences are manifest in subtle fluctu­
ations about the intensity amplitudes. 

The chosen reference spectrum allows significant deter­
mination of bivariate population parameters up to second 
order in bothf and g. Basically this corresponds to determin­
ing the mean and width of both the vibrational and rota­
tional distributions, The reconstruction of the univariate dis­
tributions will depend on the extent to which their forms can 
be determined by these moments. 

Figures 7 and 8 show the eight-parameter recovered dis-

9 

tributions for resolutions of 0.1 and 0,2 nm, respectively. The 
estimated variance of the spectrum does not change appre­
ciably with the change in resolution, However, the recovered 
distributions show a trend toward erosion of the quadratic 
component precision in the rotational distribution and to a 
lesser extent in the vibrational distribution. 
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FIG. 7. Recovered eight-parameter rovibrational population distribution 
for 0.1 nm resolution, 1 % noise level: (a) univariate distribution in vibration; 
and (b) univariate distribution in rotation. 
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FIG. 8. Recovered eight-parameter rovibrational population distribution 
for 0.2 run resolution, I % noise level: (a) univariate distribution in vibration; 
and (b) univariate distribution in rotation. 

In the reference spectrum, the vibrational bandhead 
structure with peaks separated by approximately 0.5 nm is 
well resolved. The rotational contour of each bandhead fea­
ture of approximate width 0.1-0.2 nm is only partially re­
solved. Simple calculations show that approximately up to 
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FIG. 9. Recovered eight-parameter rovibrational population distribution 
for O.OS nm resolution, 2% noise level: (a) univariate distribution in vibra­
tion; and (b) univariate distribution in rotation. 
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FIG. 10. Recovered eight-parameter rovibrational population distribution 
for 0.05 nm resolution, S% noise level: (a) univariate distribution in vibra­
tion; and (b) univariate distribution in rotation. 

ten vibrational transitions and 100-1000 rotational lines 
from each vibrational transition will contribute to the inten­
sity at any given wavelength. Our resolution studies suggest 
that all the vibrational popUlation information resides in the 
overall contour of the spect~m and is not terribly sensitive 
to variation of resolution. On the other hand, some of the 
rotational population information appears to reside in par­
tial resolution of the band contours: the reconstructed rota­
tional distribution is degraded with respect to the original as 
the resolution is varied between 0.05 and 0.2 nm. 

Figures 9 and 10 show the recovered eight-parameter 
distributions for a noise level of2% and5%, respectively. At 
2 % noise level the estimated variance between synthesized 
and reconstructed spectrum is not appreciably different than 
that of the reference spectrum; at 5% noise level the variance 
approximately doubles. The recovery of the vibrational dis­
tribution appears unaffected by the change in noise level. 
The recovery of the rotational distribution is strongly eroded 
as the noise level increases to 5% of the maximum peak 
height . 

Recovery of population distributions is not seriously de­
graded by noise levels less than 2% of the maximum peak 
height. Most of the variance in the recovered spectrum for 
low noise levels appears to originate in the inability of a qua­
dratic bivariate polynomial to precisely reproduce the popu­
lation distributions used to synthesize the spectrum. Above 
2%, the noise in the spectrum begins to dominate the vari­
ance in the reconstructed spectrum. Recovery of the vibra­
tional distribution seems highly insensitive to variation of 
noise level in the synthetic spectrum. The recovery of the 
rotational distribution is, however, degraded by high noise 
levels. 
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FIG. 11. Recovered six-parameter rovibrational population distribution for 
0.05 nm resolution, 1 % noise level: (a) univariate distribution in vibration; 
and (b) univariate distribution in rotation. The synthesized spectrum uses 
upper state B, values determined by a e equal to 0.0026; the inversion uses 
a e = 0.0025. 
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FIG. 12. Recovered six-parameter rovibrational population distribution for 
0.05 nm resolution, 1 % noise level: (a) univariate distribution in vibration; 
and (b) univariate distribution in rotation. The synthesized spectrum uses 
upper state B, values determined by ae equal to 0.0026; the inversion uses 
a. =0.0000. 
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FIG. 13. Recovered three-parameter rovibrational popUlation distribution 
for 0.05 nm resolution, 1 % noise level: (a) univariate distribution in vibra­
tion; and (b) univariate distribution in rotation. The synthesized spectrum 
uses upper state B, values determined by ae equal to 0.0026; the inversion 
uses a, = 0.0000. 

Figures 11 and 12 show the recovery of population in­
formation when inaccurate rotational constants are used to 
invert the synthetic spectrum. The spectra are synthesized 
using upper state Bv values given by Bv 
= 0.342 - 0.0026(v + !): Fig. 11 shows the six-parameter 

popUlation distributions recovered using Bv 
= 0.342 - 0.0025(v + !), and Fig. 12 shows those recovered 

using Bv = 0.342 + O.ooo(v + !). Corruption of the Bv val­
ues causes a marked increase in the estimated variance of the 
reconstructed spectrum: for a e = 0.0025 the variance is 140, 
and for a e = 0.000 it is 230. This increase in variance is 
caused by the misalignment of the bandheads in the recon­
structed spectrum with respect to those of the synthesized 
spectrum. The rotational distribution is very poorly recov­
ered in both cases. The recovery of the vibrational distribu­
tion is eroded with increasing error in the B v value. A better 
fit to the vibrational distribution can be achieved by setting 
the poorly fittedg and cross-term parameters to 0; the recov­
ered three-parameter distribution for a e = 0.0 is shown in 
Fig. 13. Figure 14 shows the comparison between input and 
recovered spectrum in the case of bad molecular constants. 
There are substantial differences in both peak positions and 
intensity amplitudes. 

A marked increase in the variance of the reconstructed 
spectrum characterizes the loss of accuracy in the molecular 
constants used to invert the spectrum. In practice the vari­
ance in reconstructed experimental spectra as opposed to 
synthetic spectra should provide a sensitive measure of the 
accuracy of the molecular constants used. Recovery of rota­
tional population information is severely degraded by inac­
curate rotational constants. Remarkably, however, even in 
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FIG. 14. Comparisons between (a) input spectrum shown in Fig. 6(a) and (b) 
recovered spectrum synthesized according to the rovibrational distribu­
tions and "bad" B. values described in Fig. 12. The spectra are clearly dis­

tinguishable in both their peak heights and positions. 

the case of highly corrupted constants it was still possible to 
recover the essential features of the vibrational distribution. 

IV. SUMMARY 

A linear regression procedure permits direct inversion 
of diatomic spectra to estimates of population parameters. 
The recovery of population distributions from congested 
spectra demands treatment of the following problems: calcu­
lation ofline positions and strengths, development of a linear 
parametrization of internal state population, use of linear 
regression to extract the population parameters, and recon­
struction of the population distributions using the estimated 
parameters. 

In this work, these general problems have been treated 
with the specific objective of inverting the spectra of highly 
excited alkaline earth monohalide molecules. Our primary 
concern has been the recovery of rovibrational distributions 
in which there are a large number of vibrational as well as 
rotational levels. To this end we have not treated branching 
into fine structure components, A doublet components, or 
rovibrational distributions which populate few vibrational 
levels and many rotational levels. These problems will re­
quire further development of the population distribution 
representation. We have also been concerned with systems in 
which the molecular constants are fairly well characterized: 
the assumptions of the fitting procedure break down if the 
line positions cannot be calculated to reasonable accuracy. 

We stress that, properly, the regression procedure deter­
mines parameters of a distribution rather than the form of 

the distribution itself. The questions of interpretation of fit­
ted parameters and the reconstruction of distributions will 
be considered more fully in another article. 21 

We have studied a number of practical difficulties likely 
to be encountered by the experimentalist: poor resolution, 
inadequate molecular constants, and poor signal-to-noise. 
The results presented for the recovery of population distri­
butions from synthetic spectra show that the inversion pro­
cedure is highly robust and forgiving. We are therefore en­
couraged that the inversion technique will provide 
molecular dynamicists with a quantitative and standardized 
means of deriving population information from molecular 
spectra. 
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