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A method is presented for determining the population A 6°), the quadrupole alignment factors 
A 62), A \2), A?), and the hexadecapole alignment factors A 64

), A j4), A i4), A i4
), A i4

) for a 
(v,J) ground state distribution of a diatomic molecule probed by linearly polarized two-photon 
nonresonant excitation. General expressions are developed for the 0, P, Q, R, and Sbranch 
transitions as a function of the rotational quantum number J. This treatment assumes that the 
resonant state reached by the two-photon transition is subsequently detected independent of its 
alignment. This can be achieved by 2 + n multiphoton ionization in which the ionization steps 
are saturated, or by 2 + 1 laser induced fluorescence in which the fluorescence is collected 
independent of its polarization and spatial anisotropy. To extract the population and the eight 
alignment parameters the line intensities must be measured for several polarization settings of 
the laser beam. However, when the ground state distribution has cylindrical symmetry, only 
two alignment parameters are nonvanishing, A 62) and A 64

), and they can be determined at a 
single polarization setting by comparing the line intensities of the different branches. 

I. INTRODUCTION 

This paper presents the theory required to extract both 
the scalar and vector properties of a ground state angular 
momentum distribution probed by two-photon absorption. 
The techniques presented allow the experimentalist to deter­
mine both the ground state population and eight higher or­
dermoments:A i2),A j2),A 62),A i4),A i4>,A i4),A j4),A 64). 
In fact, it is impossible to extract the ground state rotational 
populations without also determining alignment factors be­
cause for two-photon excitation there are no magic angles 
which set all the higher order moments to zero even if the 
ground state angular momentum distribution has cylindri­
cal symmetry. 

A similar analysis has already been carried out for 1 + I 
laser induced fluorescence (LIF). Case, McClelland, and 
Herschbach (CMH)I use a density matrix approach which 
is completely general. Greene and Zare (GZ)2 use a spheri­
cal tensor formalism, taken from Fano and Macek (FM),3 
to treat the case where the ground state distribution has cy­
lindrical symmetry. McCaffery and co-workers employ the 
density matrix formalism to investigate the I + 1 LIF case in 
which the probe light is circularly or linearly polarized.4 Ja­
cobs and Zare5 have investigated the combined effects of 
saturation and optical pumping for 1 + 1 multiphoton ioni­
zation (MPI). 

We treat a different case: two-photon absorption. This 
treatment can be applied to both 2 + 1 LIF or to 2 + n MPI. 
We follow the example ofGZ and avoid the use of the density 
matrix formalism since this would make the results appear 
quite complicated. Our treatment is basically a generaliza­
tion of the GZ formalism to allow the ground state to be 
noncylindrically symmetric and to allow the one-photon 
state to be a virtual state. 

Bray and Hochstrasser (BH), 6 as well as McClain and 
Harris,7 and Halpern, Zacharias, and Wallenstein8 devel-

oped formulas which allow the determination of the ground 
state rotational distribution if the spatial distribution of the 
ground state angular momentum is isotropic. Bain and 
McCaffery4 have used the density matrix formalism to treat 
the case of two-photon absorption for a I1J = ± 2 transi­
tion, but did not treat the case where the absorption can go 
via one of several virtual states as it may for I1J = 0, ± I 
transitions. Chein and Yeung9 as well as Dubs, Briihlmann, 
and Huber lO have considered 2 + 1 LIF. Both McClain l1 

and Nascimento l2 have discussed the use oftwo-photon ab­
sorption in determining the symmetry of the excited/reso­
nant state. Two-photon absorption spectroscopy has been 
used by Monson and McCIain l3 as well as Michl and Thul­
strupl4 to determine the polarization of the ground state for 
condensed phase systems. 

The techniques developed in this paper are applicable to 
atoms, diatomic molecules, as well as linear and symmetric 
top polyatomic molecules which have unperturbed states 
that can be reached by two-photon excitation. Generaliza­
tion to asymmetric top molecules is straightforward. Many 
diatomic molecules have already been detected using either 
2 + 1 MPI or 2 + 2 MPI, for example: H 2,15 N 2,16 CO,17 
NO,18, O2,19 and HC1. 20 In all likelihood this list will grow 
rapidly. 

This paper is intended as a guide to the experimentalist. 
Toward this end, we present in Sec. II the formulas needed to 
convert raw spectroscopic data into populations and align­
ment factors, but we defer derivations until the Appendix. 
The basic results are summarized in Tables I-IV and are 
readily reduced to computer programs. In Sec. III we give an 
example of how to extract the population and alignment fac­
tors from recorded line intensities, and we discuss the mean­
ing of the higher order alignment moments. In Sec. IV sever­
al special cases are presented which can be used to check the 
numerical evaluation of the formulas and to assist the design 
of experiments. 
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II. MOMENT EXPANSION OF THE TWO·PHOTON 
TRANSITION PROBABILITY 

The two-photon transition rate for a linear molecule can 
be found from the corresponding expression for single-pho­
ton resonance fluorescence by a simple generalization. The 
starting point is the expression for single-photon LlF [see 
Eq. (27) ofGZ]: 

1= C L {I L (Jf ,Mf ,Afied'rliJe,Me,Ae) 
Mf Me 

x (Je,Me,Ae iea 'r2 i Ji>Mi> A; ) n . (1) 

Here, C is a proportionality constant, and the brackets ( ) 
represent a weighted average over all initial states M;. The 
resonance fluorescence process describes a one-photon elec-

I 

We note that ea and ed now represent the unit polariza­
tion vectors of the first and second photons absorbed. In LlF 
ea and ed were independent; in this treatment we assume 
that ea and ed are parallel, i.e., both photons have the same 
linear polarization. Ee; is the energy difference between the 
initial and virtual rovibronic states. r e is the total homogen­
eous linewidth of the virtual state. The index Ye identifies 
different electronic states which contribute to the virtual 
state. Using a similar treatment as carried out in GZ, we can 
recast Eq. (2) into a sum over tensor moments. Each term 
involves a product of a moment of the two-photon line 
strength, P;, a moment of the ground state distribution, 
A ~kl, and the population in the state Ji> n (J;). As shown in 
the Appendix, Eq. (2) may be rewritten as 

I=C(det) LP;(J;,A;,Jf,Af;O)A~k)(J;)n(J;), (3) 
k.q 

tric dipole transition from the initial state i, characterized by 
the quantum numbers J;,M; ,A;, to the excited state e, char­
acterized by Je,M.,Ae, followed by a one-photon dipole 
transition from the excited state to the final state/. charac­
terized by Jf ,Mf ,Af . Here ed and ea are the polarization 
vectors of the detected and absorbed photons. As is well 
known, all Me must be summed over before squaring, i.e., 
the various M; -+ Me -+ Mf paths are indistinguishable, and 
hence interfere. In sharp contrast to single-photon reso­
nance fluorescence, a two-photon transition from i to f has 
its single-photon excited state replaced by a virtual state. In 
this virtual state the values of Je and Ae are not unique, and 
when calculating the intensity we must sum over all possible 
paths, as shown in Fig. 1, including those with different Je 

and Ae as well as those with different Me. Consequently, Eq. 
( 1) is altered to read 

'} (2) 

I 
where 

= D(q)b k(J; )g'«J;) L (- l)kE(kd,ka,k,q;Olab) 
kd.ka 

(4) 

k = 0,2,4 and q = 0,1,2,3,4 are the rank and component of 
the ground state distribution; kd = 0,2 and ka = 0,2 are the 
ranks of the square of the first and second photons; and 
Je ,Ae,J ; ,A; are subject to the usual dipole selection rules 
with respect to Ji>A; and Jf ,Af . 

Equations (3) and (4) represent the machinery needed 

Final State 

energy levels { 
are -----+--~~~ 

degenerate ---+-.--\--=-

~-+~---'I:--- J e = J i +1 
r.:--+---l....-~--- J e = J i 
"':':"+--+---J-- J e = J i -1 

Virtual 
State 

FIG. I. Schematic diagram of a two­
photon process through a virtual state 
and the consequent interference between 
indistinguishable paths. 

--------------~-----------Ji Initial State 
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for reducing two-photon spectra to ground state population 
and alignment factors. In what follows we discuss each of the 
terms appearing in these two equations. The equations and 
nomenclature for these terms are summarized in Tables I 
and IV, and V. Equations (3) and (4) assume that the laser 
beam propagates along the y axis where the z axis is fixed in 
space and taken to be the axis of cylindrical symmetry, if 
such symmetry exists. All other cases are presented in Tables 
II and III. 

A. The detection-sensitivity constant, C(det) 

In general the experimentally determined intensities are 
in arbitrary units. The detection-sensitivity constant C( det) 
converts the calculated intensities into the experimentally 
recorded ones. The magnitude of this constant depends on 
the amount of laser light, the sensitivity of the ion/photon 
detector, the magnitude of the radial part of the transition 
dipole moment integrals (see Sec. II H), etc. In general 
these factors are unknown. However, we assume that they 
are the same for all the recorded transitions. Hence, these 
detection and sensitivity factors can be grouped together 
into an overall constant, C( det), which is independent of all 
the "initial," "excited," and "final" state rotational quan­
tum numbers. 

B. The population, n(J,) 

The population of the ground state, the total number of 
molecules of all polarizations in a given rotational state, J;, is 
denoted by n(J;). This population incorporates the rota­
tional degeneracy but not the degeneracy of nuclear or elec­
tronic spin because r! (J;) and gk (N; ) incorporate these de­
generacies. Hence for a Boltzmann distribution it equals 

(5) 

We have omitted the division by the partition function in the 
expression for n (J;) since it can be absorbed into the overall 
detection-sensitivity constant, C( det). 

c. The moments of the ground state distribution, A~1r) 

The ground state alignment of J; is expanded into its 
spherical tensor components A ~k) (J; ), where we follow the 
normalization conventions first introduced by FM and em­
ployed by GZ. Here we take theA ~k) to be the real part of the 
expectation value of J ~k), the spherical tensor components of 
the angular momentum operator.21 Specifically: 

A ~k)(J;) = e(k)Re( (J;M;A; IJ~k)IJ;M;A;»/ 

[(J;M;A;IJ2IJ;M;A;)]kI2, (6) 

where 

e(k = 0) = 1, 

e(k = 2) = (6)1/2, 

e(k = 4) = (35/8)1/2. 

(7a) 

(7b) 

(7c) 

The normalization constants insure that we follow the 
GZ normalization. The results are listed in Table VI for 
k = 0,2,4 andq = 0,1,2,3,4. TheJ~k) are nothing more than 
spherical tensor operators made up from Jx , Jy , and Jz which 
satisfy the rotational transformation properties of a spheri­
cal tensor of rank k and component q and the commutation 
rules for angular momentum operators. 

It is important to note that we have chosen a normaliza­
tion in which A 6°) (J;) is always equal to one. Hence, the 
population is independent of the moments, and all the mo­
ments have finite limits. In Sec. III, we explicitly show how 
to extract both the population and the alignment factors 
from experimental line intensities. In that section we refer to 
the A ~k) (J;) as the reduced moments since this set of mo­
ments has the normalization A 6°) (J;) = 1. 

D. The moments of the line strength, P"q(J"A,,J, ,A, in) 

The P ~ represent the moments of the line strength for a 
system geometry described by n. We factor the intensity 
equation into spherical tensor moments, A ~k), each of which 
is associated with its own line strength factor P ~. 

TABLE I. The two-photon transition probability for coincident lab and detector frames where the laser propa­
gation direction is along the y axis of the lab frame. 

1= C(det) L P~(J;.A;.lJ ,AJ ;O)A ~k)(J,)n(J,), 
k.q 

P~(J;.A"JJ ,AJ;O) = D(q)b k(J, )g"(J,) L ( - I)kE(kd,k.,k,q;!l'ab) 
kd>k" 

x L S(J"A;.l"A.,J ;,A;,JJ ,AJ)h(kd,k.,k,J"J.,J ;./J)' 
J~A,J~,I\; 

where k = 0,2,4; q = 0,1,2,3,4 but q,k; kd = 0,2; k. = 0,2. 

A ~k)(Ji) = c(k)Re«J,M,A,IJ~kV,M,A,»/[ (J,M,A,IJ2 IJ,M,A,) ]kl2, 

E(k.,kd ,k,q;8,O,x)(lab) = [41T(2k. + I )(2kd + I)] 1/2 

X(~ ~ k;)G ~ k;)(k; ~ ~)Y~k)(8,0)" 

a Note: the equation for E is only valid for even k. 
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TABLE II. The two-photon transition probability for noncoincident lab and detector frames where the laser 
propagation direction lies in the x-y plane of the lab frame of reference. 

1= C(det) t [p~1 (/"A,.lf .Af ;fi)A ~1 (I,) + P~~ (I,.A',!f ,Af ;fi)A ~~ (I,) ]n(/,). 

p!1. (/"A',!f,Af;fi) =bk(l,)t/'(I,) ) [( -1)k€!1. (kd,k.;!l.lab) 
k!t4 

x L S(I"A,,! •• A.,J;,A;.lf ,Af )h(kd.k.,k,!"I.,J;,!f ), 
J .. A,I~.A; 

where k = 0,2,4; q = 0,1,2,3,4 but q<;k; kd = 0,2; k. = 0,2. 

A!1. (I,) =c(k)«/,M,A.IJ~1.I/,M,A,»/[(/,M,A,IJ2IJ,M,A,)]kl2, 

€~1 (k.,kd;8,0,X) (lab) = [81T(2k. + 1) (2kd + 1) ]1/2 

X(~ ~ ~)(~ ~ ~)(k; ~ ~)Y~k)(8,0)cos(qX)" 
€~~ (k.,kd;8,0,X) (lab) = [81T(2k. + 1 )(2kd + 1) ]1/2 

x(1 1 kd) (11k.) (kd k. k
O

) y~k)(8,0)sin(qx).a 
00000000 

• Note: the equations for € are only valid for even k. 

E. The alignment degeneracy factor, D(q) and 

D(q#O) = 2. 

6877 

(8b) In general, we must sum over all values of k and q in Eq. 
(3) to incorporate the orientation and alignment of the 
ground state J; distribution. As shown in the Appendix, the 
two-photon absorption intensity for linearly polarized light 
is insensitive to any ground state moment with odd k. In 
general, q can be either positive or negative. However, we 
assume that the laser beam is propagating along the y axis of 
the lab frame, so that for fixed k the line strength factor, P ~ , 
for q positive is degenerate with that for q negative. Hence, 
we only need to sum over all positive values of q and multiply 
the degenerate moments by two to get the intensity of any 
transition. We denoted the alignment degeneracy factor by 
D(q), where 

F. Reduced matrix elements of the spherical tensor 
angular momentum operators, IJkM) 

D(q=O)=l (8a) 

The b k(J;) are proportional to the reduced matrix ele­
ments of the angular momentum spherical tensor operator in 
the ground state. These functions, taken from GZ, are tabu­
lated in Table VII and can be considered simply as scaling 
factors for the alignment moments of the ground state distri­
bution: 

b k(J;) = c(k) -l{[ (J;M;A; IJ2 IJ;M;A;) ]kI2}j 

(J;IIJ(klIlJ;), (9) 

where c(k) are defined in Eqs. (7a), (7b), and (7c). The 

TABLE III. The two-photon transition probability for noncoincident lab and detector frames where the detec­
tion geometry is general. 

1= C(det) t; [P!1 (/"A"I, ,A, ;fi)A!1 (J,) + P~~ (J,.A,,!, ,A, ;fi)A ~k! (J,) ]n(/,), 

p!1. (J"A;,!, ,Af ;fi) = b k(/;lt/'(J;l L [( - 1) (k)€~1. (kd,k. ;!l.lab) 
kdokg 

x L S(/"A"J.,A.,J;,A;,!, ,Af )h(kd,k.,k,J,,!.,J;,J, ), 
J .. A .. J:,A; 

where k = 0,2,4; q = 0,1,2,3,4 but q<;k; kd = 0,2; k. = 0,2. 

A!1. (J,) =c(k)«J,M,A,IJ!1.IJ,M,A,»/[(J,M,A,WIJ,M,A,l]k12, 

€!1. = (l!2)-1/2(i)(±1-1)/2[( -1)q€c;). ±€<!").] forO<q<;k, 

€~k~ = €~)o; €~k2 = ° for q = 0, 

€~k) (kd,k.;8,0) (lab) = L D ~~:'*«(b. ,8.,X. )€~~) (kd,k. ;8,0)(det). 
if 
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TABLE IV. Parameters in the two-photon transition probability appearing in Tables I-III. 

n (J,) = population ofleve1 J, 

D(q=O) = I 

D(q#-O) = 2 

b k(J,) = c(k) -I{[ (J,M,A,lJ2IJ,M,A,) lk/2}/(J,IIJ<k)IIJ,) 

c(k=O) = 1;c(k=2) = (6)1/2;C(k=4) = (35/8)1/2 

S(J"A"J .. A.,J;,A;,JI,A/ ) = (J;A;lltI)IIJ,A,)*(J,A,IIII)IIJ,A,) 

X (JI A/ II"I)IIJ;A; )*(JI A/ IIII)IIJ,A,) 

(J2A2111l)IIJIAI) = (41T/3)1/2Ri~,-A')(2J2 + 1)1/2(2JI + 1)112 

J2 I) 
-A2 A2-AI 

(J2A21111)1IJIA,)* = (-1)u,-J')(JIAtll"IJIIJ2A2) 

h(kd,ka,k,J"J"J;,JI ) = ( - 1)(J/+J;- kd+ I) [( 2kd + 1 )(2ka + 1 )(2k + 1) 11/2 

constants, c(k), insure that the b k(J;) follow the GZ nor­
malization. 

G. The hyperfine and fine structure depolarization, 
tf(J,) and tf(N,) 

The hyperfine depolarization term is denoted by gk(J;). 

For molecules with nonzero nuclear spin, the direction of J 
is not fixed in space. Rather J is coupled to the nuclear spin I 
to form a resultant F, the total angular momentum. We as­
sume that the nuclear spin is isotropically distributed. Ini­
tially, J; may be aligned, but shortly afterwards it will be 
partially randomized because of coupling to I. When the 
hyperfine structure is unresolved, we must account for this 
loss of alignment by multiplying each tensor moment of the 
line strength by a depolarization factor g'«Jj) given by 

{
F Fj 

gk(Jj ) = I I (2Fj + 1)2 I 

1 F
j 

J j J j 

(10) 

This expression for gk(Jj) differs from that of Greene and 
Zare2,22 in that we sum over all nuclear spin states weighted 
by their degeneracies. 

Here the summation over I includes only those nuclear 
spins which couple to J j • While all nuclear spins couple to all 
Jj for heteronuclear diatomics, for homonuclear diatomics 
only even I couple to even/odd J j and only odd I couple to 

odd/even J; depending on the inversion symmetry of the 
electronic state. Hence in the high J j limit, g'«Jj ) equals the 
nuclear spin degeneracy; in extracting the population of J;, 
we do not need to divide the unreduced zeroth moment by 
the nucleat degeneracy since it is already included in the 
equation for gk (Jj ) • 

The coupling of nuclear spin to J j is not the only possi­
ble source of depolarization. If the ground state is a multiplet 
state in which the spin is randomly polarized, we must also 
account for J; being depolarized by electronic spin, Sj' Con­
versely, when electronic spin is coupled to the internuclear 
axis [Hund'scase (a) and (c) 1, thenJ j is not depolarized by 

Sj' 
For the special case of a diatomic in a pure Hund's case 

(b) coupling scheme, we can modify the equation for gk(Jj) 

to include both hyperfine depolarization and unresolved fine 
structure depolarization.23 For Hund's case (b), we employ 
the notation that A, the orbital angular momentum, is added 
to R, the angular momentum of nuclear rotation to form N, 
the total angular momentum apart from spin. Then N is 
added to S, the electronic spin angular momentum, to form 
J, the total angular momentum apart from nuclear spin. The 
quantities we wish to determine are no longer the moments 
of J j but rather the moments ofN j • Hence, we must replace 
J j by N j in all the formulas for the line strength and multiply 
this by a depolarization factor for each N j ; this factor will be 
denoted gk(Nj ): 

J. Chem. Phys., Vol. 85, No. 12,15 December 1986 

Downloaded 02 Jun 2011 to 171.66.83.218. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



Kummel, Sitz, and Zare: Two-photon excitation population/alignment 6879 

TABLE V. Nomenclature for the two-photon transition strength formula. 

Ji = Rotational quantum number of the "initial"/ground state 

apart from the nuclear spin 

J. = Rotational quantum number of the "excited" /virtual 

state apart from nuclear spin 

JI = Rotational quantum number of the "final"/resonant state 

apart from nuclear spin 

Ai = Orbital angular momentum quantum number of the initial 

state 

A. = Orbital angular momentum quantum number of the 

excited/virtual state 

AI = Orbital angular momentum quantum number of the final 

state 

k. = The rank for the square of the first photon 

kd = The rank for the square of the second photon 

k = The rank for the ground state distribution 

q = The component for the ground state distribution 

n = Angles describing the geometry of the laser beam with 

respect to the coordinate system for the moments of the 

ground state distribution 

() = Angle of the laser polarization vector with respect 

to the z axis of the detector frame 

tfJ = Angle of the laser polarization vector with respect 

to the y axis of the detector frame 

X = The angle between the y axis of the detector frame and the y axis 

of the lab frame 

Fi = Total angular momentum quantum number of the ground state 

including nuclear spin 

I = Nuclear spin quantum number 

S = Electronic spin quantum number 

Ni = Total angular momentum quantum number apart from spin for 

Hund's case (b) molecules 

(11) 

Equation (11) differs from that of Guest, O'Halloran, and 
Zare23 in that we have summed over all fine structure levels 
of an electronic state with a given S value. Hence, Eq. (11) 
does not have a 2S + 1 factor in its denominator and n (Ji ) in 
Eq. (5) does not have a 2S + 1 factor in its numerator. 

H. The system geometry, E(k.,kd,k,q;fl'ab) 

In describing the system geometry we must employ two 
space-fixed frames of reference: the lab frame and the detec­
tor frame. Though we are free to choose any orthogonal set 
of axes as our lab reference frame (x,y,z), this is not a trivial 
choice because in general one is not free to choose the Z axis 
of the lab frame. In many instances a system has an inherent 
axis of cylindrical or near cylindrical symmetry; in order to 
take advantage of this and reduce the number of ground state 
alignment moments to two, A ~2), A ~4), we must designate 
the axis of cylindrical symmetry to be the lab frame z axis. 

Until now, we have only considered the case in which 
the lab and detector frames coincide; we briefly depart from 
this restriction in order to clarify how the detection geome­
try affects the amount of information that can be obtained 
using two-photon absorption. The detector frame 
(Xd,yd,Zd) is always constructed so that the laser is propa­
gating along itsYd axis. We designate () as the angle between 
the polarization vector of the laser and the Zd axis (see Fig. 
2) and¢ as the angle measured from thexd axis to the projec­
tion of the polarization vector in the XrYd plane. Since the 
laser is propagating along the Y d axis, ¢ must be O. If the 
experiment can be designed so that the laser propagation 
direction is perpendicular to the axis of symmetry, we are 
free to designate the laser propagation direction to also be 
the Y axis of the lab frame. This is advantageous because 
when the laser is propagating along the lab frame Y axis, the 
lab and detector frames coincide, as shown in Fig. 2. 

In what follows, the Z axis of the detector frame is as­
sumed to be parallel to the Z axis of the lab frame and the 
detector is assumed to lie in the X-Y plane of the lab frame. 
Here, X is designated as the angle between the Y axis of the 
detector frame and they axis of the lab frame (see Fig. 2); in 
the Appendix we allow the detector to be positioned any­
where in the lab frame. 

The angle () is the parameter which will be varied in 
order to determine the alignment moments. It is a conven­
ient parameter because its variation can be accomplished 
without the apparatus being reconfigured. Unfortunately, if 
the detection geometry is fixed, the line strength factors for 
the noncylindrically symmetric moments, A i4), A i4

), and 
A f), are linearly dependent upon those for the cylindrically 
symmetric moments, A ~4>, A 62

), and A 6°), except at () = 0°. 
The geometric factor € for X = 0 has the explicit form: 

€(ka,kd,k,q;fllab) = [41T(2ka + 1)(2kd + 1)]1/2 

o ~)(~ o 

k) y(k)«()O) o q " 
(12) 

where the Y ~k) «(),¢) == Ykq «(),¢) are the spherical harmon­
ics. For the special case that ¢ = 0, 

Y6k )«(),0) = [(2k+ l)/41T]1/ 2Pk(COS(). 

Explicit forms of the Y ~k) «(),¢) are listed in Mathews,24 as 
well as in Pauling and Wilson. 25 The expression for € for 
x=¥=0 are given in the Appendix and in Tables II and III. 

I. Reduced matrix elements of the dipole moment 
operator, S(JI,A/JfI,Ae,J~,A~,J, ,A,) 

The S terms in Eq. (4) are the reduced matrix elements 
of the dipole moment operators. The square of anyone of 
these reduced matrix elements is equal to a H6nl-London 
factor. Hence we can think of this term as being the portion 
of the line strength which is independent of the coupling 
between the photons, the coupling between the angular mo­
mentum vectors, and the anisotropy of the ground state dis­
tribution. Explicitly, 
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TABLE VI. Expressions for the moments of the ground state state distribution which can be extracted from a 
two-photon transition using linearly polarized excitation. The moments employ the GZ normalization and 
hence differ from those of CMHa by a constant which is a function of the rank k, but not the component q. 
Operators with mUltiple subscripts represent symmetric sums of all permutations. For example: Jxy 
= JJy + J.lx' (WI) is the magnitude of the vector squared, i.e., (IJI) = [J(J + 1) ]'/2. 

The angular momentum spherical tensor operators expressed as functions of the raising and lowering opera­
torsb 

J~O) = I 

J~') =Jz 

J(~), = + (2)- 1/2J ± 

J~2) = (6)-1/2(3J; _ J2) 

J ~>, = + J ± (2Jz ± 1) 

J~)2 = (I/2)(J ± )2 

J~3) = [(10) -1/2](5J; - 3J2 + 1 )Jz 

J~>, = + [(30)'/2/20)J ± (5J; - J2 ± 5Jz + 2) 

J~)2 = [(3) 1/2/2)(J ± )2(Jz ± 1) 

J~)3 = + [(2) -112/2j(J ± )3 

J~') = [(70)-1/2/2](35J: - 3OJ;J2 + 3J4 + 25J; - 6J2) 

J<;'>, = + [(14) -1/2/2jJ ± (l4J; - 6J2Jz ± 2IJ; + 3J2 + 19Jz ± 6) 

J<;')2 = [(7)-1/2/2](J ± )2(7J; - J2 ± 14Jz + 9) 

J<;')3 = + [(2) -1/2/2](J ± )3(2Jz ± 3) 

J<;'). = (1/4)(J ± )4 

where 

J ± =Jx ± iJy 

(J ± )2 = J; - J; ± i(JJy + J.lx) 

=Jx' -Jy' ±i(Jxy ) 

(J ± )3 = J! - (JJ; + JyJJy + J;Jx ) ± i[ (JyJ! + JJ.lx + J;Jy ) - n] 
= J x' - Jxy' ± i(Jyx' - Jy' ) 

(J ± )4 = J! + J; - (J;J; + JyJJyJx + J.l;Jy + J;J; + JJyJJy + JJ;Jx ) 

±i[(JyJ! +JJ.l; +J;J.lx +J~Jx) + (JJ~ + JyJJ; +J;JJy +J!Jy )] 

= J", + Jy< - Jy'x' ± i(Jyx' + Jxy') 

The moments of the ground state distribution as defined in Eq. (A61) 

A~O) = 1 

A~2» = «JII(3J; _J2)/J2IJI» 

A ~2) = - (6)'/2«JIIJx(2Jz + 1)/(J2 )IJI » 

A~2) = (6)'/2«JII(Jx' -Jy')/(2J2)IJI» 

A~4) = «J,1(35J: - 3OJ;J2 + 3J4 + 25J; - 6J2)/(8J4 )IJj » 

A ~.) = - (5) 1/2«JIIJx (l4J; - 6J2Jz + 21J; - 3J2 + 19Jz + 6)/(8J4
) IJI» 

A ~4) = (5/2)1/2( (JI I (Jx' - Jy' )(7J; - J2 + 14Jz + 9)/( 4J4) IJI» 

A \4) = - (35)'/2«JII(Jx' -Jxy')(2Jz + 3)/(8J4 >IJI» 

A~4) = (35/2) 1!2«JI I (J", +Jy< -Jx'y')/(8J4 )IJI» 

The "real tensor" moments of the ground state distribution as defined in Eq. (A52) 

A~ol = 1 

A ~21 = «JI I (3J; - J2)/J2IJI» 

AFI = -2(3)'/2«JIIJx(2Jz + 1)/(J2)IJI» 

A ;22. = 2(3)'/3«JtlJy(2Jz - 1)/(J2)IJ,» 

An = (3)'/2«JII(Jx' -Jy')/(J2)IJI» 

A 1'2. = (3) 1/2( (JI I (Jxy )/(J2) IJI» 

A ~'1- = «JI I (35J: - 3OJ;J2 + 3J4 + 25J; - 6J2)/(8J4) IJI» 
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TABLE VI (continued). 

A l"l = - (lO)'/2«Ji IJx (l4J! - 6J2J. + 2IJ~ - 3J2 + 19J. + 6)/(8J4 )IJi ) 

Al~ = (lO)'12«Jil/y(l4J~ -6J2J. -21J~ + 3J2 + 19J. -6)/(8J4 )IJi ) 

A 1"l = (5)'12«J,I (Ix' - J,r )(7J~ - J2 + l4J. + 9)/(4J4) IIi) 

A 1~ = (5)'/2«Ji l (JXY )(7J~ - J2 - 14J. + 9)/(4J4) IJi ) 

A~"l = - (7O)'12«Ji I (Jx' -Jx,r)(2J. +3)/(8J4 )IJi ) 

A~~ = (70)'/2«J,I(Jyx' -Jy')(2J. - 3)/(8J4 )IJi ) 

Ai"l = (35)'/2«Ji l(Jx' +J". -Jx',r)/(8J4 )IJi ) 

Ai~ = (35)1I2«J,I(Jyx' + Jxy')/(8J4 )IJi ) 

• In Table I of CMH there appears to be some typographical errors in J <':)2' J ~4), and J ~" . 
b The J ~k) are generated from the J <;')k = [J ~)I ] k by applying the raising and lowering operators 

J ± = Jx ± iJy = =+= (2) 1/2J~" and using the relationship [J ± ,J~k)] = [k(k + l) - q(q ± l) l'12J~~ I. 

S(JoA;,J.,A.,J;,A;,Jf ,Af ) 

= (J ;A; IItllIIJ;A; )*(J.A. Ilr(llIIJ;A;) 

X (Jf Aflltl)lIJ; A; ) * (Jf Aflltl)IIJ. Ae ), 

where 

(J2A 211t ll 11J1A 1) 

= (41T/3)1/2R i~2-AI)(2J2 + 1)1/2(2J1 + 1)1/2 

and 

(13) 

(14) 

(J2A2I1tllIIJIAI)* = ( _1)(J2-J')(JIAlllr(!)IIJ2A2) 
(15) 

and R i~2 - A,) equals the radial part of the transition dipole 
moment integral between the states, A2,A 1, in the Born-Op­
penheimer approximation weighted by a detuning param­
eter. 

In general the radial integrals are unknown, but they are 
usually included in the detection-sensitivity constant, 
C(det). In some cases, such as a };-}; transition, we must 
know the ratio of the products of the radial integrals for 
excitation via}; ..... }; ..... }; or via}; ..... II ..... }; pathways. In this 
case we can employ the technique suggested by Bray and 
Hochstrasser6 of measuring the ratio of these radial integrals 
on an isotropic sample by comparing line intensities using 
linearly and circularly polarized light. We then use this path 
ratio as the radial integral terms in the above equation. 

J. The angular momentum coupling terms, 
h(kd,k.,k,J"J.,J~,Jf ) 

Theh(kd,ka,k,JoJ.,J;,Jf ) inEq. (4) represent the an­
gular momentum coupling terms. They show how the mo­
ments of the square of the photon electric field vectors and 
the moments of the ground state alignment distribution are 
coupled to the angular momentum vectors of all three states. 
Explicitly, 

h(kd,ka,k,J;.J.,J;,Jf ) 

= (_1)(J/+J;-kd +l) 

X [(2kd + 1)(2ka + 1)(2k+ 1)]1/2 

{
J; 

X 1 
J. J.} 

~ . (16) 

At first sight, Eq. (16) has a formidable appearance to 
the uninitiated because of the presence of the 6-j and 9-j sym­
bols. These are fractions whose values can be found as the 
sums of products of 3-j symbols.2

6-30 Hence, their presence 
should not deter the use of Eq. (16) because their values are 
readily calculated using numerical techniques. 

III. AN EXAMPLE 

In this section we calculate the moments of the line 
strength for a specific case and show how to convert line 
intensity measurements into the alignment moments of a 
ground state distribution. The molecular constants used are 
those for the two-photon transition, N2 a IIIg_X I};g+ . 

A. The moments of the line strength as a function of J, 
and 9 

In Figs. 3 and 4 we have plotted the normalized mo­
ments of the line strength (including hyperfine depolariza­
tion) as a function of the angle of the laser polarization in the 
high J; limit. The strength of the zeroth moment is indepen­
dent of the polarization of the laser since it only reflects the 
population in the ground state and contains no spatial infor­
mation. It is important to note that all the even q moments 
are symmetric about 90°. Consequently, when collecting 
data on a cylindrical symmetric distribution, the angle of 
polarization need not be varied outside 0° and 90°. 

Inspection of the graphs for the noncylindrically sym­
metric moments shows that they all are strictly zero at 
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TABLE VII. Expressions for the rescaling factors, b k(Jj ). These expressions employ the GZ normalization. 

bO(Jj) = (21j + 1)-1/2 

b 2(Jj ) = {J, (J, + 1 )/[ (21, + 3)(21, + 1 )(21, - I) J}1/2 

4J2(J + 1)2 
b 4 (J.) = ' , 

• [(J, + 2)(Jj + I)J,(Jj - 1)(21, + 5)(21, + 3)(21, + 1)(21, - 1)(21, - 3) r/2 

() = 0·. This fact is quite advantageous because if we record 
the line intensities for three rotational branches at O· then we 
can detennine the three cylindrically symmetric moments of 
the ground state, whether or not the system has cylindrical 
symmetry. 

Except for Pg and a few rotational branches of P: and 
P~, the line strength moments are rapidly changing func­
tions of the laser polarization angle. This is quite unfortunate 
because in order to accurately measure the corresponding 
A ~k), we need to record the line intensities at a large number 
of closely spaced polarization angles. In addition, the 
smoothly varying moments require us to record the data 
over the full range of polarization angles. Failure to do this 
will result in being unable to differentiate between contribu­
tions for pairs of A ~k) which have similar A ~k), for example 
P: and P~. 

In Fig. 5 we have plotted the line strength moments as a 
function of the rotational quantum number Jj • This figure 
has been constructed for () = 15· and q = 0 because other 
values of () and q would not change the shape of the plots but 
only the scales. Hence a plot of P ~ vs Jj has the same appear­
ance as a plot of P ~ vs J j for a given value of (), and a change 
in () causes just another rescaling. As Eqs. (4) and (12) 
show, P~ depends on () and q only through the spherical 
hannonic tenn y~k)«(),O), and this tenn does not affect the 
dependence of P ~ on Jj • 

In these figures we have omitted the moments of the line 
strengths, p~, which are undefined or strictly zero. For the 

laser 
beam 

z 

y 

~~ ____________ ~X 

FIG. 2. The system geometry. The axes of the space-fixed frame are labeled 
x, y, and Z while Xd, Y d' and Zd denote the axes of the detector fixed frame. 
Note that the laser beam propagates along the Yd axis making an angle X 
with respect to the Y axis of the space-fixed frame. The electric field vector is 
in the Xd -Zd plane at an angle (J with respect to Zd . 

zeroth moment the lines 0(2), O( 1), P( 1),0(0), P(O), and 
Q(O) do not exist because they connect ground state rota­
tional levels to rotational levels less than one in a I II state. 
R (0) is strictly zero for a two-photon transition between a 
Il; state and a III state. For the second moment we omit all 
the moments for those transitions which are undefined or 
strictly zero, and we omit all transitions with J j less than one. 
J j must be greater than or equal to one to exhibit a quadru­
pole moment. For the plot of the hexadecapole moment, we 
omit all transitions for J j less than two since these cannot 
exhibit a hexadecapole moment. 

Finally, in Fig. 6 we plot the hyperfine depolarization 
divided by the nuclear spin degeneracy vs the rotational 
quantum number Jj • This quantity is independent of both q 
and (). All our calculations for P ~ have included the hyper-

5.0 (a) 
--0 Branch 
--P 
-Q 
--R 2.5 
······S 

a 1:::::==c:::::::Jc:::::::J:::::I 

-0.4 

0.5 

, 
\. (c) ./ 

\~ .............. ! ,_/ 
-0.5 

-1.2 

a 80 160 a 80 160 
Angle of Polarization, 8 (degrees) 

FIG. 3. The moments of the line strength factor with even components P: 
vs the angle of polarization (J for the five rotational branches of J, = 20 in 

the N2 a Ing_X Il:t two-photon transition. All P:, except P~, have been 
normalized with respect to P~. 
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1./ .... ~ ; ... ~ 
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!/ 
\\ :'1 
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.... 
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FIG. 4. The moments of the line strength factor with odd components P;, 
vs the angle of polarization 8 for the five rotational branches of J i = 20 in 
the N2 Q 'ng-X '~t two-photon transition. All P;, except Pg, have been 
normalized with respect to Pg. 

fine depolarization. For N2, the even J i couple with total 
nuclear spin 0 and 2. This implies that even at low Ji , the 
minimum value of the hyperfine depolarization is one sixth 
for even J i • As J i increases above the value of k, the hyperfine 
depolarization due to I = 2 decreases. The odd Ji only cou­
ple to the 1= 1 and hence can become completely depolar­
ized as J i approaches zero. Though the graph of the hyper­
fine depolarization, gk(Ji ) vs J;. appears jagged, if we 
decompose it into separate plots for the even J i , it becomes a 
smooth function. 

+ 
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FIG. 5. The moments of the line strength factor P; vs the ground state 
rotational quantum number for the five rotational branches at 8 = 15° in the 
N 2 Q 'ng-X '~t two-photon transition. The moments oftheP; have been 
normalized with respect to the total nuclear hyperfine degeneracy of each 
Ji , and the higher order moments have been normalized with respect to the 
zeroth moment. 
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+ -C\I ...., 
~ .. 
,.... 0.50 .., ...., 
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o~~~~~~~~~~~~~~~ 
o 16 24 

ROTATIONAL QUANTUM NUMBER, J 1 

FIG. 6. The hyperfine depolarization factor for N2 X '~t vs the ground 
state rotational quantum number for rank 0, 2, and 4 moments. The degen­
eracy factors have been normalized with respect to the total nuclear hyper­
fine degeneracy of each J i • 
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In the highJ; limit, g"(J;) converges to the value for the 
nuclear spin degeneracy so we expect all the curves in Fig. 6 
will converge toward unity in the high J; limit. We anticipate 
that the curve for k = 4 will converge the slowest since the 
hexadecapole moments are the most sensitive to depolariza­
tion. 

B. Polar plots of the pure moments of a distribution 

Before describing how to extract the moments of the 
ground state distribution, it seems only natural that we clear­
ly depict the shapes ofthese moments so that we can visual­
ize what it is that we are trying to determine. Let ground 
state distribution be denoted by P(J,M) where the sum of 
P( J,M) over all M is just the population, n (J), of the level J. 
Then the moments of the ground state angular momentum 
distribution can be expressed as 

A ~kl(J) = e(k) (JM WIJM) -k12 Re I P(J,M) 
M 

X(JMIJ~klIJMVi;P(J,M). (17) 

We solve Eq. (17) for P(J,M) by multiplying both sides 
by Re :Ik,q (2k + 1)(JM'IJ~klIJM')/(JIIJ<klIIJ)2: 

n(J)Re I A ~kl (2k + 1) (JM WIJM)kI2 
k,q 

X (JM'IJ~klIJM')/[c(k) (J1IJ<klIIJ)2] 

= IP(J,M)Re I (2k+ 1)(JIIPkl IIJ)-2 
M k,q 

X (JM'IJ~klIJM')(JM IJ~klIJM). (18) 

Application of the Wigner-Eckart theorem [see (Eq. 
(5.4.1) ofEdmonds29 ] to both matrix elements on the right­
hand side of Eq. (18) and the orthonormality of the result­
ing 31 symbols [see (Eq. 3.7.7) ofEdmonds29] gives 

P(J,M) = n(J) I s(J,k)A ~kl(J)Re[ (JM IJ~klIJM)], 
k,q 

(19) 

where 

s(J,k) = (2k + l)[J(J + 1) ]kI2/[e(k)(JIIJ<kl IIJ)2] 

= (2k+ 1)e(k)[b k(J)]2/[J(J+ 1)]kI2 (20) 

and in Eq. (19) k ranges from 0 to 2J in integral steps and q 
ranges from - k to k. Here J ~kl is the angular momentum 
spherical tensor operator, and it has complex matrix ele­
ments. Again, e(k) are the normalization constants defined 
in Eqs. (7a)-(7c) which insure that theA ~kl follow the GZ 
normalization. Equation (19) re~resents the expansion of 
the ground state angular momentum distribution in the ori­
entation and alignment factors A ~k). 

In the high J limit the expectation values of the angular 
momentum spherical tensor operators become equal to 
spherical harmonics multiplied by a conversion factor, 

v(k) = [Re(J~kl)/(J2)k/2]!{Rer y~kl«(},f/J) ]}; 
v(O) = (41T) 112, v(2) = (81T/15) !72, v(4) = 4(21T1315) 1/2. 
Thus for high J: 

P(J.Jx,Jy,Jz ) = n(J) I (2k + 1) [b k(J) peek) 
k,q 

where 

cos(}=J 1(J2 +J2 +J2)1/2 z x y z , 

sin () cos f/J = Jxl(J; + J; + J;) 1/2, 

sin () sin f/J = Jyl(J; + J; + J;) 1/2, 

and k = 0 to <Xl and q = - k to k. Finally, we can condense 
the redundant q=f.O terms: 

P(J,Jx,Jy,Jz ) = n(J) I D(q)(2k + 1) [b k(J) Fe(k) 
k,q 

Xv(k)A t'(J)Re[ y~kl«(},f/J)], (22) 

where the summation over q ranges from 0 to k. 
The shape of the lower order spherical harmonics are 

familiar since their squares give the shapes of atomic orbi­
tals, i.e., I Y60l

1
2 has the shape ofthes orbital and I Yb2l

1
2 that 

of the dE" The rank four moments correspond to g orbitals, 
and their shapes may not be so well known. In Figs. 7 and 8, 
we have presented the high J; shapes for all the moments 
which affect the line intensity for linearly polarized two-pho­
ton absorption in which the probe laser is propagating along 
the y axis. These moments correspond to the real portion of 
the spherical harmonics, Y ~kl. It is important to note that 
except for the zeroth moment, all the moments have negative 
as well as positive lobes. Except for the zeroth moment, each 
moment can represent either an increase or a decrease in the 
two-photon absorption probability, depending on the align­
ment of J;. 

c. Extraction of the ground state moments 

In general, the line intensities of all the branches can be 
measured at several polarization angles. This appears to be 
the best possible way to determine the moments because the 
moments of the line strength are nearly identical for the 0 
and Sbranches and for the P and R branches (see Figs. 3-5). 
It is always worth measuring one of each of these pairs of 
rotational branches, i.e., the 0 and P branches, because the 
moments of their line strengths are very different. For the 
most general case we can write an equation employing vec­
tors and arrays which lets us use a multivariable linear least 
square fit to find the moments of the ground state distribu­
tion.3

! The equation describes an overdetermined system 
and, hence, gives an increasingly accurate measure of the 
moments as we increase the amount of data recorded. 

For a given JitA; ,Af : 
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l(1fJ ,(1) 

1(Jf2 ,82) 

Pg (lfJ ,81 )P~ (J/I ,81 )P~ (J/I ,81 )P~ (J/I ,81 )Pt (J/I ,(1 ) 

Pg (J12 ,(2)P~ (JI2 ,82)Pi (J12 ,(2)P~ (JI2 ,82)Pt (J f2 ,(2) 

ag(app) 

a~(app) 

ai(app) 

a~(app) 

at (app) 

= 

where 

a~(app) = L c(k,k',q,q')a~'(Jj); 
k',q' = even 

a~(app) = L c(k,k',q,q')a;:(lj), 
k',q'=odd 

a;(Jj ) =A~k)(Jj)n(Jj)C(det), 

A ~k)(Jj) = a; (lj )lag (Jj ), 

ag(Jj ) = n(Jj)C(det). 

(24) 

(25) 

(26) 

(27) 

Here we have introduced two new quantities, the appar­
ent moments of the ground state distribution, a; (app), and 

~O) 
o 

x 

z 

~ 
1-

- 1 - - - + x 
+ --, 

r 

Z 

x 

z 

~
tY (4) 

-- -' - ~ A4 
- '- x 
z 

FIG. 7. Three-dimensional diagrams of the A ~k) (Ji ) with even components 
in the high J i limit. These functions are proportional to the real parts of the 
corresponding spherical harmonics, y~k). 

I 

(23) 

the unreduced moments of the ground state distribution 
a; (Jj ). The latter are proportional to the moments of the 
ground state distribution, and we can readily convert from 
the unreduced to the reduced moments by dividing the for­
mer by the zeroth unreduced moment. Unfortunately, we 
cannot directly measure the unreduced moments when the 
laser propagation direction is fixed, i.e., X is constant. Under 
these conditions, the noncylindrically symmetric moments 
have line strengths which are linearly dependent upon those 
for the cylindrically symmetric moments, and hence the ap­
parent moments are sums over the unreduced moments. In 
Table VIII, we give the expansion coefficients, c(k,k ',q,q') 
for Eq. (24) for the case X = O. 

There are only two ways to determine the individual 
unreduced moments: first, vary X in order to remove the 
linear dependency in the line strength; second, determine the 
cylindrically symmetric moments at 8 = 0 and subtract 
these known values from the apparent moments to get the 
even q unreduced noncylindrically symmetric moments. 

Recording the data at 8 = O· sets all the noncylindrical­
ly symmetric moments of the line strength equal to zero. 
Under these conditions, if we can record the line intensities 
of three of the branches, we can exactly determine the cylin­
drically symmetric moments of the ground state according 
to 

Y 

A(2) 
1 z 

Y x 

z A<:)z$ 
z x 

A(4) 
x 3 Y 

x 
FIG. 8. Three-dimensional diagrams of the A ~k) (Ji ) with odd components 
in the high J i limit. These functions are proportional to the real parts of the 
corresponding spherical harmonics, Y ~ k) • 
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TABLE VIII. The apparent mements as a functien efthe reduced mements 
ef the greund state distributien fer X = 0, erthegenal detectien geemetry. 

ag(app) =ag +2[(5/6) 1/2a; + (7/1O) 1/2a1 + (1/1O) 1/2a11 

a~ (app) = a~ + 2 [ - (1/6) 1/2a; - (2/7) 1/2a: + (1/2)an 

a~(app) =a~ + (617) '12a1 

a~(app) =a~ +2[(1170)'/2a: - (2/5) 1/2an 

a~(app) =a~ - (I/7) '12a1 

(28) 

Only three measurements suffice to determine ag, a6, and a~; 
however more measurements will once again overdetermine 
the solution and allow a meaningful error analysis. 

There is a unique set of zeroth, second, and fourth mo­
ments for any ground state distribution, but, in general, the 
reverse, is not true. Even though we can find the three cylin­
drically symmetric moments, we have not determined the J i 
distribution. The moments we have determined could be 
generated by a pure combination of A 60.), A 62), and A 64

) 

terms in Eq. (19) where the other moments are set to zero. 
Alternatively, there are many J i distributions which 

have lower order moments identical to those we measured 
but also contain nonzero higher order moments. Only if 2.Ii 
is less than or equal to the number of moments recorded can 
we determine completely the ground state distribution. 

IV. SOME SPECIAL CASES 

In this section we discuss the special cases under which 
the equations for the two-photon intensity can be reduced to 
a much simpler form. These limits serve to check the analyti­
cal formulas presented in this paper, and, more importantly, 
the computer programs used to analyze raw data. This sec­
tion also includes a description of the experimental condi­
tions under which only certain moments of the distribution 
affect the recorded line intensities, i.e., the "magic angles" 
for two-photon absorption. We also discuss how to take 
2 + 1 LIF data in which the fluorescence has been averaged 
over its spatial anisotropy. 

A. The BH factors 

The line strengths for two-photon absorption by di­
atomic molecules through a virtual state from an isotropic 
ground state were derived by Bray and Hochstrasser.6 We 
refer to these two-photon line strengths, apart from the tran­
sition dipole factor (see BH), as the Bray-Hochstrasser fac­
tors, and denote them by BH(Ji'JI ;.!lA). Our intensity for­
mulas, Eqs. (3) and (4), can be integrated analytically to 
give expressions P g (Ji ,JI ;.!lA) which are identical with the 
Bray-Hochstrasser factors, except for a normalization con­
stant: 

Pg (Ji,JI ;.!lA = 1) = Ko BH(Joll ;.!lA = l),uiA ~ ± l' 
(29a) 

Pg (Joll ;.!lA = 2) =Ko BH(Joll ;.!lA = 2),uiA~ ±2' 
(29b) 

Pg (Joll ;.!lA = 0) = Ko [BHi (Ji'JI ;.!lA = O),u~ 

+ BHs(Joll ;.!lA = O),u;], 
(29c) 

where 

Ko = (41T/3)2(2.Ii + 1) -I, 

,uiA ~ ± 1 = l,ull,u ± + ,u'±,u~ 12 

-IRoR±I+R±IROI2 
- eife ei fe' 

,uiA~ ±2 = l,u±,u'± 12= IR eTIRIe 11 2, 

2 -I' , "" 12 ,ui - ,ull,ull - ,u+,u - -,u -,u + 

= IRORO -R +IR -I_R -:-IR +112 
elfe el Ie el Ie' 

,u; = 12p1IP~ +p+p'_ +p"_p'~ 12 

= 12R~iRJe +Re;IRj-;I+RejIRj;-112. 

(30) 

(31a) 

(31b) 

(3Ic) 

(3ld) 

Here, thepM ,Ps' andpi are the total transition dipole mo­
ments as defined with our definitions of the raising and low­
ering dipole moment operators. The PII and P ± are equiva­
lent to the R if' - A,), the radial portions of the transition 
dipole moment integral, where the SUbscripts on P refer to 
the change in A for the single-photon transition and the 
primes refer to the different pathways (see BH). The sub­

scripts on R indicate the step, e.g., R ~:e -Ai) refers to the 

transition from the initial to excited state, and R ~:r Ae) re­
fers to the transition from the excited to the final state. Nor­
mally, we set all the R if' - A,) equal to unity. This does not 
really matter except for the Q branch of a transition in which 
Ai = AI' For this case, the above assumptions determine the 
value of the two independent transition dipole moments in 
the BH treatment, Ps and Pi' 

Bray and Hochstrasser6 explicitly define their tensor 
moments as P ± = (1/2) 1/2 (Px ± ipy ); this is an anoma­
lous convention. We instead use the standard convention for 
a first-rank tensor,26-30 namely, P± = + (1/2)1/2(px 
± ipy ). Hence when comparing our formulas for the total 

transition moments with those of BH, it seems that the P + 

had been replaced by - P +. This affects the values of Pi and 
Ps' and hence the interpretation of the parallel vs perpendic­
ular character of a .!lA = 0 two-photon transition for which 
Ps and Pi have been measured. 32 

In Table IX we present the Bray-Hochstrasser factors 
with our normalization for all possible two-photon transi­
tions. Please note that there was a typographical error in BH 
for the appropriate factor for the P branch of a AI = Ai ± I 
transition. 

B. Correspondence with GZ results 

By settingJ; = Je , A; = A e , and q =0 in Eqs. (3) and 
( 4 ), we recover the expression Greene and Zare derived for 
I + I LIF. More importantly, these assumptions also force 
our equations for S, h, and € to equal those of GZ. For exam­
ple, if (J = 0°, the €( kd ,ka ,k,O;fl) are identical with those for 
case I in Table II of GZ. 
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TABLE IX. The Bray-Hochstrasser factors with the normalization of this paper. For states with no electron or nuclear spin degeneracy, these factors are 
equal to Pg and are equivalent to the two-photon transition strengths when the ground state is isotropic. In this table, J = J" i.e., J refers to the angular 

momentum quantum number of the ground state. All the I:J.A = ± I entries have a transition dipole factor of JliA _ ± 1 while the I:J.A = ± 2 entries employ 

JliA _ ± 2 and the I:J.A = 0 entries employ Jl: except for the Q branch of a I:J.A = 0 transition. The entries are for excitation by linearly polarized light. The 

transition strengths for circularly polarized light are obtained by multiplying the values by 3/2 except for the Q branch of a I:J.A = 0 transition branch; it has 
the value (21 + I)[J(J + I) - 3A2]2/[30l(J + 1)(21 + 3)(21 - I)]. 

I:J.A= ±2 

o branch: 

Ko(J fA)(J fA -I)(J fA - 2)(J fA - 3) 
30l(J - 1)(21 - 1) 

Pbranch: 

Ko(J =FA)(J fA-I)(J =FA - 2)(J± A + I) 
ISJ(J + I)(J - 1) 

Qbranch: 

Ko(J fA)(J =FA - I)(J ± A + I)(J ± A + 2)(21 + 1) 
SJ(J + 1)(21 - 1)(21 + 3) 

R branch: 

Ko(J =FA)(J ± A + I)(J ± A + 2)(J ± A + 3) 
ISJ(J + I)(J + 2) 

Sbranch: 

Ko(J± A + I)(J± A +2)(J± A + 3)(J± A + 4) 

30(1 + I)(J + 2)(21 + 3) 

I:J.A=O 

o branch: 
Ko(J 2 - A2)[ (J - 1)2 - A2] 2 

30l(J - 1)(21 - 1) Jl, 

Pbranch: 
2KOA2(J2 - A2) 2 

30l(J + I)(J _ I) Jl, 

Qbranch: 
Ko(21+ I) 2 Ko(21+ I)[J(J+ I) -3A2 f 2 

9 Jli + 4SJ(J + 1)(21 _ 1)(21 + 3) Jl, 

R branch: 
2KoA2[ (J + 1)2 - A2] 2 

30l(J + I)(J + 2) Jl, 

Sbranch: 
Ko[ (J + 1)2 - A2][ (J + 2)2 - A2] 2 

30(J + I)(J + 2)(21 + 3) Jl, 
where 
Ko = (41T/3)2(21i + 1)-' 

JliA- ±' = Ipup ± + Jl'± pW = IR ~iR l' + R.T 'R J.12 

JliA~ ±2 = IJl±Jl'± 12= IR.TIRl'12 

Jl~= IJluJlil -Jl+Jl'- -Jl"-Jl'~ 12= IR~iRJ. -R.i'Rj;'-R.,'R,:-'12 

Jl: = IlIlupiI +Jl+P'- +Jl"-Jl"+ 12 = 12R~iRJ. +R.t'Rj;' +R"'RJ'12 

C_ Magic angles 

In contrast to LIF, magic angles are very easy to utilize 
in single-color two-photon absorption spectroscopy. In LIF 
we must separately consider the geometry of the polarization 
vectors of both the absorbed and detected photons; hence in 
order to get a magic angle we must specify two sets of angles. 
In two-photon absorption spectroscopy, the photons are 
identical; hence, magic angles can be reached solely by speci­
fying (), the angle of the laser polarization vector if the laser 
propagation vector lies in the x-y plane of the lab frame. 

At () = O· all the P ~".o vanish and at () = 90· all the 
P ~ = odd vanish since the corresponding spherical harmonics 

I:J.A= ± I 

Ko(J =F A - I)(J =F I:J.)(J =F A - 2)(J ± A) 
ISJ(J - 1)(21 - 1) 

Ko(J fA - I)(J fA) (J ± 2A + 1)2 

30l(J + I)(J - I) 

Ko(J ± A + I )(2A ± 1)2(21 + I)(J fA) 

100(J + 1)(21 - 1)(21 + 3) 

Ko(J ± A + I)(J ± A + 2)(J =F2A)2 

30l(J + I)(J + 2) 

Ko(J ± A + I)(J ± A + 2)(J ± A + 3)(J fA + 1) 

IS(J + I)(J + 2)(2J + 3) 

in the equation for €(kd,ka,k,q;fl) are zero. As previously 
mentioned, we can determine the cylindrically symmetric 
moments at () = O· using the intensities of three or more rota­
tional branches. 

At () = 54.7·, P ~ vanishes. Thus if we can assume cylin­
dricalsymmetry, we can determine n (Jj ) andA &4) (Jj ) from 
the line intensities of just two rotational branches.33 

Atboth() = 30.6· and 70.1·,P~ vanishes. Thus if we can 
assume cylindrical symmetry, we can detemrine n (Jj ) and 
A ~2) (Jj ) from the line intensities of just two rotational 
branches. 

At () = 67.S· P; equals zero and at () = 49.1· P~ vanish­
es. These facts do not have much importance experimental-
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ly, but they do serve as a nice check on the numerically calcu­
lated values of p~ and P~ . 

For a cylindrically symmetric ground state distribution 
we only need to vary the angle of the polarizer once to deter­
mine all the measurable moments, n(J;), A 62 )(J;), 

A 64
) (J;): one spectrum must be recorded at () = 54.7° and 

another at either () = 30.6° or 70.1°. 

D. 2+1 LIF 

In order to apply Eqs. (3) and (4) for 2 + 1 LIF, the 
fluorescence must be collected independent of its polariza­
tion and anisotropy. The former is easily accomplished, but, 
in general, the latter requirement is difficult to fulfill without 
moving the fluorescence detector or capturing a large solid 
angle element of the fluorescence. However, when the distri­
bution is known to have cylindrical symmetry, such as in 
photolysis, then it may be possible to vary the symmetry axis 
in a manner which averages the spatial anisotropy of the 
radiation. 

v. CONCLUDING REMARKS 

We have presented a completely general formalism for 
determining populations and alignments for single-color 
two-photon absorption spectroscopy utilizing linearly polar­
ized light. All the formulas have been summarized in Tables 
I-V, and these tables can be used directly to reduce two­
photon absorption spectra into populations and alignments. 
This is only half the story; the J; distribution may not only be 
aligned, but also oriented, i.e., it may have a net helicity. In 
order to detect this orientation, the two-photon absorption 
must be carried out using circularly or elliptically polarized 
light. We have extended the analysis presented in this paper 
so that the orientation moments can also be extracted.34 The 
formulas presented in this paper have been used to analyze 
the J; distribution ofN 2 scattered from a clean single-crystal 
Ag( 111) surface, and the results of this are described in a 
subsequent publication.35 
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APPENDIX 

We consider here the derivation of the expressions ap­
pearing in Tables I-IV. The Appendix is divided into seven 
parts. First we factor the equation for two-photon absorp­
tion into a geometric term, an angular momentum coupling 
term, and a reduced matrix element of the spherical tensor 
angular momentum operator (Sec. 1). Second, we reduce 
the angular momentum term to the product of a 6-j symbol, a 
9-j symbol, and reduced matrix elements of the dipole mo­
ment operator (Sec. 2). Third, we evaluate the reduced ma­
trix elements of the dipole operator for singlet states (Sec. 
3). Fourth, we simplify the geometric term involving the 
excitation-detection scheme to a form containing only a sin­
gle spherical harmonic (Sec. 4). Fifth, we present the hyper­
fine and spin depolarization factors (Sec. 5). Sixth, we cal­
culate the matrix elements of the spherical tensor angular 
momentum operator and combine them so as to have only 
real matrix elements (Sec. 6). Seventh, we present the sim­
plified case for orthogonal excitation/detection geometry 
(Sec. 7). Care has been taken to show intermediate steps in 
these derivations so that this treatment can be extended to 
more complex cases. We rely extensively on the angular mo­
mentum machinery presented in Edmonds29 and cite his 
equations as E. followed by his equation numbers. 

1. Factorization of the two-photon absorption equation 

The starting equation for the time-independent two­
photon absorption probability was given in Sec. II: 

! = C L ( L (Jf ,Mf ,Afledorllre,Je,Me,Ae) (:e,Je ,Me ,Ae lea
or2IJ;.M;.A;) 2). 

Mf Je.M .. Ae Ee; - hv + l(r.l2) 
Ye 

(AI) 

This equation is analogous to Eq. (27) of GZ and the definitions of the terms are identical. For the sake of brevity we have 
omitted electronic and vibronic state quantum numbers, but they will be explicitly written out when evaluating the radial 
portion of the dipole moment matrix elements. Here, ea and ed are the polarization unit vectors of the first and second 
photons, and r is the dipole moment operator. The constant C is proportional to the total population in state J;,A; and also 
embodies various normalization factors. The brackets ( ) indicate a weighted average over all M;. Hence our intensity 
expression differs from that ofBH by a factor proportional to (2J; + I). We expand the square in Eq. (AI): 

!.= C L ( L (J;M;A; le:or1Ir;J;M;A;) (r;J;M;A; le:or2lJf Mf Af )/ 
M f r;.J ;.M ;,A; 

r~Je'Me·Ae 

D;; (If Mf Afledor3Ir.JeMeAe) (reJeMeAe lea or4IJ;M;A; )/De) , (A2) 

where De; and D;; are the energy denominators from Eq. (AI). Next, we identify the projection operators: 
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Pe = L Ir.JeMeAe )(r.JeMeA.I, (A3a) 
re.J~Me'At! 

P; = L Ir;J;M;A;)(r;J;M;A;I, (A3b) 
y;.J ;.M ;.A; 

(A3c) 

and insert them into Eq. (A2). This is advantageous because they are scalars (tensors of rank k = 0) and hence readily 
commute with each other and with other scalars: 

(A4) 

This equation is identical with Eq. (30) of GZ. However our projection operators are different than those of GZ because 
our excited state does not have a unique Je or Ae. Next, we follow the FM approach and separate the angular momentum 
coupling factors from the geometric factors. This has already been done for the above equation by GZ. From Eqs. (41), (42), 
and (48) of GZ, it follows that 

1= C L (-I)k-qE~k)(kd,ka;n)«JiMiAilJ<~)qIJiMiAi»Z/(JillJ<k)IIJi)' (AS) 
kd,k",k.q 

where 

Z = (Jill{[r?) xr~l)] (kd) [rp) Xr~l)] (ka)}(k)P ;p/ Pe IIJi ), (A6) 

E~k)(kd,ka;n) = {[ e:(1) xe~l)] (kd) X [e:(1) Xe~l)] (ka)}~k). (A7) 

The superscript (k) and sUbscript q on E~k) are employed to indicate that E is a spherical tensor operator; this notation differs 
only in appearance from that of GZ. 

2. The angular momentum coupling factors 

Our first task is to simplilfy Z. We substitute the expressions for the projection operators, Eqs. (A3a), (A3b), and (A3c), 
into Eq. (A6): 

Z= L L (JiMiAilr~~)-'r;J;M;A;) 
qtbqa.q.M, y;.J ;.M ;.A;.M; 
Q •• Q2.Q).Q4 Ye.Je.MeoAe.Ai 

k Ji ) 

q M; . (A8) 

We apply the Wigner-Eckart theorem (E.S.4.1) to the four matrix elements, and we convert the three Clebsch-Gordan 
coefficients to 3-j symbols (E.3.7.3): 

Z= L 
aJlq,M 

X( _l)(J;-M;) (~~; q2 ~J (r;J;A;II"<I)IIJ/A/) 

x(_l)(JrMf)(~~/ q3 ~J(J/A/II,.<I)IIr.J.Ae)(-l)(Je-M·)(~~e q4 ~J(r,JeAell,.<I)IIJiAi) 

k J·)V q ~; Dei D':;'. (A9) 

We simplify the phase factors by noting that k and all q are integers while all J and M are either integers or half-integers. 
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This allows us to flip the signs of k, all q, all 21, and all 2M that appear in the phase factors; for example ( _ 1) (M, - M r ) 

= ( - 1) (Mr Mil. We also use the following relationships: 

M; =q2+Mf' 

Me =Mf -q3' 

q = qa + qd' 

which ensure that the corresponding 3-j symbols in Eq. (A9) do not vanish. 

(AlOa) 

(AlOb) 

(AlOe) 

In addition we perfonn a few symmetry operations on the 3-j symbols in order to simplify their contraction into a 6-j 
symbol (E.3.7.4-6). These operations do not introduce any new phase factors. 

Z= ) (_l)(-J;-Jr J.+ka -kd l( _1)(q,-q,- Mr l[(2kd + 1)(2ka + 1)(2k+ l)r /2 
aIf";tM 

Jf!JAeoI;.A; 

( J' Jf)C 
Je Jf ) ( 1 kd) ( Ji J;) 

X _~; q2 Mf q3 Me -Mf -q3 -q2 qd -Mi q) M' e 

( Je Ji ) ( kd ka k ) ( J 
k 

J·)C ka ) 
X -M q4 Mi -qd qa -q -~i q ~i q) q4 -qa e 

where 

(AlIa) 

(Allb) 

We can perfonn the summation over Mf ' q2' and q3 using only the second phase factor and the first three 3-j symbols by 
employing the identity (E.6.2.8): 

( J' Jf)C 
Je Jf ) ( I kd) L (_l)(Q,-Q,- Mr l _~, 

q2 Mf q3 Me -Mf -q3 -q2 qd Mr,q"q, e 

( J' Je kd) {J; Je kd} . = ( _ 1) -Jr e (A12) 
-M; Me qd 1 Jf 

We substitute Eq. (A 12) into Eq. (A 11) and simplify the remaining phase factor; this is the first phase factor in the equation 
below. Next, we perfonn a few symmetry operations on the remaining 3-j symbols (E.3. 7 .4-6) in order to convert them into a 
fonn which is easy to contract into a 9-j symbol; this generates the second phase factor in the equation below: 

X L (_l)(I-Ji +k-J;+kd l ( Ji 

Mi,Mt!.Mi,M; - M,. 
q"q.·q·qa,Qd 

Je 
) 

-Me 

Je 

-Me 

(Al3) 

In the above equation none of the indices in the second summation appear in the phase factors. Thus, the summation of six 
3-j symbols in Eq. (A13) reduces to a single 9-j symbol (E.6.4.4). We then use the symmetry properties of the 9-j symbol to 
convert it to a fonn analogous to that derived by GZ (E.6.4.5): 
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(AI4) 

By substituting Eq. (A 14) into Eq. (A 13) and combining the phase factor of Eq. (A 14) with the second phase factor of 
Eq. (A13) we derive 

Z= I (_I)(Je+ka+l+Ji )( _1)(-J;-2JrJe+ka-kd)[(2kd + 1)(2ka + 1)(2k+ 1)]1/2 

J;,A;,Je'Ae 

{
J; 

X 1 
(AI5) 

We rewrite the reduced matrix elements appearing in s(JitA; ,Je ,Ae ,J ; ,A;,Jr ,Ar ) so that it is a positive definite quantity 
when the virtual state is replaced by a real state [see Eq. (54) ofGZ]. Toward this end, we convert two of the reduced matrix 
elements to their respective complex conjugates: 

(J;A;II,.<l)llr;J;A;) = (_I)(J;-Ji )(r;J;A;II"<l)IIJ;A;)*, 

(r;J;A;II"<l)IIJr Ar ) = (-I)(Jr J;)(Jr Arllr(l)llr;J;A;)*. 

(AI6) 

(AI7) 

Substituting Eqs. (AI6) and (AI7) into Eq. (AI5) and making appropriate phase factor simplifications, we find 

(AI8) 

where 

S(JitA;,Je,Ae,J ;,A;,Jr ,Ar ) = (J ;A; II,.<I)IIJ;A; )*(JeAe Ilr(l)IIJ;A;) (Jr Arll,.<l)llJ ;A; )*(Jr Arll,.<l)IIJeAe). (AI9) 

We have omitted the energy denominators and sums over electronic quantum numbers in Eq. (AI9) because we will 
incorporate them into the radial portions of the reduced matrix elements. The altered reduced matrix elements are differenti­
ated by not having electronic quantum numbers included in their arguments. 

3. Calculation of the reduced matrix elements of the 
dipole moment operator for singlet states 

The reduced matrix elements of the dipole moment op­
erator are easily calculated from the matrix elements of the 
dipole moment operator using the Wigner-Eckart theorem 
(E.5.4.1). We are free to choose any component, q, of the 
matrix elements. For the sake of simplicity we let q = O. 
Since we are interested in the dipole moment operator, we let 
k = 1. We can invert the Wigner-Eckart theorem while not­
ing that the total sign of the phase factor can be reversed 
since the sum of all the terms in the phase factor is an integer: 

(J2A2 11,.<1)1IJ1A1 ) 

( _1)(J2-M2)(J2M2A2Ir~1)IJIMIAl) 
(A20) 

To calculate the matrix elements of the dipole moment 
operator we follow the procedure of Dixit and McKoy,36 but 
we employ the standard phase convention for the rotational 
wave function, and we use the corresponding standard equa­
tion the transforlnation between the space-fixed and mole­
cule-fixed frames of reference, as given by Brown and How-
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ard (BrHd). 37 These conventions37
-

39 are in agreement with 
Brink and Satchler (BS),30 but differ from those of Ed­
monds.29 We start by writing out the wave function in the 
Born-Oppenheimer approximation using Eq. ( 17) ofBrHd: 

lyvJMA) = qt~e)({r;};R)xv (R) 

X[(U+ 1)/8rP/2D~l·(R). (A21) 

Here qt~e) ({r;};R) is the electronic wave function of state r 
that depends on the positions of all the electrons in the mo­
lecular frame of reference, {r;}, and the internuclear separa­
tion' R; Xv (R) is the vibrational wave function for state v 
and also depends on the internuclear distance; and 

A 

D ~l· (R) is the complex conjug~te of a rotation matrix coef-
ficient as defined by BS where R denotes the Euler angles 
relating the space-fixed and molecule-fixed frames of refer­
ence (where Z in the molecule-fixed frame lies along J). In 
calculating the matrix element of r{/), we must recognize 
that it is expressed in the space-fixed frame of reference since 
in our original intensity expression, Eq. (A2), it was multi-

I 
(2Ir~l)I1) = (r2V~2M2A2Ir61)lrlvIJIMIAI) 

plied by another space-fixed vector, the polarization vector 
of the laser. In order to evaluate the matrix element of the 
dipole moment, we reexpress the dipole moment in the mole­
cule-fixed frame of reference since the wave functions are 
expressed in terms of the molecular coordinates. Using Eq. 
(5) ofBrHd: 

r61
) (space) = (417'13) 1/2y 61) (I'space) 

= (417'13)112 L D~l)·(R) y~l)(rmol)' 
A 

(A22) 

In Eq. (A22) we have assumed that r is of unit length and is 
only proportional to Y 61

). Bray and Hochstrasser used a 
different normalization: they equated r with Y 61). Conse­
quently, we pick up a factor of ( 417'13) 2 when comparing our 
results with those ofBH [see Eqs. (26)-(28)]. Substituting 
Eqs. (A21) and (A22) into the matrix element ofEq. (A20) 
and using E.4.2.7 and E.4.6.2 (note: these two equations 
agree with those in Appendix V of BS) we get 

= ~ ( - I) -A(41T13)1/2[r2v~2M2A2ID612A (R)y~l)(rmol) IrlvlJIMIAd 

where 

= L (-1) -A(41T13)1/2[(U2 + I)(UI + I)jl/2( _1)(M,-A,) 
A 

o 
I 

-A, 
J I ) rIA, - A,) 

A 
21 , 

- I 

r~~,-A,) = f dRXv, (R)(qt~:)({r;};R)IYll)(7mol )lqt~~)({r;};R»xv, (R). 

(A23) 

(A24a) 

To get the total radial part of the transition dipole moment, we sum all the radial terms divided by their respective energy 
denominators: 

(A24b) 

(A24c) 

From the bottom row ofthe 31 symbols in Eq. (A23) we get two identities: MI = M2 and A, = A2 - A I' Substituting these into 
Eq. (A23) and negating the signs of the bottoms row of both 31 symbols while performing an even permutation of the 
columns of the second 31 symbol (E.3.7.4): 

(v~zMA2Ir61)IvIJIMAI) = ( - I)(M-A')R i~,-A,)[ (41T13)(U2 + I) (UI + 1) jl/2 

( J2 JI)(JI J2 I )R(A'-A,) (A25) 
X _ MOM Al - A2 A2 - Al 21 • 

Substituting Eq. (A25) into Eq. (A20) we arrive at a compact expression for the reduced matrix element of the dipole 
moment operator: 

4. The geometric term 

The geometric term will first be calculated in the detec­
tor reference frame and later be calculated in the lab frame. 
These frames of reference were defined in Sec. II H. In what 
follows, all vectors are expressed in terms of their coordi-

(A26) 

I 
nates in the detector frame. We have assumed that the two-
photon absorption is achieved using single-color linearly po­
larized light propagating along the Y d axis of the detector 
reference frame.40 First, this implies that the photons are 
identical. Second, this forces <P d to be zero so that the spheri­
cal tensors describing the photons are real: 
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(A27) 

Hence, we should be able to express E~k)(kd,ko;n) as pro­
portional to a single spherical harmonic multiplied by some 
coupling factors. Toward this end, we write out the terms 
from the three cross products in the equation for £ in terms of 
the individual spherical harmonics describing the electric 
field vectors of the photons. We need to develop an expres­
sion for the cross product of two tensors in which the cou­
pling term is a 31 symbol. We start with E. 5.1.5: 

[A (ktlXB (k,)]~k) = ~ (k1m,k2q - mlkq)A ~')B ~~)m' 
m 

(A28) 

Using E.3.7.3 we can convert the Clebsch-Gordan coeffi­
cient into a 31 symbol: 

[A (k,) XB (k,) w) = ~ ( - 1)(k,- k,- q)(2k + 1)1/2 
m 

x(~ 

We use Eq. (A29) to break up the middle cross product in 
Eq. (A7). We also make use ofEq. (A27) to force the pho­
tons to be equivalent and linearly polarized. Note for the 
remainder of this section, we will drop the arguments of the E 

function and will omit the SUbscripts on eo and ed since they 
are equivalent: 

E(det) = ~ (_1)(ka -kr q)(2k+ 1)1/2 
m 

Substituting Eq. (A33) into Eq. (A32), we get 

[y(l)({;1,O)XY(!)(O,O)]~~') = ~ (-1)-q'(9/41r)1/2(~ 
k4 .m4 

(A30) 

We can equate the electric field vector of the photons with 
the spherical harmonic of 0 and t/Jd where the former is the 
angle of the polarization vector with respect to the Zd axis 
and the latter describes the propagation direction of the laser 
beam. Since the laser is propagating along the Y d axis, t/J d = 0 
and 

e~l) = (417'/3)1/2y~1)(0,t/Jd = 0) 

= (41r/3)l/2y~1)·(0,t/Jd = 0). (A31) 

In Eq. (A31) we have assumed that e is of unit length and is 
only proportional to y~l). We employ Eqs. (A29) and 
(A3l) to evaluate the two cross products in Eq. (A30). In­
stead of explicitly finding the indicated ranks and compo­
nents we will find general ones and later substitute for the 
ones required in Eq. (A30): 

[y(l)( 0,0) X y(I)(O,O) ]~~,) 

= ~ ( - 1) -q'(2k3 + 1)1/2 
m, 

We can express the product of two spherical harmonics of 
the same angles as a series of single spherical harmonics of 
the same angles since we assume that our spherical harmon­
ics are real (E.4.6.5): 

1 

o 

(A33) 

Hence we can use E.3.7.8 to simplify part of the above equation to read 

(A35) k4) =6k k 6_ q m 6(1,1,k3 ), m 3'4 3'4 
4 

where 6( 1,1,k3 ) implies that the three vectors obey the triangle condition. 
Substituting Eq. (A35) into Eq. (A24) and replacing k4 by k3 and m4 by - q3 as required by the Dirac delta functions in 

Eq. (A35), we arrive at an equation for the cross product of two real spherical harmonics: 

o 
k3) y(k,) (00). o -q,' (A36) 

Finally, we can simplify the tensor products in the equation for E. Substituting Eq. (A3l) four times and Eq. (A36) twice 
into Eq. (A30) we find 
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E(det) = (41T/3)2 I ( - 1) (ka 
- kr q>c - 1)m - q - m(2k + 1) 1/2(9/41T) 

m 

o o (A37) 

We can eliminate the phase factor by permuting the first two columns of the second and third 3-j symbols (E.3. 7.5). Next 
we expand the product of the two real spherical harmonics into its tensor components (E.4.6.5) and negate the bottom rows of 
both 3-j symbols: 

y<,:d~(O,O)y~k:q(O,O) = I [(2k6+ 1)(2kd + 1) (2ka + 1)/41T] 1/2 
k 6 ,m6 

(A38) 

Substituting Eq. (A38) into Eq. (A37), 

E(det) = (41T/3)2 I (9/41T) [(2kd + 1)(2ka + 1)/41T] 1IZY:..':6) (0,0) (kd 
ka ~6)G I 

~)G 
1 

~) k6.m. 0 0 0 0 

XI (2k+ 1)1/2(2k6+ 1)1/2(kd ka k ) (kd ka 
_k:). (A39) 

m m q-m -q m q-m 

Once again we can remove two 3-j symbols using E.3.7.8 while gaining the useful identity: 

q-m 
k ) (kd 
-q m 

(AO::.o) 
q-m 

Substituting Eq. (A40) into Eq. (A39) and replacing k6 by k and m6 by q we arrive at our final equation for the geometric 
term: 

Equation (A41) allows us to calculate the geometric 
term for all the alignment moments, but it does not remove 
the linear dependency between the different components of 
moments of the same rank. This is a result of the spherical 
harmonics being linearly independent over all space but lin­
early dependent when tP = O. To remove the linear depen­
dency between the moments we must rotate the laser beam 
propagation direction with respect to the quantization axis 
of the molecules. Since Eq. (A41) already calculates E in the 
detector frame, we only need to employ the rotation matrix 
coefficients to calculate E in the lab frame. As explained in 
the previous section we have adopted the conventions of 
BrHd for transforming between space-fixed and molecule­
fixed frames which implies that our rotation matrix coeff­
cients are defined by the formalism of Brink and Satchler 
(BS). From Eq. (4.8) ofBS, 

E~k) (kd,ka ;0,0) (lab) 

= I D ~~*(tPu,Ou'Xu )E~~)(kd,ka;O,O)(det), (A42) 
q' 

where tPu ,Ou ,Xu are the Euler angles which rotate the lab 
frame into the detector frame. The Euler angles must be 
chosen so that 0 remains unchanged and tP = 0 in both 
frames. Using this equation one can evaluate the geometric 
term for any detector geometry involving linearly polarized 
light. We can greatly simplify Eq. (A42) by assuming the 
detector always lies in the x-y plane of the lab frame. This 
allows us to set tPu = 0, Ou = 0, and Xu = X, where X is de-

o ~) (~ o (A41) 

I 
fined as the angle between the laser propagation direction 
and they axis of the lab frame. Under these assumptions [see 
Eqs. (2.15 )-(2.19) of BS]: 

D ~~*(tPu,Ou,Xu) = D ~~*(O,O,X) 

= d~'.q (O)eiq'x = oq.q.eiq·x. 

Substituting Eq. (A43) into Eq. (A42), we get 

E~k) (kd,ka ;O,O,X) (lab) 

(A43) 

= eiqXE~k)(kd,ka;O,O,X) (det). (A44) 

Substituting Eq. (A41) into Eq. (A44) we get a general 
expression for E{lab) for the case where the detector lies 
anywhere in the x-y plane of the lab frame: 

E~k)(lab) = [41T(2kd + 1)( 2ka + 1)]112 

(
1 

X 0 
1 

o 

o 

(A45) 

It is important to note that Eq. (A45) still restricts us to even 
ranks; linearly polarized light can never detect the orienta­
tions of molecules in any frame of reference. Second, for even 
q, the real part of E~k) and E~)q are equal while their imagi­
nary parts are of opposite sign; for odd q, the opposite is true. 
This treatment is restricted to two photons of the same linear 
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polarization, i.e., it does not apply to unpolarized or incoher­
ent excitation. 

5. The hyperftne depolarization factor 

So far we have treated the two-photon absorption as 
being a time independent process; this is not sufficient if J is 
coupled to either the nuclear spin I or the electron spin S. In 
either case, at time t = 0, the instant the ground state distri­
bution has been prepared, J j will be pointing a specific direc­
tion indicative of tlte initial ground state distribution. But 
due to its coupling with either I or Sj' at time t> 0, J j will be 
pointing at a different direction. This loss of alignment has 
been calculated in the t .... 00 limit by FM and GZ. From Eq. 
(37) of Greene and Zare22 we derived Eq. (10) andEq. (11) 
by assuming (i)F'.F>7"-1, i.e., J j precesses many times 
around Fj before the molecule is detected and by summing 
Eq. (37) of Greene and Zare22 over I and S and multiplying 
by the degeneracies, (2I + 1) and (2S + 1). Thus for k = 0 
the depolarization factor equals the total electronic and nu­
clear spin degeneracy for all the states coupled to a particular 
Jj • 

6. Matrix elements of the spherical tensor angular 
momentum operator 

The intensity expression given by Eq. (A5) includes 
two sets of complex spherical tensor operators, E~ k) and J ~ k); 

this is most inconvenient. When numerically calculating the 
line strengths, it is much easier to work with real quantities. 
Using the formalism of Hertel and Stoll41 we can convert to 
an intensity equation containing only real quantities. First 
we must segregate all the terms which do not dependent on 
the sign of q since they are real quantities; this collection of 
real functions we designate as F rea1

: 

k 

1= } F reai L «JjMjAj IJ ~)q IJjMjAj) )E~k) 
kXk q= - k 

k 

= } preal L [( (JjMjAj IJ ~)q IJjMjAj) )E<.!)q 
kXk q=O 

where 

+ «JjMjAj IJ <.!)q IJjMjAj) )E~)q ] (1 + 80•q) -I, 
(A46) 

E~k) = E~k) (kd,ka ,k;Olab)' (A47) 
I 

(A48) 

and C and Z are defined in Eqs. (A 1) and (A 18), respective­
ly. 

Next, we write out the definition of the "real tensor op­
erators" as given by Hertel and Stoll and then invert the 
definitions: 

T~kl = (l/2)-1/2(i)( ± 1-1)/2 

X [( - 1 )qT<.!)q ± T~)q] forO<q<k, 
(A49a) 

T{k} - T(k). T{k} - 0 
0+ - +0, 0- - , (A49b) 

T~~ = (l/2)-1I2{ _l)q(=F I - I )/2 

x[T~kl ±iT~k2] forO<q<k. (A49c) 

The braces around k indicate that T~~ is a real tensor oper­
ator as opposed to a spherical tensor operator, T ~)q. 

We can change our intensity equation from a summa­
tion over the complex tensor operators to one over real oper­
ators by substituting Eq. (A49c) into Eq. (A46) four times: 

k 

1= L preal L (-l)-q 
k",k",k q = 0 

X [( (JjMjAj IJ~'1IJjMjAj) )E~'1 

+ ({JjMjAjIJ~k2 IJjMjAj»E~k2 ]. (A50) 

We want to break up the intensity expression so that it is 
factored into a sum ofterms each of which is a real moment 
of the ground state distribution multiplied by a real tensor 
moment ofthe line strength. In Eq. (A50) the moments of 
the ground state distribution are real, but they do not have 
definite limits. First, we normalize the ground state rank k 
moments to force them to agree with the FM conventions by 
multiplying them by c(k) [Jj (Jj + 1)] - k12; c(k) has al­
ready been defined in Eqs. (7a)-{7c). These GZnormalized 
components have their rank denoted by {k} where the 
braces indicate that A ~k} is a real spherical tensor operator. 
Second, we create a quantity, p~k}, which contains all the 
factors in the intensity equation which depends on k and q; 
here the braces on k indicate that P ~k} contains sums of the 
real tensor operator, E~~ • Third, the normalization constant 
C is factored into the population of the ground state n (Jj ), 

and a factor C( det), which represents the dependence on the 
laser intensity, the sensitivity of the detector, etc.: 

A~~ (Jj ) =c{k)«JjMjAjIJ~klIJjMjAj»/[(JjMjAjIJ2IJjMjAj)]kI2, 

b k{Jj ) = C(k)-I{[ (JjMjAj WIJjMjA j ) ]kl2}/(Jj llJ<k)IIJj ), 

(A51) 

(A52) 

P~~ (Jj>Aj>Jf,Af;O) =bk(Jj)g"(Jj ) L (-l)kE~~ (kd,ka;O) L 
k",k. J .. A .. J : .A~ 

(A53) 

~l{~: 
1 J} Je 1 ~ , 1 f k ka d 

(A54) 

C = C(det)n{Jj ). (A55) 

Note, we have added the hyperfine depolarization factor into this equation. If there is spin depolarization,g"(Nj ) should 
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replace g"(Jj ) for case (b) coupling. The b k(Jj ) are tabulated in Table VII and are identical to those of GZ but differ from 
those of CMH by a factor of (2Jj + 1) -1/2; this results from a difference in the conventions employed in defining reduced 
matrix elements. We can now substitute Eqs. (A51 )-( A55) into the equation for the intensity, Eq. (A50), after identifying Z 
with Eq. (AI8), 

1= C(det) L [P!kl (JoAj,J[.A[;f!)A !'<J (Jj ) + p!,,! (JoAoJ[,A[;f!)A !"! (Jj )] n(Jj ). (A56) 
k,q 

The above equation is completely general. 

7. Orthogonal excitation-cletection geometry 

For the special case of excitation with linearly polarized 
light propagating along the y axis of the lab frame, Eq. 
(A56) can be greatly simplified. For this case, we can always 
assume that the geometric term E, and the moments of the 
ground state are purely real. Equations (A49a) and (A49b) 
can be rewritten: 

T!kl = (-l)q[D(q)]1/2Re (Tc;lq)' 

T!"! = (-l)q[D(q)] 1/2Im(Tc;lq)' 

D(q=O) = 1, 

D(q=/-O) = 2. 

(A57a) 

(A57b) 

(A57c) 

(A57d) 

For this case that the lab and detector frames coincide, Eq. 
(A41) defines Ein the lab frame as being real; hence E!"! = 0 
and we can drop a term in Eq. (A56). We pick up ( - l)q 
factors from both A !k} and E!k} and, hence, these phase fac­
tors cancel. Using Eq. (A57) to simplify the remaining term, 

1= C(det) L P~(Jj,AoJpA[;f!lab)A ~kl(Jj )n(Jj ), 
k,q 

(A58) 

where 

P ~ (Jj ,Aj ,J[,A[;f!lab ) 

=D(q)bk(Jj)gk(Jj ) L (- l)kE(kd,ka,k,q;f!lab) 
kd,ka 

x L S(Jj,AoJe,Ae,J;,A;,JpA[) 
Je>Ae.J~.A; 

(A59) 

and 

A ~kl(Jj) = c(k)Re( (JjMjAj IJc;lq IJjMjAj»1 

[(JjMjAj IJ2IJjMjAj)] k12, (A60) 

E(kd,ka ,k,q;f!lab) = E(kd,ka ,k,q;f!det ) 

= €~kl(kd,ka;f!). (A61) 

We have omitted the signs on q and the brackets around k on 
the P~ to distinguish them from the p!'2. defined in Eq. 
(A53). The signs on q were omitted and parentheses were 
substituted for braces around k on the A r to distinguish 
them from the real tensor operators, A!":t defined in Eq. 
(A51). P; and A ~kl are neither spherical tensor operators 
nor real tensor operators; they are just parameters in our 
equation for the intensity. 

We have now derived the intensity equation for single­
color two-photon excitation under three conditions: (1) 

general detection geometry; (2) detection in the x - y plane 
of the lab frame, and (3) detection along the y axis of the lab 
frame. All the relevant equations along with their restric­
tions are given in Tables I-IV. 
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