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Abstract-Oscillator strengths have been calculated for many of the major transitions in Si III using both dipole 
length and dipole velocity matrix elements. Three approximations to the many-electron correlation problem 
are explored and compared: (I) the use of configuration interaction employing a semiempirical frozen core 
potential; (2) the use of configuration interaction employing a modified Hartree-Fock-Slater basis set; and (3) the 
use of the Coulomb approximation whereby a wavefunction is constructed with the correct asymptotic behavior. 
None of these methods as far as they have been carried out here is found to be fully satisfactory. Emphasis is 
placed upon the difficulty of calculating transition probabilities between high-lying energy levels which are 
strongly perturbed. 

INTRODUCTION 

EVER since it has become possible to obtain spectra of stars, there has been a strong demand 
for laboratory data on atomic lines in order to explain the observed spectral features. 
One of the most fundamental measures of a spectral line is its oscillator strength or transi- 
tion probability. The physics required to set down the basic equations for the solution 
of this problem is well understood. (l) Calculations were carried out as early as 1927.‘2*3’ 
However, there still exists a large number of astrophysically important transitions for 
which not even the order of magnitude of the oscillator strength is known. The difficulty 
of performing reliable theoretical determinations of oscillator strength values appears 
to be accompanied by the similarly large difficulty of obtaining trustworthy oscillator 
strengths by experimental means. Indeed, there is a dearth of measurements on transitions 
between highly excited states or transitions in highly ionized atoms.‘4) 

Theoretically, the problem stems from the Coulomb interaction of all the electrons. 
The standard non-relativistic Hamiltonian (in atomic units, e = h = m = 1) for the 
N-electron atom 

(1) 
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is not separable. For a zero-order approximation to the many-electron wavefunction it is 
customary to replace the second term of equation (1) by a central-field potential, or sum 
of central-field potentials 

(2) 

which describes the motion of each electron i in the spherically averaged fields of the other 
electrons. The modified central field Hamiltonian now permits separable solutions and a 
principal quantum number n and angular momentum number 1 can be assigned to each 
electron. 

If the Pauli exclusion principle is taken into account, the total wavefunction is given 
by a Slater determinant of one-electron wavefunctions, or more generally, by a set of 
Slater determinants satisfying the vector coupling rules for the total angular momentum 
and total spin. There are several ways to construct the substitute potentials K, the most 
popular being Coulomb approximation, Hartree self-consistent field, Hartree-Fock self- 
consistent field with exchange, Hartree-Fock-Slater (simplified Hartree-Fock) and the 
Thomas-Fermi statistical model. (lv5) Some of these methods are also used with scaling 
factors in order to match the observed energies.t6,” 

In the configuration interaction procedure the Slater determinants of the zero-order 
approximation are used to form a basis set for the expansion of the total many-electron 
wavefunction. In principle, the many-electron problem can be solved to any accuracy 
desired by including enough configuration wavefunctions in the basis set. In practice, 
the expansion must be truncated and the resulting wavefunction is merely an improved 
approximation to the true wavefunction, consisting of a finite linear combination of 
Slater determinants which diagonalize the corresponding (finite) &‘-matrix. 

In this paper we compare several different methods for calculating oscillator strengths 
for the two-electron spectrum of Si III, which is of particular astrophysical importance in 
hot stars.“’ Often after completing a complex and lengthy procedure to obtain many- 
electron wavefunctions, there is no way to determine whether that method can be trusted 
to provide reliable oscillator strengths. By comparing three different methods we hope 
to acquire a measure of confidence in the use of those oscillator strengths for which the 
calculations are in good agreement as well as draw attention to the existence of certain 
recalcitrant cases for which the oscillator strengths found by any of the methods are in 
poor agreement. In this way we may be able to gain insight into the nature of electronic 
transitions in many-electron atoms. 

COMPUTATIONAL METHODS AND RESULTS 

In the calculation of TREFFTZ, (9) the effect of the core electrons on the two valence 
electrons is approximated by a semi-empirical potential which gives the correct term 
values of the lowest states of Si IV. The inner of the two valence electrons is described by 
an eigenfunction P(ni~i) in this semi-empirical potential. For the outer electron it is assumed 
that the core is shielded by the charge distribution P2(nili) of the inner electron. If we 
denote the eigenfunction of the outer electron by &r&-J, the basis set for the configuration 
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interaction calculation is composed of functions of the form 

’ 

(3) 

where W[I,(l), l,(2), L] is a normalized eigenfunction of the angles t?i, cbl, 0,) &, and S and 
L are the total spin and orbital angular momenta, respectively. Note that in using equation 
(3) one must be sure to take into account the non-orthonormality of the different basis 
set wavefunctions. 

The latter complication is avoided in Zare’s procedure.‘iO~“’ He uses a modified 
form of the Hartree-Fock-Slater method(12) which incorporates the improvements 
suggested by LATTER and by LINDGREN. (14) In this procedure, which is fully described 
elsewhere,‘15’ all the electrons move under the action of the same universal exchange 
potential. Spin-orbitals having the same set of (li, IO) angular momenta are then forced 
to be orthogonal to one another since the radial part of each spin orbital is derived from 
the same radial wave equation. Since different sets of valence spin-orbitals differ by at 
least one angular momentum quantum number, the two-electron wavefunctions of the 
basis set are orthonormal. 

Oscillator strengths may be calculated via the dipole length or via the dipole velocity 
formula. The former uses the matrix elements (tiilrl +r211CI/>, the latter the matrix elements 
(tjilVl + V,(tjf). For exact many-electron wavefunctions it may be shown that 

I(l(/ilrl +r2Wf//>12 = -j--& 21(+ilV1 +V~I+J/>I~ 
(i I J 

where in equation (4) the energy is in atomic units. In evaluating the energy difference 
Ei-E/ in the above formula we have inserted the experimentally determined values with the 
hope that this will give a more realistic picture of the discrepancies between the dipole 
length and the dipole velocity results. However, we find that the major difference between 
oscillator strengths calculated by the two methods can be attributed to the lack of agreement 
between the two types of matrix elements rather than to the choice of experimental or 
calculated energy values, &EJ, in equation (4). 

We present in Appendix I the results of our various oscillator strength calculations. 
Under the column heading marked “gf-values” we give two entries for each transition. 
The upper entry is the dipole length value, and the lower entry is the dipole velocity value. 
Examination of Appendix I gives vivid proof of the well known but often forgotten fact 
that agreement between dipole length and dipole velocity calculations does not mean that 
the oscillator strength is correct. Indeed there is practically no way of independently 
judging the reliability of our gf-values. Clearly more extensive calculations as well as 
calculations by other different methods are needed, and whenever possible, more laboratory 
measurements must be made in order to decide which d-values given in Appendix I are 
most likely to be correct. 

Here a basic difficulty, first pointed out by HYLLERAAS,(‘~) should be mentioned. We 
are interested in describing the electronic correlation effects present in high-lying members 
of Rydberg series which are close to the ionization limit. The complete basis set should 
consist of a Rydberg series of bound states and a continuum. However, we have not found 
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it feasible to include the contribution of the continuum states to the expansion, and hence 
we use an incomplete basis set. Thus the inclusion of more and more bound state configura- 
tions in the expansion basis set does not guarantee that we will converge to the correct 
many-electron wavefunction, especially for high-lying levels. 

Wavefunctions have been calculated for almost all the terms given in the latest revision 
of Moore’s tables(“) for Si III, and we present in Table 1 a comparison of Moore’s designa- 
tion of the term values with those we have used in Appendix I. Our designation represents 

TABLE 1. COMPARBON OF DESIGNATION AND LEADING TERMS 
IN THE WAVEFUNCTIONS FOR STATIONARY STATES OF SilLI 

Series 
Designation Leading terms 

This paper* Moore Zare Trefftz 

‘S 

‘PO 

32 3s2 
3PZ 3P2 
3s4s 3s4s 
3s3p 3s3p 
3s4p 3s4p 
3ssp* 3s5p 
3p4s* 3p3d 
3s6p* 3s6p 
3D3d* 
3$7p* 

3p4.s 
3s7p 

3p2* 3P2 
3s3d* 3s3d 
3s4d 3s4d 
3s4f 3s4f 
3s5f 3s5f 
3p3d* 3p3d 
3s6f * 3s6f 
3slf * 3s7f 
3s6d* 3s6d 
3P4P* 3P4P 
3sld* 3s7d 
3p3d* 3p3d 
3s4f * 3s4J 
3s5f 3s5f 

‘D 

‘FO 

3D 

jFO 

3s2 
3PZ 
3s4s 
3s3p 
3s4p 
3s5p 
3s6p ; 3p4st 
3s6p ; 3p4st 
3p3d 

3p* ; 3s3d 
3s3d; 3~’ 
3s4d 

3s2 
3s4s 
3P2 
3s3p 
3s4p 
3s5p: 3p4s 
3p4s; 3s5p 
3s6p 
3~7~; 3p3d 
3~7~; 3p3d 
3~’ : 3s3d 
3s3d; 3~’ 
3s4d 
3s4f 
3sSf 
3s6f; 3p3d 
3s6f: 3p3d 
3s7f; 3p3d 
3s6d 
3~4~: 3s6d 
3s7d 
3p3d; 3s4f 
3s4f: 3p3d 
3s5f 

* An asterisk is used when strong mixing is suspected. 
t In Zare’s calculation the character of the 3~4s configuration is swallowed up by the other 

interacting configurations so that no energy level has the 3~4s configuration as the leading term 
of its wavefunction. 

the leading configuration in our expansion. In previous work, ZARE(‘O) has introduced 
the concept of the spectral purity of a configuration interaction wavefunction. Spectral 
purity is defined as the square of the leading coefficient in the wavefunction expansion. 
In Table 1 and Appendix I a superscript asterisk is used to denote those configurations 
which are strongly mixed, i.e. in one or both of our calculations thespectral purity is below 
80 per cent. Terms not quoted in Table 1 agree with Moore’s designation and are not 
strongly mixed. It should be noted that when the spectral purity of a configuration drops 
close to or below 50 per cent, the assignment of a single configuration label is quite mis- 
leading and of doubtful significance. 

The most striking discrepancy in Trefftz’s and Zare’s calculations appears in the ‘S 
series where the 3~4.9 term is interchanged with 3p2. The ordering of these two terms is 
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difficult to calculate because both the energy splitting and the ratio of the configuration 
interaction matrix element (3~4s ‘S(X(3p2 ‘S) to the energy splitting are small. A more 
extensive Hartree-Fock calculation with configuration interaction by WEIRS confirms 
Zare’s order of terms. Accordingly, Trefftz’ values for transitions involving the 3~4s and 
3pz ‘S terms are given in parentheses. Trefftz’ ansatz of describing the unexcited electron 
by a wavefunction of the next higher ion as though the other electron did not exist, is not 
fully satisfactory for low-lying levels. On the other hand, for the highly excited levels, 
Zare’s universal potential, which is constructed to describe optimally the low-lying levels, 
is not very realistic. Here Trefftz’ wavefunctions may be somewhat superior. 

If a perturbing state lies between highly excited states of a normal series, the different 
choice of zero-order configuration wavefunctions results in the maximum pertur- 
bation being displaced among the strongly interacting configurations. The weights of 
the interacting configuration are also redistributed among the different terms of the 
normal series. The 3~4s term in the ‘PO series exemplifies this confusing situation 
(see Table 1). 

In addition to the calculated dipole lengths and dipole velocity gf-values appearing 
in Appendix I we also give (in column one) the vacuum wavelengths corresponding to 
the energy differences between the centers of gravity of the multiplets as found in Moore’s 
tables. In column two of Appendix I we list our designation for the transition. In the final 
column of Appendix I we quote Coulomb approximation values when neither of the two 
states of the transition are strongly mixed. Since our definition of “no strong mixing” 
permits a mixing coefficient as large as rfi@45 for a single perturbing configuration, we 
cannot expect Coulomb approximation results to be always reliable. On the other hand, 
Coulomb approximation wavefunctions do have the correct asymptotic behavior for 
large r, which certainly is important for highly excited states. We cannot guarantee this 
for our wavefunctions. For the reasons given above we have omitted from Appendix I 
Coulomb approximation values for all transitions involving 3p2 ‘S or 3~4s ‘S. Also, we 
do not list a value when the orbit of the “jumping” electron is clearly inside the orbit of 
the other electron. Some of the Coulomb approximation values refer to the higher ioniza- 
tion limit 3p ‘PO of Si IV. This is noted in parentheses. 

It was found that the semi-convergent series for the r-matrix elements in the Coulomb 
approximation method does indeed suffer from a lack of convergence. BATES and 
DAMGAARD”‘) have suggested a cutoff which neglects all powers of r smaller than r2 in 
the integral IP(n,llJr)rP(nz121r)dr. In the last column of Appendix I the first number 
quoted was obtained using this cutoff. The second number quoted was obtained using a 
cutoff at the smallest term in the expansion of JP(n,I,(r)rP(n,l,Jr) dr, the so-called “best” 
cutoff. Neither method gives a smooth curve for Bates-Damgaard’s 3 integral when the 
difference between the effective principal quantum numbers is held constant. Both give 
the same result as calculated by BATES and DAMGAARD (19) for integer values of the effective 
principal quantum number belonging to the larger I value. Since the deviations from a 
smooth behavior of the f integral have a certain absolute magnitude, the relative errors 
may become very large near a root of the 9 function. 

Attention of the reader is called to the fact that there are many citations in the literature 
to oscillator strengths obtained from the Coulomb approximation. However, our calcula- 
tions show that there is not one Coulomb approximation value, but many, depending 
upon the choice of the cutoff used. 
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In general we regard the strong transitions cited in Appendix I to be more reliable than 
the weak ones. An exception to this is the so-called two-electron double jumps which are 
forbidden in the central field approximation. Since the magnitude of these transitions is 
extremely sensitive to the departure from a central-field description, the results are heavily 
influenced by what minor (in the sense of contributing to the energy) configurations have 
been included in the basis set. Two such cases where Zare’s calculations give a strong 
transition while Trefftz’ do not are the 3s4d ‘D-3p3d 3Po transition at II - 6830 A 
and the 3p3d 3Po - 3s5d 3D transition at 1 - 9221 A. There are other cases of poor agree- 
ment in the 3Po- ‘D transitions even though the configuration interaction pictures 
presented by Trefftz and Zare are quite similar. As would be expected, the singlet transi- 
tions ‘PO- ‘D, where correlation effects are more important, show some striking dis- 
crepancies. Here Table 1 provides some explanation. The interfering term 3~74s lies lower 
in Trefftz’ calculation than in Zare’s. Also Trefftz took the configuration 3s7p into account 
whereas Zare neglected it. This appears to account for the apparent disagreement in the 
3s3d 1 D - 3p3d ‘PO transition at /z - 1425 A. 

Zare did not calculate the ‘p3P terms of even parity or the i*3Do terms of odd parity. 
However, these terms should not be critical since there is not much configuration inter- 
action. Parity prohibits interaction with the main series (3s, nl) lS3L (I = L) terms. It 
remains to be seen how reliable the g/--values given in Appendix I are for transitions to the 
“normal” series lv3Po, 1*3D. Also, transitions involving the iq3Fo terms could not be 
compared. These values should be accepted with at least as much reservation as the ones 
of the lower L’s. Again asterisks indicate heavy mixing in both series. 

For some transitions the results may be improved by other methods. Wavefunctions 
for the lowest state of a series may be calculated by Froese’s program”” which is a con- 
figuration interaction procedure based on the Hartree-Fock energy minimum principle. 
By an iterative process it determines the best radial dependence of the one-electron wave- 
functions together with the mixing parameters. For configuration interaction between 
states near the first ionization limit the Many-Channel-Quantum-Defect Theory”” may 
hold promise. It deduces an interaction matrix (closely related to the reaction matrix 
above the ionization limit) from experimental term values. Since this process leads to 
several solutions to the interaction matrix, it must be complemented by auxiliary methods, 
such as those quoted here, to determine which solution is the correct one. The method 
has the advantage of giving the correct asymptotic behavior of the wavefunction for large r. 
Finally we must caution against the indiscriminate use of the Z-expansion method of 
LAYER whereby one only takes into account the configuration interaction among 
those configurations built up from spin-orbitals having the same principal quantum 
numbers (i.e. the same “complex”). For high-lying states of atoms, even for doubly ionized 
silicon, the different interacting configurations have failed to sort themselves out by 
complexes.* 

* The Z-expansion method may be used if the separation of the different ionization limits of a complex is 
less than the separation between the energy levels of the different principal quantum numbers of the considered 
series. In our case the ionization limits of the Si III complexes are given by the ground state 32S and the excited 
state 3zP’ of Si IV with an energy difference of 71 590 cm-’ = 0.6524 Ry. For all but the lowest member of the 
different Si III series, this energy difference is larger than the difference between neighboring energy levels of 
different principal quantum number. 
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As has been shown by the presentation of our data in Table 1 and Appendix I, correla- 
tion effects in the excited states of many-electron atoms are by no means well understood. 
Much remains to be done before all the transition probabilities needed can be supplied 
with an accuracy of, say, 20 per cent. A particularly pressing challenge is to find and demon- 
strate a simple means of accurately calculating oscillator strengths for transitions involving 
strongly perturbed high-lying excited states. We should like to add a warning for anyone 
who wants to use the results of Appendix I : Caveat emptor. 
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APPENDIX I. CALCULATIONS OF OSCILLATOR STRENGTHS FOR 

Si III TRANSITIONS 

Comparison of three diflerent methods 

gf-Values 

i (A) Coulomb 
(Vacuum) Designation* Trefftz Zare approximationt 

. 
LS-‘P” Transitions 

1207 3s2 - 3s3p 1.61 1 .I0 1.82 ; 1.88 
1.76 1.58 
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gf-Values 

1. (A) 
(Vacuum) Designation* Trefftz Zare 

Coulomb 
approximationt 

567 3sz - 3s4p 

466 - 3s5p’ 

437 

1417 

- 3p4s* 

3s3p - 3pz 

1313 - 3s4s 

800 - 3s5s 

678 - 3~6s 

4340 3p2 - 3s4p 

I637 - 3s5p* 

1329 - 3p4.P 

1235 - 3s6y* 

1212 - 3p3d* 

5741 3s4s - 3s4p 

1803 

1436 

- 3s5p* 

- 3p4s* 

1328 - 3s6p* 

1301 - 3p3d* 

3186 3s4p - 3s5s 

1856 

1514 

-- 3~6s 

- 3s7s 

‘S- ‘PO Transitions 

ow9 
O-017 
0,024 
O-033 

0.007 
0.019 

(0.65) 
(0.55) 

(0.30) 
(0.31) 

0.043 
0.040 

0.019 
0.015 

(0.98) 
(0.39) 

(0.52) 
(0.56) 

(1.00) 
(@94) 

(0.156) 
(0.153) 

(0043) 
(0.029) 

(@056) 
(0010) 

(OGO8 1) 
(OGO87) 

(0.066) 
(O-057) 

(0.22) 
(0.14) 

( 1.29) 
(0.64) 

064 
0.55 

0.13 
0.09 

0.062 
0.040 

‘S - ‘P” Transitions 

996 3s3p - 3s4s 1.11 
1 .oo 

653 - 3s5s 0.18 
0.15 

566 - 3~6s 0.062 
0.05 1 

0.020 
0.017 

0.038 
0.015 

0000 
OX@3 

0.847 
0.825 

0.137 
0.084 

0.07 1 
0.037 

0.02 1 
0.014 

0.084 
0,157 

0.046 
0.018 

0.172 
0.079 

0.000 
0.001 

2-14 
1.81 

0.740 
0.614 

0.307 
0,193 

0.876 
0.395 

0.613 
0.251 

O~OciI 
0.017 

0.616 
0.700 

0.121 
0.125 

0.987 
O-963 

0,112 
0.132 

0.036 
0.043 

0.020; @015 

@057 ; 0.05 1 

0.021 : 0.018 

0.58 ; 0.58 

0.087 ; 0.084 

0.032 ; 0.030 

0.73 ; @71 

0.112;@106 

0041 : 0.038 
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d-Values 

i (A) 
(Vacuum) Designation* TrelTtz Zare 

Coulomb 
approximation? 

4561 

1623 

1591 

1364 

1234 

3239 

1841 

1496 

6835 

3s4.s - 3s4p 

- 3s5p 

- 3p3d 

- 3p4s 

- 3s6p 

3s4p - 3s5s 

- 3~6s 

- 3sls 

3sSp - 3~6s 

3683 - 3sls 

1413 3p3d - 3~6s 

3860 - 3s7s 

625 

1506 

‘P - ‘PO Transitions 

3s3p - 3p4p 0.11 
0.015 

3s4p - 3p4p 1.79 
1.18 

1299 

3P- 

3s3p - 3pz 

513 - 3P4P‘ 

2206 3pZ - 3s4p 

1176 

1159 

1034 

1374 

- 3s5p 

- 3p3d 

- 3p4s 

3s4p - 3p4p 

3s- 3Po Transitions 

3.51 
3.41 

0026 
0047 

0.21 
0.25 

1.97 
1.76 

oMl30 
O@OOO 

2.18 
1.98 

0.29 
0.25 

0.12 
O-10 

2.98 

2.68 

0.35 
o-32 

0.13 
0.14 

0.021 
0021 

.3Po Transitions 

483 
4.91 

O*OOl 
002 

oGoO7 
OGOOO 

0.14 
0.04 

6.53 
444 

0.50 
090 

3.16 
2.38 

3.54 
2.80 

0019 
0.058 

0.086 
0.037 

3.85 
2.35 

0.07 1 
0001 

2.06 
1.76 

0269 
0.221 

1.89 

1.81 

3.7 1 ; 3.73 

0.010: 0.008 

0005 ; 0.004 

1.94; 1.92 

0.27 ; 0.26 

0096 ; 0.092 

2.80; 2.79 

0.38 ; 0.37 

0094 ; 0.089 (3~) 

446 ; 4.54 (3P) 

oGOO3 ; 0GOOO (3p) 

4.00 ; 4.13 (3p) 

1.54; 1.50 (3p) 
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g,/-Values 

I. (A) 
(Vacuum) Designation* Trefftz Zare 

Coulomb 
approximationt 

3024 

3142 

4676 

2543 

I207 

823 

691 

634 

1843 

1083 

939 

891 

879 

9326 

1589 

1457 

1425 

3591 

1954 

1561 

9803 

3P - ‘PO Transitions 

3s5p - 3p4p OGOO6 
0.010 

3p3d - 3p4p 1.98 
2.15 

3P4s - 3P4P 2.14 
2.65 

‘PO- ‘D Transitions 

353p - 3p= * 

- 3s3d* 

- 3s4d 

- 3s5d 

- 3s6d 

3pz*-33s4p 

- 3s5p+ 

- 3p4s* 

- 3s6p* 

- 3p3d* 

3s3d* - 3s4p 

- 3s5p* 

- 3p4s* 

- 3s6p* 

- 3p3d* 

3s4p - 3s4d 

- 3s5d 

- 3s6d 

3s4d-3sSp* 

0.089 0.181 
0.082 0.172 

4.66 4.91 
4.57 4.53 

0.55 @388 0.015; 0.010 
0.33 0,346 

0.050 0.003 oGO4 ; O-009 
0.024 0.025 

o%m33 0.000 0.010; 0,011 
0.0027 O+lO4 

0.54 0.414 
0.60 0,317 

0.37 0.162 
035 @149 

0.34 0.297 
035 0.219 

0.009 0.135 
0.018 0097 

0.10 0~000 
0.024 0017 

0.48 0.479 
O-014 @109 

0.29 0.084 
0.22 oG40 

0.66 0.241 
0.43 0.073 

0.26 O-001 
0.12 0000 

0.33 I .27 
0.09 0.88 I 
2.81 2.80 3.76; 3.67 
2.30 2.96 

0.024 0.035 0098 ; 0.099 
0.010 0.010 

0.030 0.018 oGO3 ; 0.0003 
0.024 O-042 

1.25 1.42 
0.63 0.927 

0.5 1 ; 0.67 (3~) 

3.72; 3.74 (3p) 



Comparison of calculated oscillator strengths for Si III 653 

gJ-Values 

A (A) 
(Vacuum) Designation* Trefftz Zare 

Coulomb 
approximation? 

4104 3s4d - 3~4s; 

3321 - 3s6p* 0.23 
@16 

3163 - 3p3d’ 0018 
0.002 

‘PO - ‘D Transitions 

1112 

673 

3s3p - 3s3d 

- 3s4d 

514 - 3s5d 

534 - 3s6d* 

521 

3091 

1388 

1365 

1194 

1093 

3802 

1931 

- 3p4p* 

3s3d - 3s4p 

- 3s5p 

- 3p3d 

- 3p4s 

- 3s6p 

3s4p - 3s4d 

- 3s5d 

1539 - 3s6d* 

1436 

7464 

6830 

3988 

3045 

8267 

- 3P4p* 

3s4d - 3s5p 

- 3p3d 

- 3p4s 

- 3s6p 

3s5p - 3s5d 

‘PO - ‘D Transitions 

@71 0181 
0.39 0.123 

0.355 
0.303 

0.113 
0045 

7.82 
7.74 

0.039 
@022 

OQO36 
0.0042 

0.024 
0016 

0089 
0055 

205 
2.26 

0.0032 
00044 

294 
1.56 

066 
0.22 

0087 
0.060 

10.9 
8.9 

0.050 
0.018 

0.17 
0.20 

3.91 
3.76 

4.34 
4.52 

0.082 
0.078 

0.25 
0.16 

0.34 
0.30 

14.1 
11.8 

7.97 7.93 ; 8.26 
7.70 

0.068 0.166;0.211 
0.046 

0003 0.014; 0.027 
0002 

ow7 
0.021 

0.116 
0.076 

2.34 2.00 ; 2GO 
1.75 

0.381 
0.230 

2.98 
1.78 

0@02 
0.004 

0.102 0.028 ; 0.222 
0.049 

10.1 11.2; 10.3 
11.6 

0.061 @24;@11 
0.029 

@235 
0.310 

5.75 
3.80 

3.54 
215 

1’40 
@76 

0.087 
0.064 

0.347 0.28 ; 0.28 
0245 

10.5 
145 



654 E. TREFFTZ and R. N. ZARE 

gf_Values 

Jl(A) 
(Vacuum) Designation* Trefftz Zare 

Coulomb 
approximationt 

3952 

3339 

9221 

4157 

3484 

7343 

5474 

1143 

3267 

1208 

2541 

1342 

6308 

10380 

4378 

3638 

3159 

1210 

968 

883 

822 

3P0 - 3D Transitions 

3s5p- 3s6d* 0.34 
0.19 

- 3P4p+ 0.011 
0.063 

3p3d- 3sSd 0.57 
0.39 

- 3s6d* 0.064 
0.025 

- 3p4p* 0.31 
0.25 

3p4s - 3s6d* 0.78 
044 

- 3p4p* 5.12 
6.22 

“P- ‘Do Transitions 

3p=-3p3d 12.7 
10.4 

3p3d-3p4p 1.54 
2.34 

‘D- ID” Transitions 

3p2* - 3p3d 2.75 
2.33 

3s3d*-3p3d 0037 
0.098 

‘D- 3Do Transitions 

3s3d- 3p3d 4.35 
3.75 

3s4d - 3p3d 0006 
O-002 

3p3d - 3s5d 0004 
0.012 

- 3s6d* 0,033 
0,039 

- 3p4p* o-45 
0.42 

- 3s7d* 0.087 
0.063 

‘D- IF0 Transitions 

3pz* - 3s4j 2.17 
1.95 

-3ssj 0.89 
0.77 

- 3p3d* 0.36 
0.29 

-3s6j* 0.29 
O-054 

0430 
0.253 

0.509 
0.136 

3.87 
5.47 

oaO2 
0.025 

0.05 1 
om5 

1.21 
1.32 

444 
5.64 

12.1 ; 12.5 (3~) 

1.60; 2.00 (3~) 



Comparison of calculated oscillator strengths for Si III 655 

gf_Values 

I. (4 
(Vacuum) Designation* Trefftz Zare 

Coulomb 
approximationt 

2560 

1673 

1436 

1280 

1182 

4718 

3217 

2529 

2172 

1782 

1501 

1145 

1005 

936 

39403 

3568 

2425 

2179 

12545 

3488 

2450 

2076 

5709 

‘D- IF0 Transitions 

3s3d*-3s4f 2.15 
1.01 

- 3s5f 190 
0.94 

- 3p3d* 2.76 
2.31 

-3s6f* 4.25 
2.13 

-3s7f* 3.51 
3.06 

3s4d- 3s5f 3.36 
2.23 

- 3p3d* oXlO 
0.12 

- 3s6f * 0.80 
0.80 

-3s7f' 1.34 
1.98 

3D - 3Fo Transitions 

3s3d-3p3d* 

-3s4f* 

-3sSf 

-3s6f 

-3s7f 

3p3d*-3s4d 

-3s5d 

-3s6d* 

- 3p4p* 

3s4d- 3s4f* 

- 3s5f 

- 3s6f 

- 3s7f 

3s4f*-3s5d 

0000 
0.12 

14.8 
14.4 

4.05 
3.64 

I.56 
1.44 

064 
073 

0.43 
028 

0063 
0.021 

040 
0.012 

2.23 

1.05 

5.24 
3.53 

5.87 
6.24 

2.04 
2.12 

0.77 
0.96 

1.89 
1.15 

6.29 ; 6.54 

2.84 ; 2.91 

1.18; 1.23 

0.61;0.65 

6.69 ; 6.74 

222 ; 2.28 

1.02; 1.06 



656 E. TREFFTZ and R. N. ZARE 

gf_Values 

,J (4 
(Vacuum) Designation* Trefitz Zare 

Coulomb 
approximationi 

-‘D - 3F0 Transitions 

3255 3s4/*- 3s6d* 0.57 
0.18 

2821 - 3p4p* 0.71 
022 

* An asterisk is used when strong mixing is suspected. 
t The first entry in this column is obtained with a Bates-Damgaard cutoff; the second entry was obtained 

with the “best” cutoff. See text. 


