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A method is presented for determining the population, A ~O! ' the alignment moments, A ~~ 
and A ~'2 ' and the orientaion moments, A ~~ and A ~31 ' for a ground state distribution of 
diatomic molecules probed by I + 11aser induced ftuorescence. General expresssions are 
developed for all rotational branches as a function of the rotational quantum number for 
excitation with linearly, circularly, or elliptically polarized light. Specific expressions are 
evaluated for the case in which the emission is unresolved and collected independent of its 
polarization and for the case in which the emission is unresolved but is analyzed with a 
polarizer. When the emission is collected independent of its polarization, the real polarization 
moments, A ~1 ' cannot be independently determined and only the apparent moments, A ~~ 
(app), can be measured, explicit expressions for the apparent moments in terms of the real 
moments are presented. However, for the case in which the excitation light is created by 
passing linearly polarized light through a quarter-wave plate and the emitted light is analyzed 
with a quarter-wave plate and a linear polarizer, the real alignment and orientation moments 
can be independently determined. 

I. INTRODUCTION 
This paper presents the theory required to determine the 

population, alignment, and orientation of an ensemble of 
molecules using 1 + I laser induced ftuorescence (LIF) 
(one photon absorbed and one photon emitted). The align­
ment locates the molecular plane of rotation, while the orien­
tation describes the net helicity of the angular momentum 
vector J. In the IJM) representation, the alignment is deter­
mined by the probability of the molecule being in sublevels 
M or - Mas opposed to sublevels M' or - M'. Orientation 
implies that the molecule has a greater probability of being in 
sublevel M as opposed to sublevel - M. Thus, alignment 
refers to the even moments of theM distribution, orientation 
to the odd moments. 

This paper treats the most general case: detection of 
population, alignment, and orientation with LIF in which 
both the absorption and emission are polarization analyzed 
and resolved. This can be achieved by passing narrow band­
width, linearly polarized laser light through a quarter-wave 
plate and analyzing the emitted light with a quarter-wave 
plate, a linear polarizer (such as a calcite prism or a sheet 
polarizer), and a monochromator. When employing a single 
experimental geometry, elliptically polarized light is re­
quired to determine independently the multiple orientation 
moments and polarized detection is required to determine 
independently the multiple alignment moments. 

Experimentally, analyzing the ftuorescence with a 
quarter-wave plate, a polarizer, and a monochromator is 
very difficult. Consequently, we also treat the more common 
case in which the probe light is polarized but the ftuores­
cence is collected independently of both its wavelength and 
polarization. Removal of the monochromator reduces the 
number of orientation moments that we measure indepen­
dently, but removal of the quarter-wave plate and the polar-

ization analyzer greatly affects our ability to measure the 
real polarization moments, A ~~. Without polarization 
analysis ofthe ftuorescence, we can only measure the appar­
ent moments, A ~~ (app), which are known combinations of 
a greater number of real moments, A ~~ . 

There are two important excitation-detection geome­
tries (see Fig. 1): In case I, the coaxial geometry, the excita­
tion light propagates along the - z axis and the detector is 
situated along the y axis. In case II, the mutually orthogonal 
geometry, the laser propagates along the - x axis, while the 
detector is situated along the y axis. These two geometries 
measure different moments. For a system with near-cylin­
drical symmetry, the axis of near-cylindrical symmetry is 
always designated as the z axis, and case I geometry is useful 
for measuring the orientation about z, (A ~i! ), and for sens­
ing the alignment in the x-y plane, (A n ). However, case II 
geometry is very sensitive to the alignment about the z axis, 
(A ~2! ). We present the results for these two cases, but we 
give the general formulas for any excitation-detection geom­
etry as well as specific formulas for excitation and detection 
along the - z, - x, and y axes, called cases A, B, and C, 
respectively. 

The formulas in this paper are a direct extension of those 
in our previous papers i

,2 (hereafter denoted as KSZI and 
KSZ2) for determining the population, orientation, and 
alignment of the ground state using two-photon nonreson­
ant excitation with elliptically polarized light. The tech­
niques developed in these papers are applicable to atoms, 
diatomics molecules, and symmetric top polyatomic mol­
cules; generalization to asymmetric top molecules is 
straightforward. Several groups3-6 have worked on develop­
ing the formalism required to measure the population and 
polarization of the ground state using LIF. The most rel­
evant work may be that ofBain and McCaffery.6 They clear-
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ly showed that with a fixed excitation-detection geometry 
one cannot independently measure the mUltiple orientation 
moments when using circularly and linearly polarized exci­
tation of a single rotational line. They also showed that mul­
tiple alignment moments cannot be determined by using lin­
early polarized excitation and restricting oneself either to 
varying the polarization of the excitation light or to analyz­
ing the polarization of the fluroescence from a single rotation 
line. Bain and McCaffery6 assume that the fluorescence is 
wavelength resolved. None of the previous work3

-6 consid­
ers the additional information that can be obtained when 
using elliptically polarized light, multiple rotational 
branches (except DixonS), or covariation of excitation po­
larization and fluorescence polarization analysis. It is these 
three techniques which allow us to overcome the problems 
identified by Bain and McCaffery.6 

II. ABSORPTION PROBABILITY FOR ELLIPTICALLY 
POLARIZED LIGHT 

The only difference between calculating the two-photon 
nonresonant absorption probability and the 1 + 1 LIF inten­
sity is that in the former case the first photon excites the 
molecule to a virtual state, while in the latter case the first 
photon places the molecule in a real state. Consequently, we 
can readily convert the equations in Table II of KSZ2 for use 
in LIF by removing the sums over the quantum numbers of 
the excited state and adding a term for depolarization of the 
excited state. Consequently, for a molecule excited from the 
ground state (J;.A;) to the excited state (Je,Ae) and fluores­
cing back down to the final state (Jf,A/ ), we write 

1= C(det)n(J;) L 
k.q.J, 

X [P~"l (J;.A;.Je,Ae,JI,A/;n)A ~"l (J;) 

+ P~~ (J;.A;.Je,Ae,JI,A/;n)A ~~ (J;)], (1) 

where 

P~"l (J;,Aj,Je,Ae,JI,A/;n) 

= b k(Jj )g/«J; )g/<(Je) L 
kd.k. 

X ( - l)(k) E~"l (kd,ka;nlab) 

XS(J;,A;.Je,Ae,JI,A/)h(kd,ka,k,J;,Je,JI) (2) 

and k = 0,1,2,3,4; q = 0,1,2,3,4 but q<.k; kd = 0,1,2; ka 
= 0,1,2. The terms in Eqs. (1) and (2) are as follows: 
C( det) is the detection sensitivity constant; n (J; ) is the rota­
tional population in the ground electronic state; P ~"l are the 
moments of the line strength; A ~"l are the moments of the 
ground state angular momentum distribution for level J; 
(see Sec. IV of KSZ2); b k(J;) are the reduced matrix ele­
ments of the spherical tensor angular momentum operators; 
g/«J;) and g/<(Je) are the hyperfine and spin depolarization 
factors for the ground and excited states; E~"l (kd ,ka ;nlab ) is 
the geometric factor; S(JI>Aj,Je,Ae,JI,A/) is the product of 
reduced matrix elements of the dipole moments operator; 
and h(kd,ka,k,J;,Je,JI) contains the angular momentum 
coupling terms. The importance and meanings of these 

TABLE I. Nomenclature for the LIF transition strength formula. 

J i = Rotational quantum number of the "initial"/ground state 
apart from nuclear spin 

Je = Rotational quantum number of the "excited' lone photon state 
apart from nuclear spin 

J, = Rotational quantum number of the "final"!lower state apart 
from nuclear spin 

Ai = Orbital angular momentum quantum number of the initial 
state 

Ae = Orbital angular momentum quantum number of the excited 
state 

A, = Orbital angular momentum quantum number of the final state 
k. = The rank for the square of the first (absorbed) photon 
kd = The rank for the square of the second (detected) photon 
k = The rank for the ground state distribution 
q = The component for the ground state distribution 
n = Angles describing the geometry of the laser beam with respect 

to the coordinate system for the moments of the ground state 
distribution 

8.,r/!.,X. = Euler angles which rotate the lab into the probe/absorption 
frame 

8d,r/!d,Xd = Euler angles which rotate the lab into the detector frame 
1 ; .• (8) = The reduced rotation matrix element of angle 8 
B. = The vector along which the probe light is linearly polarized be-

fore passing through the probe's quarter-wave plate. 
Bd = The vector parallel the major axis of the linear polarization of 

the detector 
{3. = Angle of the probe laser linear polarization vector with respect 

to the major axis of the probe's quarter-wave plate 
{3 d = Angle of between the major axis of the quarter-wave plate and 

the linear polarizer of the detector 
fl.. = Angle of the major axis of the probe's quarter-wave plate with 

respect to one of the three lab axis. 
fl.d = Angle of the major axis ofthe quarter-wave plate of the detector 

with respect to one of the three lab axis. 
Fi = Total angular momentum quantum number of the ground state 

including nuclear spin. 
Fe = Total angular momentum quantum number of the excited state 

including nuclear spin. 
I = Nuclear spin quantum number 
S = Electronic spin quantum number 
Ni = Total angular momentum quantum number apart from spin of 

the ground state for Hund's case (b) molecules. 
Ne = Total angular momentum quantum number apart from spin of 

the excited state for Hund's case (b) molecules. 

terms are discussed in KSZl. We note that the values of Je , 

Ae, JI , and AI are subject to the usual dipole selection rules 
which are contained in S(Jj,A;.Je,Ae,J/,A/ ). 

The brackets, { }, around the ranks of the tensors in 
Eqs. (1) and (2) indicate that we are employing the Hertel­
StoW normalization for the spherical tensor operators. This 
forces all the A ~~ to be real. This normalization also re­
duces the number of detectable moments because often we 
can measure only the real or imaginary parts of the complex 
moments, A ~ q' The transformation is straightforward: 

T~"l = (-I)q[2-8q.o]1/2Re[T~k)]; q>O, (3) 

T~~ =(_l)q[2]1/2Im[T~k)]; q>O, 

Tao2 =0. 
(4a) 

(4b) 

The restrictions upon the use of Eqs. (3) and (4) are out­
lined in the Appendix of KSZ2. 

The definitions of all the terms in Eqs. (1) and (2) are 
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explicitly given in Table I and are identical to those derived 
in KSZI and KSZ2 except the Je' has been replaced by J~ and 
Ae' by Ae because the sum over excited state quantum 
numbers has been removed. The general formula for the geo­
metric term, €~k)(kd,ka;n1ab)' for LIF is the same as that 
given in Table II of KSZ2, but the computed values are quite 
different because in LIF the two photons propagate along 
different directions, while in two-photon nonresonant ab­
sorption they are identical. The derivation of the equations 
for the geometric factor for the general case and for the spe­
cial cases are given in the Appendix. 

III. THE GEOMETRIC FACTOR AND THE SPECIAL 
GEOMETRIES 

We present the equations for the geometric factor in 
order that we may identify the angles which specify the po­
larizations of the excitation light and of the fluorescence 
which is transmitted by the polarization analyzer. For all 
geometries: 

€~k)(kd,ka;n1ab) = L (_l)k.-kr q(2k+ 1)1/2 

where 

m 

x(~ q-m 

XE~(Pd,lab)E:~ m (Pa,lab), (5) 

E!(p,lab) = L ei4x d;,q ( - (}) eiq~ E; (p,det/abs), 
q' 

(6a) 

E!(p,det/abs) = [e*(l)®e(l)1!, (X,{},t/» are the Euler an­
gles which rotate the lab into the detector/absorption 
frames; d ;09' ( - (}) is a reduced rotation matrix element; P a 

and P d are the ellipticities of the absorbed photons and the 
detected photons which are transmitted by the polarization 
analyzer. Equations (5) and (6a) merely couple the electric 
field vectors of the absorbed and emitted photons. First, E! 
is a spherical tensor element of the cross product of the elec­
tric field vector, e(l), with its complex conjugate, e*(I) (see 
KSZ2 for an explanation upon the calculation of this com­
plex conjugate). Second, Eq. (5) couples together the E! for 
the absorbed and detected photons; note that the summation 
in Eq, (5) over m is a summation over all the components of 
the E !. To calculate the geometric factor in the Hertel-Stoll 
normalization, Eq. (5) is substituted into Eqs. (3) and (4). 

For all cases, the Euler angles specify the position of the 
major axis of the ellipticity of the light relative to the fixed 
laboratory reference frame (see Fig. I). Therefore, the Euler 
angles (t/>a,{}a,Xa) give the position ofthe major axis ofthe 
quarter-wave plate which prepares the absorbed photon, 
while (t/>d'{}d,Xd) describe the position of the quarter-wave 
plate in the detector. Note that the emitted light passes first 
through a quarter-wave plate, then a linear polarizer before 
reaching the detector. 

In the general case (case A) the light propagates along 
the - Za ( - Zd) axis and the major axis of the quarter-wave 
plate lies along Xa (Xd ). We assume that the absorption light 

TABLE II. The laser induced fluorescence transition probability for non­
coincident lab and detector frames where the detection geometry is general. 

1= C(det)n(J,) L [P~~ (J"A"J.,A .. JpA,;fi)A ~~ (J,) 
",o.J/ 

+ P~~ (J"A"J.,A.,J"A,;fi)A ~~ (J,)] 

p~1 (J"A,.J .. A.,JpA,;fi) 

= b k(J, )gl'(J, )g''(J.) ) [( - 1) (k)€~1 (kd,k.;nlab ) 
k!1. 

xS(J"A"J.,A.,J"A,)h(kd,k.,k,J,.J.,J,), 

where k = 0,1,2,3,4; q = 0,1,2,3,4, but q<k; kd = 0,1,2; k. = 0,1,2. 

A~1 (J,) = c(k)«J,M,A,IJ~1IJ,M,A,»/[(J,M,A,lJV,M,A,)jkj2 

€~~ (kd,k.;nlab ) = (-1)°[2-6 .. o]1/2Re[€(.!).(kd,k.;nlab)]; q>0 

€~~ (kd,k.;nlab ) = (_1)0(2)112 Im[~~)o(kd,k.;nlab)]; q>O 

€~k)(kd,k.;nlab) = L (_1)k.-kr o(2k+ 1)1/2 
m 

X(kd k. 
m q-m 

k ) E~(lab)E:"... m (lab) 
-q 

E~(det) = [e*(I)®e(l)I~ 

n (J,) = population oflevel J, 

bk(J,) = C(k)-I{[ (J,M,A,WIJ,M,A,) lk12}/(J,IIPk)IIJ,) 

{
F F k}2 

gl'(J,) = L L (2F, + 1)2 J' J: I 
I F j i, 

2 {J, J, k}2 
gl'(N,) = ~ (21, + I) N, N, S gl'(J,) 

S(J"A"J .. A.,J"A,) = I (J.A.llrO)IIJ,A,) 121 (J,A,lirO)IIJ.A.) 12 

(J2A21IrIllIIJIAI) = (41T/3)1/2R~~,-A')(212 + 1)1/2(211 + 1)112 

X(_I)(J,-A,)(JI J2 I) 
AI -A2 A2 -AI 

(J2A21IrIllIIJIAI)* = (-1)(J,-J')(JIAdl,.IJ)IIJ2A2) 

h(kd,k.,k,J"J.,J, ) 

= (_1)(J/+J.-kd +I)[(2kd + 1)(2k. + 1)(2k+ l)f/2 

{
J. J. kd} {~. ~ ;} 

X I I J' , 
, kd k. k 

For c(k) and v(k) see Table IV of KSZ2 
For A ~1 (J,) see Table V of KSZ2 
For b k(J,) see Table VI of KSZ2 
The depolarization factors gl'(J,) and gl'(N,) appearing in this table are 
valid for molecule with Hund's case (b) f3.I coupling, but the former is also 
valid for Hund's case (a) coupling. For Hund's case (b)/!IS see Ref. 9. 
I (J2A211,1I)IIJIAI) 12 is proportional to the Honl-London factors so for al­
most all transition, these reduced matrix elements need not be calculated 
since they are reported in the literature. 

"'-
is linearly polarized along a vector Ba before passing 
through the quarter-wave plate. Pais defined as the angle 
between Sa and Xa' We assume that the emitted light is 
passed through a linear polarizer after propagating through 
the quarter-wave plate and that the major axis of the linear 
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A 

polarizer lies along a vector Bd • /3 d is defined as the angle 
A 

between Bd and xd • Note that both /3 a and /3 d are positive 
when the quarter-wave plates are rotated in a counterclock­
wise direction (see Fig. 1). For the general case, propagation 
along - Za or - Zd' the equations in Table III for E ~ (case 
A,det/abs) are employed along with Eq. (6a) and the ap­
propriate Euler angles. 

For case I geometry, the light is propagating along the 
- Z axis of the lab frame and ellipticity is created using a 
quarter-wave plate whose major axis lies in the laboratory x­
y plane. Let aa be defined as the angle between the major 
axis of the quarter-wave plate and the x axis of the lab frame. 
Note when/3a = 0", aa describes the direction of linear po­
larization for the absorbed photons. The detected photons 
propagate along the y direction of the lab frame and pass 
through a quarter-wave plate whose major axis lies in the 
laboratory x-z plane. Let ad be defined as the angles be­
tween the major axis of the quarter-wave plate and the Z axis 
of the lab frame (see Fig. 1). Hence, for case I geometry, Eq. 
(6a) and the E ~ (case A, det/abs) are employed along with 
Euler angles of (0·,0·, - aa) and ( - 90·,90",180· - ad)' 
Alternatively, one uses the simplified equations given in Ta­
ble III (see the Appendix of KSZ2 for the derivations): 

E::(lab) = E~(case A,lab); 

E::(lab) = E~(case C,lab) (case I). (6b) 

For case II geometry, the light is propagating along the 
- x axis of the lab frame and ellipticity is created using a 

quarter-wave plate whose major axis lies is the laboratory y­
Z plane. Let a be defined as the angle between the major axis 
of the quarter-wave plate and the Z axis of the lab frame. The 

Case I 

Linear 
" Polarizer 
!!d = major axis 

Quarter­
wave 
Plate 

zd=major axis 

Photo­
detector 

Y
a 

~Y'YdA(a 
Line!lrlYd ,.-<:!., Z,Za 1 .............. Xd 

Polarize ~~ ....... " x 
Light za !.._ ' 1)- 'zd " 
ha:-.,.><::\....;JY lIa ~a .... xa __ e ... 

Probe -a xa 

Quarter-wave 
Plate 

xa= major axis 

Photo­
detector 

TABLE III. E~ for light propagating or detected along the - z (case A), 
- x (case B), andy (case C) axes. 

E:(case A,lab) = (cos q~ - isin q~)E: (case A,det/abs) 

E:(case B,lab) = [cos(q1T/2) + isin(q1T12) I L d; .• ( -~) 
q' 

X [COS(q'1T12) - isin(q'1T/2) IE; (case B,det/abs) 

E: (caseC,lab) = Ld; .• (~)E: (caseC,det/abs) 
q' 

The electric field vector cross products, E:(det/abs), for light prepared 
with a quarter-wave plate 

Case A CaseB CaseC 

EO 
0 - 1/../3 - 1/../3 - 1/../3 

E'±, 0 ( ± 1/2)sin 2P ( - il2)sin 2P 
E' 0 ( - 1/2)sin 2P 0 0 
E~2 (l12)cos 2P ( - 1/2)sin2 p (1/2)sin2 p 
E2±, 0 0 0 
E2 

0 ( - 1/,j6) (l/,j6)(3 cos2 P - 1) (l/,j6)(3 cos2 P - I) 

detected photons propagate along the y direction of the lab 
photon and pass through a quarter-wave plate whose major 
axis lies in the laboratory x-z plane. Let ad be defined as the 
angles between the major axis of the wave plate and the Z axis 
of the lab frame (see Fig. 1). As a result, for case II geome­
try, Eq. (6a) and the E~ (case A, det/abs) are employed 
along with Euler angles, (0·,90·,180" - aa) and 
( - 90·,90·,180· - ad)' Alternatively, one uses the simpli­
fied equations given in Table III: 

Case II 

FIG. 1. The reference frames, an­
gles, and electric field vector Carte­
sian components specific to: (a) case 
I geometry and (b) case II geome­
try. 
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E Z:(lab) = E;(case B,lab); 

EZ;(lab) = E;(case C, lab) (case II). (6c) 

Table III also includes some very simple equations for 
the E; (lab) which do not contain reduced matrix elements 
for two common experimental situations: (1) the light is 
linearly polarized; (2) the light is elliptically polarized but 
b. = 0°. To calculate the E; (det) for unpolarized detection, 
we average over f3d = (f and 90°: E;(unpolarized,det) 
= [E; (f3 = (f,det) + E;(f3 = 90°,det) ]12. 

IV. THE UNREDUCED MOMENTS 

In general, the rotational populations n(Jj ) and the de­
tection sensitivity constant C(det) are unknown so we ab­
sorb these quantities into the polarization moments are re­
write Eq. (1) as follows: 

1= L [P~'1 (Jj,Aj,Jf,Af;n)a~'1 (Jj ) 
k,q,Jf 

+P~~ (Ji>Aj,Jf,Af;n)a~~ (Jj>], (7) 

where 

a~~ (Jj ) =A~~ (Jj)n(Jj)C(det), (8) 

A~~ (Jj)/A~Ol (Jj ) =a~~ (Jj)fa~ol (Jj ), (9) 

a~ol (Jj ) = n(Jj)C(det), (10) 

(11 ) 

0.16....----...., 

(a) 
/:.""" 

I------\~"'-----__l ~.; (g) 

~ 01------1 
0+ 

'-4.0 4 -. - P Branch 

Q. ::-•• : .. :~ ............ ... 
-Q 
_ .. - R 

' ...... ..... ., 
-1.0'--_"'--~ .... -O.12~_"'--_··'_·...J· 

0.9".----...., 
0.2 0.2 

~6 ~6 ol"-------~ ~6 (h) 

...::::--.. ~ ~ O\-4.:;~---I 

~~ Ol-\.----,1 ~.. ~" -":~<> .. , .. 
~ , , 

":~:.-:-..... 
-0.2'---"'---..... 

0.2~---. _-.'" 
.-:: .. ~ .. -.. .08 0.3 

o -~6 01---')<:---1 
..:::;... 
~: 

(c) 

-0.6~==;:::==::l o 90 180 o 90 180 

~a (degrees) 

FIG. 2. The moments of the line strength factors P~"I- for case I geometry 
vs the angle oflinear polarization fl. for the three principal absorption rota­
tional branches of J i = 20 at /3. = 0" in the LIF of eN el:-2l:-2l:). We 
have assumed that the fluorescence is not dispersed and is collected inde­
pendent of its polarization and that the eN has Hund's case (b) PJ coupling 
(Ref. 13) in both the ground and excited states. The higher order moments 
have been normalized with respect to the zeroth moment. 

Here, the a~~ are the unreduced moments which are the 
ones that an experimentalist will determine from fitting the 
LIF intensities to the line strengths, P~~ . Equations (8)­
( 11) allow the determination of the reduced moments 
A ~~ fA ~ol (Jj ) and the rotational population n(Jj ) from 
the reduced moments. 

V. DETERMINATION OF ALIGNMENT WITH 
UNPOLARIZED DETECTION 

For linearly polarized excitation along an arbitrary di­
rection there are 14 alignment moments which can be deter­
mined, A ~~ (Jj ) with k = 2,4. Unfortunately, in order to 
measure independently all the moments we would need to 
vary the propagation direction of the excitation light. By 
restricting the electric field vector of the excitation light to a 
single plane of space, the P ~~ (Jj ) lose their strict indepen­
dence. This is apparent in Fig. 2 where P ~~ vs b.a is plotted 
for the LIF of the B 2l:-X 2l: + states of CN for case I geome­
try; the corresponding plots for case II geometry are shown 
in Fig. 3. 

For case I geometry, note the similarity (same shape to 
within a constant) of the plots for (k,q) = (2,2 - ), 
(4,2 - ), and (4,4 - ). In addition, for case I geometry, the 
plots for (k,q) = (2,0 + ), (4,4 + ), (4,2 + ), and (4,0 + ) 
look like a linear combination of the plots for (k,q) 

0+ -0..0 4 

(a) 

_.- P Branch 
-Q 
- .. - R 

0.4,....----~ 

/;,':.:.:: 

o I----#'-.. ~-... -__l 

-0.8 

0t::::::::;::::::i:==:::::J 

0.1 

~~ oF-----l ... 

0+ 
~o 

..:::-­
~, 

k------:li ... .., 

~ 
~~ Of-----'<-+-I 

-0.6 0~--:::9':-0--1~60. 180 

6. (degree.) 

0.2 

-0.2 

o 90 160 

FIG. 3. The moments of the line strength factors P ~kl for case II geometry 
vs the angle oflinear polarization fl. for the three principal absorption rota­
tional branches of J i = 20 at /3. = 0" in the LIF of eN el:-2l:-2l:). We 
have assumed that the fluorescence is not dispersed and is collected inde­
pendent of its polarization and that the eN has Hund's case (b) PJ coupling 
(Ref. 13) in both the ground and excited states. The higher order moments 
have been normalized with respect to the zeroth moment. 
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= (0,0 + ) and (2,2 + ); in fact, for unpolarized detection, 
p~2! (J;,A1,J"A{;O), pi~ (J; ,A;,J"A,;O), P~~ (J;.A;,J" 
A,;O), and P~~ (J;,A1,J"A,;O) are equal to a weighted 
sum of p~o! (J;.A;.J"A,;O) and pn (J;.A;,J"A,;O). 
Hence, for a fixed propagation direction, we can no longer 
independently determine the real moments, a~~ (J;), but 
only the apparent moments, a~~ (J;) (app). These apparent 
moments are simple sums of real moments (see the Appen­
dix of KSZ2): 

P~~ (J;,Je,J,;O)(dep) 

= L c(k,q,k',q',J;.Je,J,)P~~'1 (J;.Je,J,;O)(ind); 
k ',q' 

(12a) 

hence 

1= L [P~'1 (J;.A;,Je,Ae,J"A,;O)a~'1 (J;.Je )(app) 

where 

k,q,J, 

+ P~~ (J;.A;.Je,Ae,J"A,;O)a~~ (J;.Je )(app)], 
(12b) 

(12c) 

The expansion coefficients c(k ',q',k,q,J;.Je,J,) in Eq. 
(12a) are specific to each geometry, to each rotational 
branch, and to linearly polarized light (fJ a = 0·). Equation 
(12b) is derived by substituting Eq. (12a) into Eq. (7) and 
groupingthea~~ as prescribed by Eq. (12c). The expansion 
coefficients are projections of the P ~~ (J;)( dep) onto the 
P~~ (J; )(ind) where (ind) indicates the line strengths of 
the designated apparent moments and (dep) indicates a line 
strength of a moment which has not been designated as an 
apparent moment and is being expressed as the weighted 
sum of the P ~~ (ind). 

The coefficients can be derived numerically by using a 
linear least squares fit to Eq. (12a) or analytically by multi­
plying both sides ofEq. (12a) by p~k'1 and integrating over 
the planes in which the electric field vectors rotate [see Eq. 
(A24) of KSZ2]. For LIF the analytical method is not use­
ful [unlike the analytical method for 2 + n REMPI given in 
Eq. (A24) of KSZ2] because the the parts of e~k) which 
depend on A cannot be separated from the parts which de­
pend on ka and k d • Hence, Eq. (12a) has been numerically 
solved to derive the coefficients presented in Table IV. 

It is important to note that although A ~o! = 1, 
A ~o! (app) =1= 1. We also note that all the experimentally de­
termined reduced apparent moments, A ~~ (app), have 
been normalized by A ~o! (app) [see Eq. (9)]. Consequent-

TABLE IV. The apparent moments as a function of the reduced moments of the ground state distribution for 
J = 20 for a heteronuclear diatomic molecule (CN) with case (b) coupling and I = I undergoing 2!,_2!,_2!, 

LIF with unresolved emission. Note that the definitions of two of the apparent orientation moments, 
A ~ol (app) and A n (app) (easel) or A ~21 (app)(casell), are identical to the corresponding apparent align­
ment moments. The definitions for A F~ (app)(case I) and A p~ (app)(case II) apply only for alignment 
measurements. The definitions for A ~Il (app) (case I) and A Pl (app) (case II) apply only for orientation 
measurements. 

Case I geometry 

A ~ol (app) = A ~ol + 0.150 A ~21 - 0.081 A til - 0.113 A 1"1 - 0.087 A ~"1 
A~ol (app) =A~ol -0.539A~21 -0.103A1"1 + 0.092 A 1"1 +O.IOOA~"1 
A ~ol (app) = A ~ol + 0.117 A ~21 - 0.067 A 1"1 - 0.085 A 1"1 - 0.065 A ~"1 
A 121 (app) = A n + 0.129 A ~21 - 0.438 A 1"1 - 0.177 A 1"1 - 0.085 A ~"1 
An (app) = A ~21 + 0.027 A ~21 - 0.402 A 1"1 - 0.130 A 1"1 - 0.049 A ~"1 
An (app) =A~21 +0.145A~21 -0.362A141 -0.148A141 -0.071 A~"1 
A ~2~ (app) = A 12~ - 0.\61 A 1~ - 0.427 A 1~ 
AF~ (app) =AF~ -0.146A1~ -0.385A14~ 
AP~ (app) =AP~ -0.132A1~ -0.350A1~ 
A~ll (app) =A~ll -0.214APl -0.166A~31 
A~ll (app) =A~ll -0.464APl -0.360A~31 
A~ll (app) =A~ll -0.198APl -0.153A~31 

Case II geometry 

A~Ol (app) =A~ol +0.187A121 -0.171 A 1"1 -0.092A;"1 -0.053A~41 
A ~ol (app) = A ~ol - 0.633 A ~21 - 0.176 A 1"1 + 0.018 A 1"1 - 0.0\4 A ~'l 
A~ol(app)=A~ol +0.148An -0.127A1"1-0.07IA1"1-0.042A~·1 
A ~21 (app) = A ~21 + 0.763 A n - 0.293 A 1"1 - 0.413 A 1"1 - 0.320 A ~"1 
A ~21 (app) = A ~21 + 0.613 An - 0.202 A 1"1 - 0.357 A 1"1 - 0.285 A ~"1 
A ~21 (app) = A ~21 + 0.789 A n - 0.247 A 1"1 - 0.345 A ~"1 - 0.267 A ~"1 
A p~ (app) = A p~ - 0.342 A i~ - 0.301 A ~~ 
A F~ (app) = A p~ - 0.309 A i~ - 0.272 A ~~ 
A F~ (app) = A F~ - 0.280 A i~ - 0.247 A ~~ 
A Pl (app) = A ill - 0.262 A Pl - 0.068 A 1'1 
APl (app) =APl -0.568APl -0.147A1'l 
APl (app) =Aill -0.242APl -0.063A1'1 

(Pbranch) 
(Qbranch) 
(R branch) 
(Pbranch) 
(Qbranch) 
(Rbranch) 
(Pbranch) 
(Qbranch) 
(R branch) 
(Pbranch) 
(Qbranch) 
(R branch) 

(Pbranch) 
(Qbranch) 
(R branch) 
(Pbranch) 
(Qbranch) 
(R branch) 
(Pbranch) 
(Qbranch) 
(R branch) 
(Pbranch) 
(Qbranch) 
(R branch) 
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ly, when a theoretician calculates the apparent moments of 
an ensemble using the equations in Table IV, the apparent 
moments need to be normalized by the theoretically comput­
ed A ~ol (app) before being compared to the experimentally 
determined A ~':f (app)/A ~ol (app). 

In order to measure the apparent moments, the LIF in­
tensity is recorded at several polarizations of the excitation 
laser (aa); the fluorescence is collected independent of its 
polarization; and the positions of both the detector and the 
laser propagation axes are fixed. The apparent moments can 
then be calculated using a linear least squares fit: 

l(an,J;,Je ) =.!~':f (an,J;,Je)a~"l. (app)(J;.Je ), (13a) 

where 

n = O-+nmax , (13b) 

(k,q) = (0,0 + ),(2,2 - ),(2,2 +) (case I), (13c) 

(k,q) = (0,0 + ),(2,1 - ),(2,0 +) (case II). (13d) 

Here a vector is indicated by boldface, and the rectangular 
array is denoted by a bold face symbol with a tilde. The 
horizontal variables are the ranks and components of the 
moments of the lines strength, while the vertical variables 
are the polarization angles and rotational branches [see Eqs. 
(23a)-(23d) of KSZ2]. The SUbscript on an indicates the 
measurement number. When determining apparent mo­
ments, each rotational line is analyzed separately; therefore, 
each measurement is done at a unique aa. In Eq. (13b) nmax 

equals the number of polarization angles employed. For the 
remainder of this paper we will use this matrix notation. 

The choice of apparent moments is not unique; for ex­
ample, for case I geometry, one could calculate an 
a~2J. (app) instead of an an (app). We have chosen the 
a~':f (app) which have the most distinctive P~':f in order to 
facilitate the measurement of the three a~':f (app). 

The ranks and components of the apparent moments are 
different for the two special geometries. When determining 
the apparent moments, we are trying to fit the data, which 
typically consist of many measurements, to only three pa­
rameters, the population and the two alignment moments. 
As a result, for this overdetermined system, we should ob­
tain a small value of X2 (see Ref. 7). Here r is a quantifica­
tion of the goodness of the fit of the experimental data to Eqs. 
(13a). By comparing these accurate apparent moments for 
different rotational branches, we can determine the sizes of 
the different real moments which constitute the apparent 
moments. Furthermore, we emphasize that a measurement 
of the intensity at just two polarization settings does not 
allow the determination of the apparent moments. Three 
measurements are required to calculate the three polariza­
tion moments, but many measurements are required in order 
to obtain meaningful values of X2. 

Looking at the plot of P ~ol vs aa in Figs. 2 and 3, one is 
struck by the fact that the monopole line strength is depen­
dent on the probe's polarization. Hence, as is well known,4 

even when doing LIF on an isotropic, unpolarized sample, 
the intensity of emitted light will vary with aa. This is be­
cause the excitation creates a polarized ensemble in the excit­
ed state and the emission from the anisotropic ensemble is 
viewed along one direction. If one collected all the fluores-

cence (one-photon absorption spectroscopy), performed 
multiphoton ionization (see Fig. 3 of KSZl), or used a po­
larization analyzer before the detector, then p~ol would be 
independent of aa. 

VI. DETERMINATION OF ORIENTATION WITH 
UNPOLARIZED DETECTION 

For elliptically polarized excitation along an arbitrary 
direction, there are ten orientation moments that can be de­
termined: the A ~':f (J;) with k = 1,3. Once we restrict our­
selves to a single rotational branch, a single propagation di­
rection, a single aa, and unpolarized detection along a fixed 
axis, we can measure only the apparent orientation moments 
because the P~':f (J;) have lost their strict independence. 
This can be seen in Fig. 4 where P ~':f vs Pais plotted for the 
LlF of the B 2l:_X2l:+ states ofCN for case I geometry. The 
corresponding plots for case II geometry are shown in Fig. 5. 

For case I, note the similarity of the plots for 
(k,q) = (1,0 + ), (3,0 + ), and (3,2 + ). In addition, the 
moments with even ranks look quite similar. The case I plots 
for (k,q) = (2,0 + ), (4,4 + ), (4,2 + ), and (4,0 + ) look 
like a linear combination of the plots for (k,q) = (0,0 + ) 
and (2,2 +). Note that since aa = 0·, the case I line 
strengths for (k,q) = (2,2 - ), (4,2 - ), and (4,4 - ) are 
zero. Consequently, under the aforementioned conditions, 
we can determine only apparent moments, a~':f (J; )(app). 
These apparent moments include both alignment 
(k = 0,2,4) and orientation (k = 1,3) moments because 
both types contribute to the LlF signal when probing with 
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FIG. 4. The moments of the line strength factors P~"l for case I geometry 
vs the ellipticity of the radiation fJ. for the three principal absorption rota .. 
tional branches of Ji = 20 at A.. = 0" in the LIF of CN e~_2~_2~). We 
have assumed that the ftuorescence is not dispersed and is collected inde .. 
pendent ofits polarization and that the CN has Hund's case (b) PJ coupling 
(Ref. I3) in both the ground and excited states. The higher order moments 
have been normalized with respect to the zeroth moment. 
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FIG. 5. The moments ofthe line strength factors p~kl for case II geometry 
vs the ellipticity of the radiation P. for the three principal absorption rota­
tional branches of Ji = 20 at A. = 0" in the LIF of CN eI-21-2I). We 
have assumed that the fluorescence is not dispersed and is collected inde­
pendent of its polarization and that the CN has Hund's case (b) f3J coupling 
(Ref. 13) in both the ground and excited states. The higher order moments 
have been normalized with respect to the zeroth moment. 

elliptically polarized light. We will refer to apparent mo­
ments for orientation experiments as "the apparent orienta­
tion moments," but this does not imply that only orientation 
moments (k = 1,3) are being measured. 

The apparent orientation moments are once again sim­
ple sums of real moments; the expansion coefficients [see 
Eq. (12b») are derived in the Appendix and given in Table 
IV. Note that the apparent orientation moments have differ­
ent defintions from the apparent alignment moments (see 
Table IV). To fit the data from an experiment ofLiF intensi­
ty vs {3 a' Eq. (13a) can be employed to calculate the reduced 
apparent orientation moments. However, when using Eq. 
03a) to determine orientation: (k,q) = (0,0 + ), 0.0 + ), 
and (2,2 + ) for case I and (k,q) = (0,0 +), 0.1 + ), 
(2,0 + ) for case II. Note, for case I, A ~2! contributes to 
A ~2! (app) and, for case II, A ~2! contributes very strongly 
toA ~2! (app); hence, even when the ensemble being probed 
has only limited angular momentum anisotropy. it is very 
likely that none of the apparent orientation moments are 
zero. For example. in case I geometry, ifthere is cylindrical 
symmetry about the z axis. A n = 0, but A ~2! # 0, hence An (app) #0. 

Alternatively, if a~O! is known, the best way to analyze 
scans of intensity vs ellipticity is to examine at the difference 
between pairs of intensity measurements taken at ± {3 a and 
to subtract the two intensities in order to calculate a "delta 
intensity", AI({3a) = I( + {3 a) - I( - {3a ) ]/2, which is in­
dependent of the alignment since all the alignment moments 
have line strength which are identical at ± {3 a: 

!l.I({3n,JoJe ) =.!~~ ({3n,Ji,Je)a~~ (app)(Ji,Je), 
(14a) 

where 

n = 0 ..... nmax , 

(k,q) = (1,0 +) (case I), 

(k.q) = (1,1 +) (case II). 

(14b) 

(14c) 

( 14d) 

To obtain the orientation moments from Eq. (14a), Eq. (9) 
is subsequently employed. Once again, the multiple mea­
surements will permit a meaningful error analysis of the ex­
periment. This is not equivalent to just taking data at {3 a 

= ± 45°. When detecting orientation moments with unre-
solved fluorescence, measurements on the P and R branches 
serve as a check because they have orientation line strengths 
of nearly equal magnitUde but of opposite sign. Measure­
ments on the Q branch are rarely useful since the corre­
sponding orientation line strengths are very small. 

VII. DETECTION OF POLARIZATION FOR LlF WITH A 
AA= ± 1 TRANSITION 

The detection of alignment and orientation using unpo­
larized fluorescence is quite similar for LIF of the 2II_2!, + 
states as compared to LIF of the 2!,_2l:+ states when we 
assume all states have Hund's case (b) coupling. We use the 
same set of apparent moments, but the c(k ',q',k,q,Ji,Je ) are 
slightly different [see Eq. (13»). In Table V, we present the 
apparent moments for 2II_1l: transitions for the case in 
which both the ground and excited states obey Hund's case 
(b) coupling. 

The formulas to calculate the line strength are the same 
except for S(J;,A;.J.,A.,Jf,A.), the product of the Honl­
London factors connecting the ground state with excited 
state and the excited state with the final state. The alignment 
and orienation line strengths for !l.A = ± 1 transitions have 
nearly identical shapes but different magnitudes (factor of 
1/2 to 2.0) than those for !l.A = 0 transition. Not only are all 
the equations presented in this paper valid for !l.A = ± 1 
transition (except the specific expansion coefficient for the 
apparent moments), but Figs. 2-7 give a reasonable good 
insight into how the line strength for !l.A = ± 1 transitions 
vary with probe laser polarization. 

Most multiplet II states only exhibit Hund's case (b) 
coupling for very high rotational states. Hence, to calculate 
accurate line strengths, the wave functions for a state with 
intermediate coupling must be employed. In general, to cal­
culate the line strengths, a detailed knowledge of the fine 
structure energy level splittings of all rotational states is re­
quired.1O However for 2n states, we need only to know a 
single constant, 11 Y = A / B (called A. in Refs. 11 and 12) in 
order to calculate the wave functions of all the rotational 
states. For a 2n_2l: ora 2l:_2II transition, once the Yvalueis 
known, it is straightforward to calculate 
S(J;,A;.J.,A.,Jf,Ae ) since the Honl-London factors can be 
readily evaluated. 11 
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TABLE V. The apparent moments as a function ofthe reduced moments of the ground state distribution for 
J = 20 for a heteronucIear diatomic molecule (NO) with case (b) coupling and 1= I undergoing 2n_2I_2n 
LIF with unresolved emission. Note that the definitions of two of the apparent orientation moments, A ~01 
(app) and A n (app) (case I) or A ~21 (app) (case II), are identical to the corresponding apparent alignment 
moments. The definitions for A 12~ (app) (case I) and A F~ (app) (case II) apply only for alignment measure­
ments. The definitions for A ~ '1 (app) (case I) and A f'l (app) (case II) apply only for orientation measure­
ments. 

Case I geometry 

A &°1 (app) =A &°1 + 0.334 A &21 - 0.021 A i41 + 0.031 A 141 + 0.031 A &41 
A~ol (app) =A~ol -0.453A~21 -0.030Ai"1 -0.079A~"1 -0.066A~"1 
A ~01 (app) = A ~01 + 0.301 A ~21 - 0.017 A i"1 + 0.021 A ~"1 + 0.022 A ~"1 
An (app) = A n -0.085 A &21 + 0.235 A i"l + 0.086 A ~"1 + 0.037 A ~"1 
A ~21 (app) = A n - 0.023 A ~21 + 0.215 A i"1 + 0.087 A ~"1 + 0.042 A ~"1 
A ~21 (app) =A n - 0.100 A ~21 + 0.196A!"1 + 0.071 A ~"1 + 0.031 A ~"1 
A ~2~ (app) = A ~2~ + 0.088 A ~~ + 0.233 A!~ 
A~2~ (app) =AF~ +0.080A~~ +0.212A!4~ 
A~2~ (app) =A~2~ +0.073A~~ +0.194A!~ 
A ~'1 (app) = A &'1 + 0.092 A P1 + 0.071 A ~31 
A~'l (app) =A~'l +0.306AP1 +0.237A~31 
A ~'1 (app) = A ~'1 + 0.083 A ~31 + 0.065 A ~31 

Case II geometry 

A~ol (app) =A~ol +0.368An +0.061A!41 +0.017A~41 +0.005A&41 
A~"l (app) =A~ol -0.516A~21 -0.134A!"1 -O.064A~"1 -0.035A~"1 
A ~01 (app) = A ~01 + 0.328 A F1 + 0.043 A!"1 + om I A ~"1 + 0.003 A ~"1 
A~21 (app) =A&21 +0.470An +0.125Ai41 +0.195A~41 +0.154A~41 
A~21 (app) =A~21 +0.548A~21 +0.132A!"1 +0.185A~"1 +0.143A~"1 
A ~21 (app) = A ~21 + 0.451 An + 0.103 A!"1 + 0.162 A ~"1 + 0.127 A ~"1 
AF~ (app) =AF~ +0.187A\4~ +0.165A~~ 
A F~ (app) = A F~ + 0.170A \~ + 0.150A ~~ 
A F~ (app) =A F~ + 0.156 A \~ + 0.137 A ~~ 
A\'l (app) =Al'l +0.ll3A~31 +0.029AP1 
A f'l (app) = A 1'1 + 0.375 A P1 + 0.097 A P1 
Af'l (app) =Af'l +0.102AP1 +0.026AP1 

VIII. CORRELATIONS WITH VELOCITY 

When the probe laser direction is fixed, the line 
strengths are no longer independent, and hence the deter­
mination of the bipolar harmonics between the velocity and 
polarization (line shape analysis) as described by Dixons 
and Houston8 is no longer possible. If the laser propagation 
direction is fixed and the fluorescence is collected without 
polarization filtering, then only apparent alignment mo­
ments, apparent velocity moments, and apparent bipolar 
moments can be detected. The determination of these appar­
ent moments is postponed for future publication. 

IX. DETECTION OF ALIGNMENT WITH POLARIZED 
DETECTION 

In order to determine the real alignment moments in­
stead of the apparent alignment moments, we must vary the 
propagation direction of the probe beam,3 vary the position 
of the detector over all of space, or polarization analyze the 
polarization of the emitted photons. Experimental consider­
ation almost always makes the last choice preferable. Since 
we are interested only in varying !:J.d while keeping P d con­
stant, we simultaneously rotate the detector quarter-wave 
plate and the linear polarizer while keeping their major axes 
parallel. Figure 6 depicts the line strengths for a "double 

(R branch) 
(Qbranch) 
(R branch) 
(Pbranch) 
(Qbranch) 
(R branch) 
(Pbranch) 
(Qbranch) 
(R branch) 
(Pbranch) 
(Qbranch) 
(R branch) 

(Pbranch) 
(Qbranch) 
(R branch) 
(Pbranch) 
(Qbranch) 
(R branch) 
(Pbranch) 
(Qbranch) 
(R branch) 
(Pbranch) 
(Qbranch) 
(R branch) 

delta scan", P~'2 vs!:J.a and!:J.d atp a = O· andp d = 0·. This 
is shown for the LIF of the B 2L-X 21; + states of eN for case 
I geometry. Experimentally, a double delta scan is acquired 
by measuring the LIF intensity vs !:J.a at various !:J.d' Note 
that we need only to vary !:J.d between O· and 45· in order to 
span the space. We can directly use a linear least squares fit 
to Eq. (7) to determine the real moments: 

I(!:J.n,JiOJe ) = l!!'2 (!:J.n,J;,Je )a~'2 (J;), 

where 

(k,q) = (0,0 + ),(2,2 - ),(2,0 + ),(2,2 + ) 

(l5a) 

(l5b) 

(4,4 - ),(4,2 - (,(4,0 + ),(4,2 + ),(4,4 + ) 
(case I), (l5c) 

(k,q) = (0,0 + ),(2,1 - ),(2,0 + ),(2,2 + ) 
(4,3 - )(4,1 - ),(4,0 + ),(4,2 + ),(4,4 + ) 

(case II). (15d) 

In general, measurements at nmax polarization angles 
need to be taken, but if both a parallel and a perpendicular 
rotational branch can be probed, (for example, a P and a Q 
branch), then measurements at only nmax /2 polarizations 
need be recorded. By varying the polarization of the detec­
tor, we can measure nine alignment moments as opposed to 
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FIG. 6. "A double delta scan": The moments of the line strength factors 
p ~/,l. for case I geometry vs the angles of linear polarization of the probe 
light I!.. and the emitted light I!.d for the three principal absorption rota­
tional branches of Ji = 20atP. = O"andPd = 0° in theLlFofCN el:-2l:-
2l:). We have assumed that the fluorescence is not dispersed and that the 
CN has Hund's case (b) /lJ coupling (Ref. 13) in both the ground and excit­
ed states. The higher order moments have been normalized with respect to 
the zeroth moment. 

the three apparent moments that can be measured using un­
polarized detection [see Eq. (13)]. The additional polariza­
tion moments can then be obtained by varying both the exci­
tation and detection probe. This allows a more precise 
characterization of the anisotropy in the angular momentum 
distribution. 

X. DETECTION OF ORIENTATION WITH POLARIZED 
DETECTION 

For orientation, the analogue of the double delta scan is 
the "double beta scan". In order to independently measure 
mUltiple orientations with a fixed detector and probe direc­
tions, one can record the LIF intensity vs f3 a at several f3 d at 
fixed ll.a and fixed ll.d' This is accomplished by rotating the 
detector quarter-wave plate while keeping the linear polariz­
er of the detector fixed with its major axis along z. Figure 7 
depicts the line strengths for a double beta scan, P ~'1 vs f3 a 
and f3 d at ll.a = O· and ll.d = O· for the LIF of the B 21:_ 
x 21:+ states of eN for case I geometry. To determine the 
orientations, we carry out a linear least squares fit of "delta 
intensity" vs f3 a and f3 d where 

ll.I(f3aJ3d) = [I( +f3a) -I( -f3a)]/2, 

ll.I(ll.n,J;,J.) = .!~'1 (ll.n,JjJJ. )a~'1 (J;), (16a) 

where 

n = O ..... nmax , (16b) 

(k,q) = (1,0 + ),(3,0 + ),(3,2 +) (case I), (16c) 

8 ~i:;,.:;;;:.i';~ 
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FIG. 7. "A double beta scan": The moments of the line strength factors 
p ~"l for Case I geometry vs the ellipticities of the radiation of the probe 
light P a and the emitted light P d for the three principal absorption rota­
tional branchesofJi = 20 at I!. a = O"andl!.d = O'in the LlFofCN el:-2l:-
2l:). We have assumed that the fluorescence is not dispersed and that the 
CNhas Hund'scase (b)/lJ coupling (Ref. 13) in both the ground andexcit­
ed states. The higher order moments have been normalized with respect to 
the zeroth moment. 

(k,q) = (1,1 + ),(3,1 + ),(3,3 +) (case II). (l6d) 

Additional orientation moments can be detected if ll.a 
=1=0· and ll.d =1=0·: for case I the additional moments areA P2 
and A P2 for the case II geometry the additional moments 
are A at! ' A a3! , and A P! . When doing a double beta scan, 
nmax different ellipticities need to be employed since data 
from more than one branch are, in general, not useful (see 
discussion in Sec. VI). In comparing Eqs. (14) and ( 16), we 
note that varying the excitation and detection polarization 
ellipticity allows the determination of three orientation mo­
ments with k = 1,3 instead of one apparent orientation mo­
ment. 

XI. DETECTION OF ALIGNMENT WITH MAGIC ANGLES 

Sometimes it is impossible to scan the polarization of 
either the probed laser or the detection analyzer because the 
ensemble being probed is not stable for a reasonable period of 
time. Then one is forced to take measurements at just two 
polarizations with a device which rapidly switches (flips) 
the linear polarization or rapidly switches elliptical polariza­
tion from left circularly polarized light to right circularly 
polarized light (for example, using a photoelastic modula­
tor). Unfortunately, this sort of measurement never permits 
determination of X2 thus preventing a meaningful error anal­
ysis because only two distinct measurements are being em­
ployed to determine two parameters, the popUlation and one 
apparent polarization moment. Repeating these two mea­
surements many times reduces the variance in the data, cr, 
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but does not give an indication as to how well the system is 
being modeled by the two parameters. A measure of the 
goodness of the fit of the model to the data, X2

, can be ob­
tained only from multiple independent measurements of 
LIF at several polarizations of the excitation light. 

There are three ways to do magic angle measurements: 
( 1) flip the polarization of the probe; (2) flip the polariza­
tion of the detection analyzer; and (3) flip alternately the 
polarization of the probe and the polarization of the detec-

I 

tion analyzer. We will look only at the first case since this is 
the one which is most commonly implemented. 

For unpolarized detection and a fixed probe and detec­
tion direction, we are sensitive only to two polarization mo­
ments. We can make measurements I(/~t) and 1(1i2 ) at two 
incident linear polarizations, lit and 1i2, for which one of the 
two polarization moments is zero (or nearly zero) at both 
angles. Comparing the two intensities with the known line 
strengths, we can calculate the polarization moments: 

{a} {[(lit) -/(1i2)'[P!~ (lit)/P!~ (1i2)]} 

ao+ (app) = {P~~}(lit) -P~~}(1i2)'[P~~ (lit)/P~~ (1i2)]} , 
(17a) 

{k} [/(li t ) -/(1i2)] _a~O! (app)'[P~~}(lit) -P~~}(1i2)] 
Au (app) = a~O! (app).[p!~ (lit) -P~~ (1i

2
>] , 

(17b) 

where 

P {k} _ p{2} . 
q± - 2+, 

p!~ =P~'i; 
P~~ =p~2~; 

p!~ =pF~; 

p~~} = p~O!; lit = 0·; 1i2 = 90· (case I), 

p~~} = p~O!; lit = 0·; 1i2 = 90" (case II), 

(17c) 

(17d) 

(17e) 

(17f) 

p~~} = P~o.I -A n .p~2!; lit = _45°; 1i2 = - - 45· (case I), 

p,{o} _ p{O} -A {2} .p{2}. lit = _45°,' 1i2 = _ - 45° (case II). 0+ - 0+ 0+ 0+, 

Here P ~~} is used to account for any contributions to the 
intensity from a~O! (app) and from other known polariza­
tion moments. In Eqs. (17c) and (17d), data are being re­
corded at magic angles so there are no contributions to the 
intensity from polarization moments other than the one be­
ing measured and a~O! (app); in Eqs. (17e) and (17f), all 
polarization moments contribute to the intensity. 

The exact angles to use in Eqs. (17e) and (17f) depend 
on J j and Je • With the help of the equations given in Table I, 
one calculates the line strength of P ~2! or p ~2! vs lia to find 
the polarization at which p~~ = 0 or P F~ = O. These are 
the lia which we would like to use to determine A F~ or 
A F~ . Some fast polarization switches (such as a photoelas­
tic modulator operating alternatively as a zero-wave plate 
and a half-wave plate) can rotate linearly polarized light by 
an arbitrary angle. For this case,li t = Ii (magic angle 1) and 
1i2 = Ii (magic angle 2), hence pn (Ii = - ± 45°) = 0, 
thusP~~} (Ii = _ ±45°) =P~O! (Ii = _ ±45°). 

where 

(k,q) = (2,2 +); lit = 0·; 1i2 = 90" (case I), 
(I8b) 

(k,q) = (2,0 +); lit = 0°; 1i2 = 90" (case II). 
(18c) 

Note that depending upon how I( II) and 1(1) are defined, 
lit = 0", ± 90" and 1i2 = 0", ± 90". However, Eq. (18a) is 

However, some fast polarization switchers can rotate 
the linear polarization only by 90°; consequently, we can em­
ploy the magic angles in Eqs. (17 e) or (17f) only if the 
magic angles occur at lia = ± 45°. Thus, we must settle for 
doing experiments slightly away from the magic angles when 
determining A ~2! or A i~ . lia = ± 45° are usually close to 
the magic angles and are, obviously, 90° apart. 

Note that Eq. (17b) is not equivalent to the more famil­
iar formula for determining the polarization: 
p= [1(11) -/(1)]1[1(11) +/(l)].HerePisassumedtobe 
proportional to A ~2! in case I geometry and A ~2! in case II 
geometry. This assumption is true only if all the fluorescence 
is collected (one photon absorption spectroscopy) or if a 
polarizer is used on the detector to insure that P ~o! is inde­
pendent of the polarization of the probe (see Fig. 6). Even 
when these conditions are fulfilled, the constants which re­
late the degree of polarization P to the real polarization mo­
ments, A n or A ~2! ' are functions of Jj and Je : 

(18a) 

I 
valid only if the polarization ratio was measured at the magic 
angles, Ii = 0°, ± 90". It is emphasized that reporting the 
degree of polarization is an inferior method of presenting 
data because it does not reduce the data to the expectation 
values of angular momentum operators. 

Equations (17a)-( 17f) determine all the apparent mo­
ments and consequently enable the experimentalist to record 
a single spectrum at one polarization and correct the mea­
sured intensities for the line strengths as a function of J j and 
Je as well as for any polarization effects. At a given lia: 

J. Chem. Phys., Vol. 88, No. 12, 15 June 1988 

Downloaded 09 Jun 2011 to 171.66.87.242. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



7368 Kummel, Sitz, and Zare: Population, alignment, and orientation 

a~oI (JoJe,Aa) = [I(Ji,Je,Aa) 

where 

- ~ a~~ P~~ (Ji,Je,Aa) ] / 

p~oI (JOJe,fl.a ), 

(k,q) = (2,2 + ), (2,2 -) case I, 

(k,q) = (2,0 + ),(2,1 -) case II. 

(l9a) 

(l9b) 

(19c) 

The experimentalist should choose fl.a to minimize the 
contribution of the alignment to Eq. (19a). For example, in 
case I geometry, ifthe ai~ is much smaller than ai21 or in 
case II geometry, if the ap2 is much smaller than a~21 , then 
Aa should be set at - 45°. The condition for case II geometry 
is always true when the system has cylindrical symmetry 
about the z axis. 

The major problem with magic angle formulas is the 
lack of a meaningful error analysis. This can be overcome by 
checking the alignment moments with measurements at oth­
er pairs oflinear polarizations (which can be 90° apart) and 
calculating one of the two apparent alignment moments as­
suming the other is known. To analyze this type of experi­
ment, Eqs. (17a) and (l7b) are used in conjunction with the 
following definition: 

P~{~?(A) = p~oI (A) - A ~kl (app)p~kl (fl.). (20) 

In Eqs. (l7a), (l7b), and (20), A ~~ (app) is the apparent 
alignment moment which is being checked, while 
A ~kl (app) is the apparent alignment moment which is as­
sumed to be known. 

XII. DETECTION OF ORIENTATION WITH MAGIC 
ANGLES 

The determination of the orientation using magic angles 
is quite straightforward because "delta intensity" M(P a) 

= [I( + Pa) - I( - Pa)]/2 depends only on the orienta­
tion moments since the alignment moments have equal line 
strengths at + P a and - P a : 

A {k} (a ) = (I(Pa) - I( - Pa ») 
q± pp I(Pa) + I( - Pa ) 

where 

x(P~OI (Pa) +A ~1 (app)p~kl (Pa»), 

P~"1. (Pa) 

(21a) 

(k,q) = (1,0 +); (k ',q') = (2,2 -) (case I), 
(21b) 

(k,q) = (l,1 +); (k',q') = (2,1 -) (case II). 
(21c) 

Normally, the experimentalist would choose to carry out the 
experiment with left and right circularly polarized light 
(P = ± 45°) if A ~kl is zero or has been measured. Alterna­
tively, one can perform the experiment at the ellipticities for 
which p~kl (Pa ) is zero. Some fast polarization switches 
(such as photoe1astic modulators) allow measurements at 
any ellipticity, not just with circularly polarized light. In 
fact, for meaningful error analysis, the measurement of ori­
entation should be performed with several pairs of elliptici­
ties. Note that for LIF with spatially resolved detection, the 
degree of circular polarization, C = [I( + Pa) 
- I( - Pa )] / [I( + Pa ) + I( - Pa ) ], reported alone, is of 

limited meaning because it does not account for the fact that 
the line strength depends on J i and Je nor does it correct for 
the alignment. However, by substituting the degree of circu­
lar polarization, C(Jje)' for the first term in Eq. (21a) and 
setting P a = 45°, we can convert the information in the de­
gree of circular polarization into the expectation value of 
angular momentum operators: 

A~~ (JoJe)(app) 

=C(JoJe)·[p~OI (Jj.,{3a =45°)/ 

P~~ (JoJ.,Pa = 45°)], (22) 

where (k,q) = (1,0 + ) and A ~22 (app) = 0 for case I and 
(k,q) = (l,1 + ) and A F2 (app) = 0 for case II. 
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