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Various approximations to the transition dipole moment matrix element (n'IMln) are com­
pared with each other and to exact (numerical) values of this overlap integral for different 
n->n' transitions in a Morse potential with a linear dipole moment function. By partitioning 
the numerical integral into different contributions that involve the classically allowed and 
forbidden regions of each wave function, we have learned what conditions must be satisfied 
for validity of the different approximations. In particular, we consider the Landau approxi­
mation to the quasiclassical matrix element in which the exact wave function for the upper 
state is replaced by the Wentzel-Kramers-Brillouin (WKB) wave function in the classically 
allowed region of that state. We find that the Landau approximation is more accurate than 
might have been expected because of the compensation of the neglected tunneling contribu­
tion by the singular behavior of the WKB wave function in the classically allowed neighbor­
hood of the turning point. Based on this study, we suggest an improved semiclassical approx­
imation for transition dipole matrix elements that involve an arbitrary dipole moment 
function. This method is applied to the n' -0 transition of a Morse oscillator using a linear 
dipole moment function; it can reproduce the exact values of the transition dipole moment 
matrix element to better than 5% for n' = 1 to n' = 15. Under the condition that the dipole 
moment function is slowly varying or decreases monotonically with increasing internuclear 
separation, a simple expression is presented for estimating relative strengths of neighboring 
high overtone transitions. 

I. INTRODUCTION In this paper, we compare several approximate meth­
ods with the exact quantum result for the Morse oscillator 
and a linear dipole moment function in which we partition 
the whole integration range into five regions. These regions 
are illustrated in Fig. 1. 

In calculating intensities of vibrational transitions, the 
transition dipole matrix element (TDME) 

(1) 

must be evaluated. For a harmonic oscillator and a linear 
dipole moment function, the allowed transitions are known 
to be subject to the selection rule n' =n ± 1. For an anhar­
monic oscillator and a nonlinear dipole moment function, 
all transitions n -> n' are allowed, but their intensities de­
crease with increasing an = 1 n' - n I. The potentials of 
most diatomic molecules are well approximated by a 
Morse function, which resembles a harmonic oscillator 
near the potential minimum. For a Morse potential, the 
general form of the TDME is known in analytic form for 
power and exponential dipole moment functions of the vi­
brational coordinate (e.g., see Ref. 1 and papers cited 
therein). The practical application of the corresponding 
formulas is difficult, however, because of the severe cancel­
lation of different terms that enter into the analytical ex­
pression. l For other potentials, analytical results are not 
available and therefore either numerical or approximate 
methods must be used to calculate the TDME. 

a)Present address: Department of Chemistry, Technion, Israel Institute of 
Technology, Technion City, Haifa 32 000, Israel. 

Region 1 extends from minus infinity (the integration 
was actually carried out from R=O, which is practically 
equivalent to x=R -Re= ~oo) to the left turning point of 
the upper state 1 n'); in this region, the classical motion is 
forbidden for both lower and upper states. 

Region 2 extends from the left turning point of the 
upper state 1 n') to the left turning point of the lower state 
1 n); in this region, the classical motion is forbidden for the 
lower state and allowed for the upper state. 

Region 3 extends from the left turning point of the 
lower state 1 n) to the right turning point of the same state; 
in this region, the classical motion is allowed for both 
states. 

Region 4 extends from the right turning point of the 
lower state 1 n) to the right turning point of the upper state 
1 n' ); in this region, the classical motion is forbidden for 
the lower state and allowed for the upper state. 

Region 5 extends from the right turning point of the 
upper state 1 n') to infinity; in this region, the classical 
motiun is forbidden for both lower and upper states. By 
evaluating relative contributions to the TDME from the 
five different regions, we gain insight into the conditions 
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FIG. 1. The five integration regions for a n-n' transition. 

that define the validity of approximate methods. 
The first method, the semiclassical (SC) method, rep­

resents one of the possible statements of the correspon­
dence principle2- s: if states 1 n) and 1 n') are quasiclassical6 

and not too distant, i.e., if 

n,n'>1 (2a) 

and 

n,n'>l1n, (2b) 

then a matrix element Mn'n of an operator M is well ap­
proximated by the Fourier component of the classical func­
tion M at the frequency wn'n=l1n· wen). The frequency 
w (n) characterizes the classical motion of the system along 
a trajectory specified by the action variable that corre­
sponds to a certain mean "quantum number" n that lies 
between nand n'. 

The semiclassical approximation M(l1n,n) to Mn'n 
contains an intrinsic uncertainty 8M(l1n,n), which is re­
lated to the ambiguity of the choice of the trajectory. A 
rough estimate of 8M(l1n,n) can be obtained from 
M(l1n,n) by allowing n to vary within its uncertainty 
range bracketed between n' and n, 

8M(I1p"n) = IM(l1n,n') -M(l1n,n) I. (3) 

The semiclassical approximation is valid provided 

8M (I1n,n) <.M (I1n,n). (4) 

As I1n increases, the value of M(l1n,n) usually decreases, 
but the ratio 8M(l1n,n)IM(l1n,n) increases and eventu­
ally exceeds unity when I1n approaches min(n',n). 

The second approximate method, which is the Landau 
method,2,7 is based on the quasiclassical CQC) approxima-

tion and on the assumption that the matrix element M~'n is 
exponentially small with respect to a parameter that con­
tains inverse powers of n. The Landau method consists of 
shifting the integration contour into the complex plane to 
simplify the integrand that contains the WKB wave func­
tion and to solve the integral. Explicitly, conditions (2a) 
and (2b) are replaced in the Landau method by the con­
ditions 

n',n>1 (Sa) 

and 

M~'n is exponentially small. (Sb) 

Equation (Sb) does not restrict how large I1n may be, 
although it does restrict how small I1n may be. The semi­
classical and Landau methods have a common region of 
applicability in which conditions (2a) and (Sa) are satis­
fied simultaneously. 

Since M(l1n,n) is calculated as an integral over a clas­
sical trajectory, M(l1n,n) could be expected to provide a 
good approximation to the portion of the exact TDME 
that comes from the integration region classically allowed 
for both quantum states n' and n. Implicit in this statement 
are the assumptions that the contributions from the classi­
cally forbidden regions are negligible and Eq. (4) is satis­
fied. 

We find for our model that the first assumption is in­
correct. This result brings up another point concerning the 
accuracy of the Landau method for calculating quasiclas­
sical matrix elements, which relates to the calculation of 
dipole matrix elements for overtone transitions.8

-
1O Recent 

results have shown that the Landau method is based on the 
quasiclassical approximation to the wave functions in re­
gions in which the motion for at least one state is classi­
cally allowed. 11 Within this approximation, any contribu­
tion from the regions that are classically forbidden for both 
states are supposed to be negligible. In our study, we found 
that if the contributions from different regions are calcu­
lated on the basis of exact wave functions, the above con­
clusion is not valid. 

This discrepancy raises a general question: why are the 
quasi classical results for matrix elements valid far beyond 
the limits that can be set by inspecting contributions from 
different regions of the motion? We offer a partial answer 
to this question below. 

On the basis of this study, we suggest an approxima­
tion that combines the semiclassical method with the 
Landau method-the improved semiclassical (ISC) ap­
proximation. Although the Landau method describes tran­
sitions in which the motion in the lower state is partly 
classically forbidden, the information needed to implement 
the ISC formula is purely classical and can be obtained 
from Fourier analysis of the classical dipole moment at 
different vibrational energies. 

The plan of the paper is as follows: In Sec. II, we set up 
the model. In Sec. III for transitions with I1n= 1, we com­
pare semiclassical and exact analytical matrix elements for 
a linear dipole moment function and relate this comparison 
to our numerical results. In Sec. IV, we consider the 
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Landau method for transitions with ll.n > 1. Section V de­
scribes the ISC approximation for an arbitrary dipole mo­
ment function. In Sec. VI, we compare the quasiclassical 
Landau approximation with the quasiclassical uniform ap­
proximation. Section VII summarizes our findings. 

II. THE MODEL 

We consider the one-dimensional bounded motion of a 
mass point fJ, in the field of a Morse potential 

U(x)=De [I-exp(-ax)]2. (6) 

The classical trajectory for this problem is known (e.g., see 
Ref. 12) 

x(E,[) =a- I ·In{I- (E/ De) 1I2cos[tp(t)]} 

-a- l ln(1-E/ D). (7) 

Here, E is the vibrational energy and the phase tp is 

tpCt) =w(E) . [=we' [( De-E)/ De] 112[, (8) 

where W (E) is the frequency of oscillation at energy E 
and We is the frequency of harmonic vibrations We 
=a(2D/fJ,) 112; the time [=0 corresponds to classical mo­
tion starting at the left turning point. The relation between 
the energy E and the action variable j= (1/2) g5p dx is 
deduced easily from the differential relation between E and 
the frequency weE), 

dE/dj=We [(De- E )/ De] 112. (9) 

In this way, we find 

E(j) =We j( 1-j/2J), (10) 

where J is the maximal action for the bounded motion 
J=2D/we· 

The analytic solution of the quantum problem for the 
Morse potential is also known.2 The energy levels are ob­
tained from Eq. (10) by the quantization condition 

j= (n+ 1/2)17, 

which yields 

En=17we(n+ 1/2) [1- (n+ 1/2)/2N], 

(11) 

(12) 

where N=2D/1lwe. The integer part of N equals the total 
number of bound states supported by the Morse potential. 

A semiclassical matrix element of a function M(x) is 
given by the integral 

f +1T -

M(ll.n,n) = (217") -I -1T M[x(j,tp)] . cos (ll.ntp ) . dtp, 

(13) 

where n and ] are related through Eq. (11). 
In particular, when M=ax (we disregard from now 

on any additional prefactor), we obtain for ll.n > 0 (Ref. 
13), 

M(An,if) =~ (ll.n) -I. [(if+ 1/2)/2N]~n/2 

X[I-(n+1/2)/2N]-~n/2. (14) 

The qmi.ntum mechanical expression for Mn'n reads I 
(n' > n) 

Mn'n= - (ll.n) -I{[ 1- (n' + 1/2)/N] 112 

X [1- Cn+ 1/2)/2N] 112 [ 1- (n' +n+ I)/N]) 

X [r(n' + 1)r(2N -n')/rCn+ 1)r(2N -n)] 112, 
(15) 

where r(k) = Ck-1)! is the Gamma function. The right 
side of Eq. (15) differs in the phase factor (_1)/ln from 
expression (9) of Ref. 1, which is caused by a different 
phase convention in this paper consistent with our choice 
of zero time. 

III. an=1 TRANSITIONS 

For ll.n = 1 transitions, the semiclassical matrix ele­
ment (14) simplifies to 

M(1,n) = [(n+ 1/2)/2N] 112[1_ (n+ 1/2)/2N] -112, 
(16) 

whereas the quantum mechanical expression for M n',n' -I 
is given by Eq. (15) with n=n'-1. 

To make the ensuing representation simpler, we con­
fine ourselves to transitions between not too highly excited 
levels, i.e., we assume N - n",t> 1. Then the expression in the 
curly brackets of Eq. (15) simplifies to 

{ .. ·}=I+(1/I6)(N-n)-2+ ... (17) 

and can be replaced safely by unity within the approxima­
tion stated. Therefore, we adopt the following expression 
for the "exact" matrix element of a ll.n = 1 transition 

Mn',n'_1 = (n' /2N) 1I2(1_n' /2N)-1I2, (18) 

where N has been replaced by its integer value. 
The semiclassical expression (16) can be brought into 

complete agreement with the quantum mechanical expres­
sion (18) if n is chosen to be the arithmetic mean between 
the initial quantum number n' -1 and the final quantum 
number n, i.e., n=n' -1/2. This choice of course does not 
remove the ambiguity associated with the choice of trajec­
tory because the semiclassical matrix elements for the tran­
sitions n' -I-+n' and n' -l-+n' -2 are the same, whereas 
their quantum mechanical counterparts are different. 

The relative intrinsic uncertainty in M( 1,n) is 

oM(1,n)/M( I,n) = 1/2(n+ 1/2), (19) 

which can now be compared with numerical results. 
In our numerical study, we calculated relative contri­

butions Ck(ll.n,n') = M~',n'_/l/Mn',n'-/ln to the TDME 
from five regions (k= 1, 2, 3, 4, and 5) shown in Fig. 1. 
The contributions were calculated by numerical integra­
tion of the corresponding portions of the integral with 
wave functions for the Morse potential with parameters 
we=3366.95 cm- I and De=52407.4 cm- I

, which simu­
late the C-H stretch oscillations in HCN. For these pa­
rameters, the integer value of N is 30. The vibrational wave 
functions were obtained by numerically solving the Schro-
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FIG. 2. Contributions of the five different regions for 6.n transitions 
indicated. 

dinger equation using the Cooley algorithm. 14,ls The re­
sulting eigenvalue converges within 0.02 cm- I for n=O 
and within 0.2 cm -I for n = 10. The wave functions were 
further tested by orthogonality. The overlap integral for 
n=l=n' does not exceed 3X 10- 11 . The quantum mechanical 
matrix elements, as given by Eq. (15), were reproduced 
accurately. We also tested that the contributions from dif­
ferent regions did not depend on the round-off error in the 
turning points. 

The results of numerical calculations for An = 1 are 
shown in Fig. 2 as bar graphs that represent relative con­
tributions from different regions. For all transitions, the 
following relation holds true: CI <{C2, Cs < C4 < C3• 

With an increase in n, the relative contribution from 
regions 1 and 2 decreases as expected (the motion becomes 
more classical), while contributions from regions 4 and 5 
seem to approach a limiting fraction slightly above 30%. 
The fully classical region 3 makes the dominant contribu-

TABLE I. Relative deviations of the symmetrized semiclassical TDME 
and the semiclassical TDME (with ii=n') from exact quantum TDME 
for aU transitions n' -6.n~n' with n' = 10, !,sc(6.n,lO), and 
!,c(6.n,IO), respectively. 

6.n !,SC (6.n, 10) !,c(6.n, lO) r(6.n, lO) c/q 

1.0 1.0 1 c 
2 1.001 1.064 2 XlO- 1 c 
3 1.006 1.212 5 X 10-2 c 
4 1.017 1.490 1.4 X 10-2 c 
5 1.040 1.996 4 XlO- 3 q 
6 1.080 2.954 9 X 10-4 q 
7 1.169 4.932 2 X 10-4 q 
8 1.321 9.580 4 X 10-5 q 
9 1.659 23.025 6.5xlO- 6 q 

10 2.625 78.83 7.4XlO-7 q 

tion, but this contribution does not exceed 70%. On the 
basis of Eq. (19), the contribution from regions that are 
not completely classically allowed would be expected to be 
about l/2n', which for n' = 10 amounts to 5%. The appre­
ciable difference between 30% and 5% indicates that the 
simple picture of the overwhelming contribution to the 
semiclassical dipole matrix element from the classical al­
lowed region of motion is not valid. Yet the total value of 
the matrix element is well reproduced by its correspon­
dence principle counterpart, which is based solely on the 
classical motion. 

This paradox can be resolved by noting that regions 2 
and 3 for transitions with An = 1 cover approximately the 
range of the first maxima of the wave functions close to the 
turning points. Since these maxima extend into the classi­
cally forbidden region, it is worth noting that the error 
introduced by the classical description of motion up to the 
turning point compensates for the unaccounted contribu­
tion from the classically forbidden region. This explanation 
is consistent with the fact that contributions from region 4 
are much larger than those from region 2, since the wave 
function oscillates more slowly close to the right turning 
point. 

IV. il.n>1 TRANSITIONS 

As seen from the semiclassical equation (14) and its 
quantum mechanical counterpart [Eq. (15)], the value of 
the TDME decreases if n' is fixed and An increases. When 
An becomes comparable to n', the ambiguity in M(An,if) 
becomes very large. A semiempirical correction is custom­
arily made to the SC approximation by replacing if with 

if= (n+n')/2=n' -An/2. (20) 

We call this approximation the symmetrized semiclassical 
(SSe) approximation. We tested the SC and SSC approx­
imations by calculating the ratios .fsc (An,n' ) 
=M(An,n' -An/2)/Mn',n'_/:;.n and jSc(An,n') 
=M(An,n')/Mn',n'_/:;'w Table I lists the results for all 
transitions to level n'=10 from all smaller n=n'-An. It 
also gives ratios r(An,n') =Mn',n'-I/ MI,o of exact matrix 
elements. 
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FIG. 3. Initial integration contour -1T<.q;4,1T and displaced contour 
(dashed line) of the integral in Eq. (13). The dash-dot portion of the 
dashed contour provides the main contribution to the integral when 
.6.n>l. 

Note from this table that the semiclassical approxima­
tion with ii=n' breaks down very soon and that the sym­
metrized semiclassical approximation with ii=n' -an 
yields an excellent approximation even for anln as high as 
1/2 and provides reasonable estimates even for larger an. 
The SSC approximation clearly applies beyond the limit 
expected for its validity. To understand why, we must ex­
amine the Landau method for calculating quasiclassical 
matrix elements. 

We illustrate this method within the semiclassical ap­
proximation, making use of the fact that both approxima­
tions have a common region of applicability [for instance, 
the SSC approximation yields already very small but ap­
proximately correct relative matrix elements for transitions 
with 3 < an < 6 (see Table I)]. 

First we note that the integrand in Eq. (13) for large 
an oscillates rapidly along the original integration contour 
-1T < cp < 1T ; this behavior implies that the contribution to 
the integral (however small the total value may be) comes 
from the whole of region 1. According to the Landau 
method, we displace the original integration contour into 
the complex plane X=CP+i1/J in such a way that the main 
contribution to the integral could be collected from a small 
portion of the contour along which the integrand does not 
oscillate. This contour is shown in Fig. 3 by the dashed 
line, whose dash-dot part corresponds to the abovemen­
tioned portion. Contributions from vertical portions of the 
contour cancel because of the periodicity of motion, and 
contributions from the dash-dot portion that goes around 
the singular point Xs of the integrand fall off as 
exp ( - an . 1/1) as 1/1 runs along the imaginary axis of X. The 
singular point Xs determines how far the contour can be 
deformed; the lower point of the contour corresponds to 

the zero of the argument of the logarithm function in Eq. 
(7), viz. 

1- (EI De) 112 COS Xs=O. (21) 

A solution to this equation is 

Xs=i1/1s=i· arccosh[ (DelE) 112]. (22) 

Note that Xs is the origin of the branch cut that runs along 
the 1/1 axis. Since the integrand decays as exp( -an1/1) with 
1/1 increasing, we approximate the argument of the loga­
rithm by a linear function of x-i1/1s. The real part of the 
logarithm is the same on both sides of the branch cut (and 
therefore does not contribute to the loop integral), but the 
imaginary part (which is constant) differs in sign on both 
sides of the cut. Therefore we arrive at the simple expres­
sion 

M(an,ii) = - J'" exp( -an1/1)d1/1 
rps 

= - (an)-I exp( -an ·1/1s), (23) 

where 1/1s is defined in Eq. (22). Transformed to the expo­
nential form, Eq. (23) becomes 

M(an,ii) = - (an) -I exp{ - (anI2) [In(2N -ii-1/2) 

-In(ii+ 1/2)]} (24) 

with the help ofEq. (12). 
A requirement that M(an,ii) should be exponentially 

small becomes equivalent to the condition that the expo­
nent greatly exceeds unity. It can be verified easily that Eq. 
(23) coincides exactly with Eq. (14), which implies that 
this result, technically valid only in the limit an,,? 1, is 
correct for all values of an. For a nonlinear dipole moment 
function, this result will not apply. 

In terms of classical motion of the point over the tra­
jectory specified by the "quantum number" ii, Eq. (23) 
can be interpreted in the following manner: The exponen­
tial factor of the matrix element is determined by the imag­
inary phase i ·1/1c=w(ii) . (h-) which is related to the imag­
inary time interval iT. During the time h-, the oscillator 
moves from any point of the classical trajectory (in partic­
ular, from the left turning point) to the singular point 
(which can be called the transition point) i1/1s. The prefac­
tor is determined by the motion of the system close to the 
transition point. In a sense, the matrix elements for a tran­
sition between not too closely lying states (an"? 1) can be 
said to depend on the potential function in the classically 
forbidden region to the left of the left turning point. The 
above discussion makes clear, however, that the two seem­
ingly contradictory statements (i.e., the contribution 
comes from the classically allowed region in the original 
formulation or from the classically forbidden region when 
calculated along a shifted contour) mean the same. This 
contradiction is resolved easily by noting that when the 
integration contour is changed, the analytic continuation 
of the potential from the classically allowed region into the 
classically forbidden region is the one actually used, and 
this continuation is unique. 
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As Lewerenz and Quack9 noted, confusion has resulted 
from the statement that the quasiclassical matrix element 
depends on the behavior of the potential in the classically 
forbidden region. From the above discussion, we appreci­
ate that if the potential is an analytic function of x every­
where, this statement applies equally to any part of the 
potential. If the potential is not analytic in the classically 
forbidden region, then the statement that the quasiclassical 
matrix element depends on the behavior of potential in the 
classically forbidden region is false. 

We turn to the quasiclassical Landau method. Con­
trary to the classical (rp,j) representation in Eq. (13), the 
Landau method starts with the quasiclassical (x,n) repre­
sentation and transforms the integration contour from the 
x axis into the z=x+iy plane. This transformation allows 
the quasiclassical contributions to the integral from regions 
2, 3, and 4 to be take~ into account (see Appendix A). 
Again, if the integral is calculated along the contour pass­
ing through the transition point, the exponential part of the 
matrix element is determined by the difference in imagi­
nary action integrals (divided by Ii) calculated from the 
turning points to the transition point, and the prefactor is 
determined by the quasiclassical behavior of the system 
close to the transition point. An important consequence of 
this method is that the Landau exponential factor depends 
on the potential energy function only and not on the exact 
form of the dipole moment function. Note that in the cor­
respondence principle limit, when An<{,n, n', the difference 
in imaginary action integrals becomes the imaginary phase 
Amps' As long as this form is simple enough, 1/ls is given by 
Eq. (22) irrespective of the form of the dipole moment. We 
elaborate on this point more in Sec. V. 

The Landau quasiclassical result for the linear dipole 
function can be extracted from Eq. (15) when the Stirling 
formula is used for each gamma function. This conclusion 
follows from the study of quasiclassical matrix elements for 
the Morse potential. 16 Therefore, the quasiclassical matrix 
element ~,c within the approximation of Eq. (17) reads n ,n 

~,c =-(An)-l exp[S(n')-S(n)], (25) n ,Il 

where 

S(n) = (n+ 1I2)1n(n) 

+ (2N -n-1I2)ln(2N -n-l). (26) 

Since the Stirling formula provides an excellent approxi­
mation to r(k) for k> 2, we expect ~,c;, to be very close 
to Mn'n for n > 2. Therefore the question as to why the 
symmetrized semiclassical result provides a good approxi­
mation to the exact result for not too small values of An 
can be addressed in a different form: why does the symme­
trized semiclassical result provide a good approximation to 
the quasiclassical result? In our opinion, the answer to this 
query is related to the form of the interaction potential. 

The main contribution to the semiclassical and quas­
iclassical matrix elements comes from the classically for­
bidden region of motion to the left of the left turning 
points, where the analytic continuation of the Morse po­
tential is very close to the exponential function. On the 

TABLE II. Relative deviations of the symmetrized semiclassical TDME 
and the semiclassical TDME from exact quantum TDME for n' -lln .... n' 
transitions to the final states with n'<;IO, !,sc(4,n'), and !,c(4,n'), re­
spectively. 

n !,sc(4,n) !,c(4,n) R(4,n) c/q 

4 1.275 3.435 0.003 q 
5 1.118 2.402 0.006 q 
6 1.067 1.999 0.D11 q 
7 1.043 1.783 0.018 c 
8 1.030 1.648 0.026 c 
9 1.022 1.556 0.036 c 

10 1.017 1.49 0.048 c 

other hand, the exponential interaction possesses a prop­
erty that the exponential of the semiclassical matrix ele­
ment Vp,p' (in this case quantum numbers of the contin­
uum states are labeled by asymptotic momenta) can be 
transformed exactly into the exponential of the quasiclas­
sical matrix element by the substitutionp= (p+p')/2 (see 
Appendix B). Presumably, this property survives to some 
extent for other potentials whose analytic continuation ex­
hibits a steep repulsion. 

For a given An, the semiclassical approximation pro­
gressively worsens as n' decreases. Table II displays values 
of ,rsc(An,n') and fsc(l:::..n,n') together with the ratios 
R(l:::..n,n')=Mn',n'_t:..nIMl,O for I:::..n=4. We see that the 
symmetrized semiclassical approximation gives a reason­
able approximation even for the 6-2 transition, for which 
the lower state can hardly be described as quasiclassical. 

The quasiclassical approximation is expected to fail if 
the lower state corresponds to a small vibrational quantum 
number. Medvedev8,17 and Medvedev and Osherovl8 sug­
gested a method to calculate the TDME from the ground 
(and low-lying) states into upper states by modifying the 
Landau method. They used the property of the ground­
state wave function to develop the WKB asymptotic be­
havior in the region that determines the TDME if the di­
pole moment overlap integral is calculated along a contour 
displaced into the complex z plane. In contrast to the 
Landau approach, this method requires changing the nor­
malization constant in front of the tunneling WKB wave 
function, in contrast to its quasiclassical counterpart. A 
similar feature was found by Uzer and Child. 19 The results 
of Medvedev's calculations,17 given as ratios of the form 
fMED(An,n') = M~:'~n,n'/Mn'-t:..n,n' are compared with 
fssc(l:::..n,n') in Table III for overtone transitions I:::..n=n'. 
Also given are the ratios R (An,n') for our model potential. 

We see that although the ,rsc ratio increases with the 
final quantum number n' of the overtone transition thereby 
making the agreement with exact results worse, fMED de­
creases and the agreement becomes better. The reason for 
this behavior is clear. Increase of fSSC is caused by the 
breakdown of the semiclassical approximation with in­
creasing An; this breakdown reflects the growing intrinsic 
ambiguity of the TDME within this approach. Decrease of 
fMED arises from the progressively higher accuracy of the 
quasiclassical approximation in the region that contributes 
mostly to the dipole moment overlap integral. We find that 

J. Chern. Phys., Vol. 98, No.1, 1 January 1993  This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

171.64.124.91 On: Mon, 04 Jan 2016 21:28:47



52 Nikitin, Noda, and Zare: Quasiclassical intensities 

TABLE III. A comparison of the quasiclassical Medvedev calculations 
rED (t:..,n') with the symmetrized semiclassical calculations !,SC (t:..n,n' ) 
for the overtone transitions O-+n' (/),.n=n'). 

n ;Ssc(n,n) rED(n,n) R(n,n) c/q 

I 1.0 1 c 
2 1.061 1.588 9 X 10-2 c 
3 1.13 1.286 1.4 X 10- 2 q 
4 1.275 1.196 3 XlO- J q 
5 1.422 1.555 6.4X 10-4 q 
6 1.596 1.122 1.7 X 10-'4 q 
7 1.799 1.106 5.3X 10-5 q 
8 2.036 1.091 1.8X 10-5 q 
9 2.309 1.083 6.5X 10-6 q 

10 2.625 1.074 2.6X 10-6 q 

the accuracy of both approximations is comparable for the 
0-5 transition, about 50% for this matrix element, and 
approximately a factor of 2 for the oscillator strength. 

We turn to numerical results. In all cases studied for 
an=4, we found strong cancellation of contributions from 
regions 2, 3, and 4; absolute values of individual contribu­
tions I C2 1, I C3 1, and I C4 1 are much higher than the ab­
solute value of the sum I C2 + C3 + C4 1. As for contribu­
tions from other regions, we found two different cases­
case c (c for almost classical) when I Csi < I Cli < I C2+C3 

+ C4 1 and case q (q for strong quantum) when I Csi < I C2 
+C3+C4 1 <Cl. In case c, cancellation occurs mainly in 
the region in which the motion is classical at least for one 
state; in case q, the cancellation is decisively effected by the 
motion in region 1, which is classically forbidden for both 
states. The cl q nomenclature for individual transitions is 
shown in Tables I-III. The clq characteristic correlates 
well with the accuracy of the sse approximation. For the 
last c states in Tables I-III, the accuracies of the sse 
approximation for the TDME are 2%, 4%, and 6%, re­
spectively. 

The large contribution of region 1 for q-type transi­
tions with an> 1 is caused by the overlap of the first broad 
oscillation of the upper-state wave function with the tun­
neling part of the lower-state wave function. The WKB 
approximation for the upper state fails in this region, giv­
ing a diverging wave function when the turning point is 
approached from the right. Within the Landau method, 
this wave function is used to calculate the integral from 
this turning point to the right, thus completely neglecting 
the contribution from the classically forbidden region of 
motion.8 When the integration contour is changed, the 
same integral can be calculated along a portion of the con­
tour lying in the classically forbidden region. 

The manner in which the relative contribution 
C l (an,n') for a transition with large an changes with n is 
instructive. Figure 4 shows the dependence of C l (6,n') on 
the upper-state quantum number n' (transitions 
n' -6->n'). At the high-n' portion of the graph, C l is 
below unity and it clearly falls off as anln' decreases in 
accord with the correspondence principle. With decreasing 
n', Cl increases and becomes larger than unity for the 
8 -> 14 transition. This trend is amplified with further de-
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FIG. 4. The relative contributions of region 1 for the n' -6-+n' transi­
tions indicated. 

crease in n', ending with a dramatic increase of Cl for the 
0 ..... 6 overtone transition. Though the sharp increase of Cl 
for small values of the initial quantum number n' - an can 
be ascribed to the breakdown of the quasiclassical approx­
imation for the lower state, Cl clearly may be above unity 
for states that are certainly quasiclassical and therefore the 
TDME between these states can be calculated accurately 
by the Landau method. This result indicates that the in­
correct behavior of the WKB wave function to the right 
from the turning point nearly compensates for the com­
plete neglect of the tunneling contribution from a region 
adjacent to the turning point from the left. This compen­
sation occurs with remarkable accuracy since the value of 
the TDME for high an is governed by near cancellations 
of contributions from different regions. 

V. AN IMPROVED SEMICLASSICAL FORMULA FOR 
THE TRANSITION DIPOLE MATRIX ELEMENT 

After examining the conditions of validity of different 
approaches, we can combine various approximations to de­
velop an improved semiclassical equation for the TDME. 
This improved equation is based on the following observa­
tions: 

(i) The semiclassical approximation works well for not 
too large !In, but fails for large !In because the semiclassi­
cal exponential cannot reproduce the overlap between dis­
tant quantum states. 

(ii) When the TDME is small, the Landau method 
applies for not too low quantum numbers n, and the main 
dependence of the TDME on an is governed by the quasi­
classical exponential. 
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TABLE IV. Ratios .r.~~ and f~~~ for the TDME for linear dipole mo­
ment function for a MorSe oscillator with N = 30 for overtone transitions 
0_11'. 

11' f..sc 
n',O 

/,sc 
n',O 

1.0 0.978 
2 1.061 0.976 
3 1.155 0.970 
4 1.255 0.969 
5 1.422 0.968 
6 1.569 0.967 
7 1.799 0.967 
8 2.038 0.967 
9 2.309 0.967 

10 2.625 0.966 
11 2.989 0.966 
12 3.406 0.966 
13 3.886 0.986 
14 4.436 0.966 
15 5.065 0.966 

(iii) These approximations have a common region of 
applicability. Therefore they can be combined in a unified 
formula, which contains a semiclassical preexponential fac­
tor and a quasiclassical exponential factor. Implicit in this 
approach is the assumption that the preexponential factor 
depends more weakly on initial and final vibrational quan­
tum numbers than the exponential factor does. 

(iv) The quasiclassical exponent [the difference in the 
action integrals Q(n') -Q(n)] can be reconstructed from 
semiclassical exponent an' q(n) with the help of the dif­
ferential relation expressing the correspondence principle 
limit 

d[Q(n) ]ldn=q(n). (27) 

For a Morse potential and a linear dipole moment 
function, the improved semiclassical (ISe) approximation 
leads to the expression 

M!/~~= - (an)-l. exp[Q(n') -Q(n)], 

where 

(28) 

J,n'+1/2 -
Q(n')-Q(n)=(1/2)· [In(2N-ii)-ln(n)]dii, 

n+1I2 

from which it follows that (to an arbitrary constant) 

Q(n) = (1/2) [(2N -n-1/2)1n(2N -n-1/2) 

+ (n+ 1/2)ln(n+ 1/2)]. 

(29) 

(30) 

Equations (28) and (30) differ from Eqs. (25) and (26) in 
that they ascribe quantum numbers n' + 1/2 and n+ 1/2 to 
the initial and final classical action variables. The use of 
n+ 1/2 and n' + 1/2 rather than nand n' is not important 
for large quantum numbers, but is vital for small quantum 
numbers. Equations (28)-(30) are tested for a wide range 
of the overtone transitions O ..... n', including the fundamen­
tal transition 0 ..... 1. The results are shown in Table IV, 
where we compare sse and Ise approximations in terms 
of ratios of these TDMEs to exact ones. We see that the 

Ise approximation nearly reproduces the exact matrix el­
ements for overtone transitions; it is less accurate for tran­
sitions with small an. This agreement encourages us to 
believe that the Ise approximation may have many future 
uses. 

Taking into account that N is large (N)1), Eqs. (28) 
and (30) can be rewritten in the following form: 

MISC _ (An)-lm . m . "'m n'n - - J..l. n,n+ 1 n+ 1,n+2 n' -l,n' , 
(31) 

where 

[
(k2_1/4)1I4

j 
( km-1/2) 

mk,k+l= (2N-k)112 'exp k·ln k+1/2 -1 . 

(32) 

If, in addition, k is not too small, m k,k+! can be replaced by 
a simple expression 

mk,k+! = [kl(2N -k)] 112. (33) 

For k as small as k=l, Eq. (33) provides a good approx­
imation to Eq. (32) (better than 5%). 

Equation (31) must not be considered simply as yet 
another approximation to the exact result (15), since, as 
follows from the Landau method, the product of m values 
represents the Landau exponential factor, which depends 
on the oscillator potential and not on the dipole moment 
function. The factor in front of the product of m values 
represents the semiclassical prefactor for the transition 
0 ..... n', which in the case of a linear dipole moment does not 
depend on ii. For a nonlinear dipole moment function, the 
semiclassical preexponential factor may depend on ii. If 
this dependence is very weak compared with the depen­
dence on ii of the exponential, use of a simple symmetri­
zation procedure will suffice to correct the semiclassical 
preexponential factor. 

Note that each factor mk.!.<+! corresp~nds to a 
semiclassical exponent exp[ -lPs(k)] in which k is related 
to the mean classical energy for quantum states k and 
k+ 1, i.e., k=k+ 1. For a given "classical" state k, the 
exponent 1{l(k+ 1) can be calculated purely classically by 
running a trajectory, performing the Fourier analysis of the 
dipole moment for this trajectory, and fitting the classical 
overtone amplitudes with frequencies an' w(k+ 1) by an 
exponential function. This approach contrasts with a stan­
dard semiclassical approach in one important step-the 
semiclassical approach suggests an approximation to the 
entire product of m values, whereas the improved semiclas­
sical approach suggests an approximation to individual m 
values. 

Equations (31) and (33) suggest the following im­
proved semiclassical equation for the TDME of the Morse 
oscillator for an arbitrary dipole moment function, pro­
vided its semiclassical counterpart is characterized by a 
preexponential that depends weakly on an and n: 

ISC 
Mn',n=A [an,(n+n')/2] . mn,n+l . mn+l,n+2'" 

6 mn'-l,n" (34) 

where the prefactor A [an, (n + n' ) 12] is obtained from 
A(an,ii) by symmetrization. In turn, A(an,ii) should be 

J. Chern. Phys., Vol. 98, No.1, 1 January 1993  This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

171.64.124.91 On: Mon, 04 Jan 2016 21:28:47



54 Nikitin, Noda, and Zare: Quasiclassical intensities 

calculated from Eq. (13) in which M(x) represents an 
adopted form of the dipole moment function. Usually this 
function is given as a power series in x, sometimes supple­
mented with exponential functions of x. 

Equation (34) allows a "back-of-the-envelope" calcu­
lation of the ratio of successive overtones if the difference 
in the preexponential factors for transitions O->n' + 1 and 
O->n' is ignored completely. The intensity ratio for such 
transitions is given by the simple formula 

I(O->n' + 1) 

I(O->n') 

. n'+l 
(mnl,n l +1)2 2N-(n'+I)' (35) 

As an example, we apply Eq. (35) to the high overtone 
intensities of HBr measured by Carlisle et al. 2o We choose 
HBr because its dipole moment function is one of the best 
known. We find that Eq. (35) reproduces the ratio of I(7 
-0)II(6-0) and I(8-0)II(7-0) within 50% (we pre­
dict a decrease of 0.14 and 0.16, whereas the actual de­
crease is 0.104 ± 0.005 and 0.105 ± 0.005, respectively) . We 
had hoped that Eq. (35) would have been a better esti­
mate, but this hope ignored the complicated nature of the 
HBr dipole moment function. Carlisle et al. have deduced 
the form of the dipole moment function from the rotation­
less dipole moment matrix elements for all O-n' transi­
tions up to n' =8. They found that the dipole moment 
function could be fit only by a power series expansion in x 
including a term in x 8

• We believe this complicated dipole 
moment function is what reduces the accuracy ofEq. (35). 
Even so, Eq. (35) was able to provide a very good estimate 
without any knowledge of the dipole moment function. 

We turn to the question as to when the preexponential 
factor A(iln,n) can be assumed to vary slowly as a func­
tion of its arguments. To this end, we consider the semi­
classical matrix element A (iln,n,A.) of the function M(x) 
=exp( -A.ax). The matrix elements of the pth power of 
ax, A(p) (iln,n), or the pth power of x times the exponen­
tial, can be generated from A (iln,n,A.') by simple differen­
tiation. For instance, 

A(p) (iln,n) =p!' (alailYA(iln,n,A.) Lt=o, (36) 

To calculate the semiclassical matrix element of the expo­
nential function, we substitute into the integral (13) the 
explicit q; dependence of exp( -A.ax), viz., 

(37) 

where E=E(n)1 De. The integral (13) with M(q;,A.) from 
Eq. (37) can be expressed with the help of the formula 13 

f +1T cos(ilnq;) . dq; 
(21T)-1 -1T (1-2zcosq;+r)'{ 

~n. r(iln+A.) 
iln' rcA.) . r(iln) F(A.,iln+A.,iln + l,r), (38) 

where F(.,.,.,.) is the hypergeometric function and z=[nl 
(2N _n)]1I2. 

The formula for the linear dipole moment function 
(14) follows from Eq. (38) by differentiating both sides of 
this equation with respect to A. and passing to the limit 

A.->O. The opposite case A.-> 00 and A.Z bounded corre­
sponds to the case of the exponential matrix element taken 
between states of a harmonic oscillator. This case was stud­
ied in detail previously by Uzer and Child. 19 

Representing the right side of Eq. (38) as a product of 
the exponential factor ~n=exp( -ilmps) and the preexpo­
nential factor A (iln,n,A.), we find the explicit expression 
for the latter. In doing so, we also assume ;~1, which, 
among other uses, allows us to replace the hypergeometric 
function by unity. Within this approximation, we obtain 
the following expression for the preexponential factor: 

A (iln,n,A.) =r(iln+A.)/rcA.)r(iln+ 1), (39) 

which is seen to be independent of n. If iln~A., Eq. (39) 
simplifies to 

(40) 

We see that the preexponential factor in Eq. (40) is similar 
in form to the preexponential factor for transitions between 
continuum states of the exponential repulsive potential 
(see Appendix B). 

For the particular case of the linear dipole moment 
function (A.->O) and for exponential functions exp( -ax) 
and exp( -2ax), Eq. (39) gives 

(41a) 

(41b) 

and 

(41c) 

These preexponential factors coincide, within the ap­
proximation stated, with the exact matrix elements [Eqs. 
( 9 ), (14), and (15) of Ref. 1] provided the Landau expo­
nential is factored out from them. The above form of the 
dipole moment function corresponds either to a very slow 
change of M (x) (linear case), or to a smooth decrease of 
M(x) with increasing x. Therefore we can expect that for 
this kind of dipole moment function, the ISC approxima­
tion will provide a good estimate. 

Suppose instead that the dipole moment increases rap­
idly with x. As an example, consider the functions exp (ax) 
and exp(2ax) (iI,= -1 and -2, respectively). For this 
form of the dipole moment function, transitions with 
iln > 1 and iln> 2 are completely forbidden, which means, 
of course, very strong dependence of the preexponential 
factors on iln. Though this example is not realistic, it 
shows that for strongly increasing dipole moments and for 
dipole moment functions that exhibit nonmonotonic be­
havior, the ISC approximation will not provide a reliable 
estimate. As an example of the complicated behavior of 
dipole moment function, we cite Chackerian and Tip­
ping,21 who calculated the overtone intensities for CO iso­
topes. The dipole moment function they used rises steeply 
from x=O, passes through a maximum at x=0.7R e, and 
then falls off. The calculated successive overtone intensities 
decrease much faster than predicted by Eq. (35). 
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VI. A COMPARISON OF THE QUASICLASSICAL 
LANDAU APPROXIMATION WITH THE 
QUASICLASSICAL UNIFORM APPROXIMATION 

Our study of the TDME for a linear dipole moment 
function and a Morse oscillator is in some respect similar 
to an earlier study by Uzer and Child19 of semiclassical 
approximations for matrix elements of two different sys­
tems. Their case a for transitions between continuum states 
of a system in the field of an exponential repulsive potential 
(Jackson-Mott modet22) is relevant to our study, since the 
value of the matrix element is governed by the motion in 
the region of the steep (exponential) repulsive wall. Uzer 
and Child used the uniform semiclassical approximation 
based on the Airy function to construct the wave functions 
that exhibit correct asymptotic behavior both in the clas­
sically allowed and in the classically forbidden regions. In 
these regions, far from the turning point, the exact wave 
functions are well represented by Wentzel-Kramer­
Brillouin (WKB) functions (provided the standard condi­
tions for the WKB approximation hold). Uzer and Child 
compared the quasiclassical matrix element calculated in 
the stationary phase (STP) approximation IsTP with the 
exact value Iexact and found a discrepancy by a factor of 
(e2/41T1I2) = 1.0422. We show in Appendix B that this dis­
crepancy is caused by the failure of the stationary phase 
approximation (the method of steepest descent). 

We note" that the analytic continuation of the WKB 
wave function from the classically allowed region into the 
classically forbidden region is different from the WKB ap­
proximation to the exact wave function in the latter region. 
Actually, this continuation exhibits an exponential growth 
that contradicts the expected behavior of the true wave 
function. This feature arises from the Stokes' phenome­
non,23 which is not properly accounted for with the ana­
lytic continuation of the WKB functions. The Landau 
method is based on WKB wave functions and a specific 
choice of the integration contour, for which the tunneling 
contribution from the upper state is completely neglected. 
Once these two features of the method are recognized, one 
is free to deform the contour and make the analytic con­
tinuation of the WKB functions subject to general rules of 
the calculus of complex variables (see Appendix A). 

Clearly, the uniform approximation is superior to the 
Landau approximation, but both should give the same re­
sult in the limit of exponentially small matrix elements 
(which is the condition of validity of the Landau approx­
imation). This conclusion is consistent with the results of 
Uzer and Child19 that the uniform approximation shows 
more stationary points than does the Landau approxima­
tion. In the Landau limit, however, these extra stationary 
points are not believed to contribute appreciably to the 
integral, provided the states are quasiclassical. Also, we 
should note that the assumption that the dominant contri­
bution to the integral comes from a single stationary phase 
point, adopted in Uzer and Child,19 is not necessary for the 
application of the Landau method. Actually, as we show in 
Appendix B, the stationary phase approximation com­
pletely fails for the linear dipole moment function. 

The ability of the Landau method to reproduce the 

exponentially small matrix elements when the decisive con­
tribution to the integral comes from the almost full cancel­
lation of region 1 with other regions is presumably related 
to the following two features: 

The first concerns the description of the system close to 
the turning point. The contribution of the first peak of the 
exact upper-state wave function to the overlap integral, as 
suggested by the uniform approximation, is roughly pro­
portional to the integral of the Airy function taken over 
both the classically forbidden and classically allowed re­
gions. The analogous contribution of the WKB wave func­
tion, as suggested by the Landau approximation, is propor­
tional to the integral of the asymptotic form of the Airy 
function taken over the classically allowed region only. It 
can be verified directly that these two contributions differ 
by a factor of (4/3) 112, which is only about 15% (see 
Appendix A). 

The second feature is related to the severe cancellation 
of contributions from different regions. Within the uniform 
approximation, this cancellation comes naturally as a re­
sult of the correct behavior of the wave function in regions 
that are far and close to the turning point. Within the 
Landau approximation, this cancellation occurs when the 
integral is calculated over the classically allowed region 
using the WKB wave function; equivalently, the same re­
sult is obtained when the integration contour is shifted and 
the integral is evaluated by analytic continuation of the 
integrand into the classically forbidden region. In accom­
plishing this analytic continuation, all complications that 
arise from the Stokes' phenomenon are completely disre­
garded. It is this feature that makes the Landau approach 
so relatively simple. 

VII. CONCLUSION 

By comparing the semiclassical and quasiclassical ap­
proximations with exact analytical results and conducting 
numerical analysis of contributions to the TDME from 
different regions of the vibrational coordinate, we reach the 
following conclusions: 

(i) For transitions with an = 1 that are well charac­
terized by the correspondence principle for the TDME, the 
appreciable contribution to the integral comes from regions 
that are classically allowed for one state and classically 
forbidden for the other (regions 2 and 4). This conclusion 
implies that the erroneous description of the behavior close 
to the turning points in terms of the classical motion in 
region 3 compensates for contributions from regions 2 and 
4, which are neglected in the classical treatment. 

(ii) For quasiclassical transitions with an> 1, 
(n,n'> 1) that are well characterized by the symmetrized 
correspondence principle for the TDME (not too large 
an) or by the Landau method for the TDME (large an), 
the contributions from regions 2 and 4 are very important. 
Together with the contribution from the classical region 3, 
they strongly reduce the value of the matrix element be­
cause of cancellation. For the former, the contribution 
from region 1, where motion for both states is classically 
forbidden, is small. For the latter, this contribution is ap­
preciable and becomes decisive with increasing I1n. This 
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result again indicates that the WKB description adopted 
(erroneously) all the way to the turning point from the 
classically allowed region of the upper state compensates 
for the tunneling contribution in this state neglected in the 
Landau treatment. 

(iii) For quantum transitions with an> 1 (O-an 
overtones and multiquantum transitions from lower lev­
els), the contribution from region 1, which is classically 
forbidden for both states, is much larger than the total 
value of the TDME. The quasiclassical Landau method, as 
described by Medvedev,17 is applicable here for large 
enough an when the first oscillation of the wave function 
of the upper state is in the quasiclassical tunneling region 
of the wave function of the initial state. With an decreas­
ing, the Landau method provides only a rough estimate of 
the TDME and eventually the symmetrized SC approxi­
mation provides higher accuracy. The accuracy of the lat­
ter is caused by the fact that the semiclassical approxima­
tion does not require the overlap matrix elements to be 
exponentially small. 

After analysis of different approaches, we suggest an 
improved semiclassical approximation for the TDME of an 
arbitrary dipole moment function for a Morse oscillator. 
This approximation, which combines a semiclassical pref­
actor with the Landau exponential, was tested successfully 
for the linear dipole moment function. For an arbitrary 
dipole moment function, the ISC approximation can be 
used, provided the prefactor depends on an and n much 
more weakly than the Landau exponential does. In this 
case, a simple formula (35) is presented for the intensity 
ratio of neighboring high overtones. If the prefactor de­
pends strongly on an and n, the TDME ratios are affected 
substantially by the form of the dipole moment function. 
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APPENDIX A: OUTLINE OF THE LANDAU METHOD 

In this Appendix, we outline the Landau method in a 
form that is convenient for passage to the correspondence 
principle limit. Consider a matrix element Vn'n of a func­
tion Vex), 

(Al) 

Assume for simplicity that the motion occurs in the field of 
a one-dimensional, purely repulsive potential U(x) with 
left turning points Xn' and Xn for each state n' and n; we 
assume for definiteness that xn > x n" Let the motion in 
both states be quasiclassical, i.e., the inverse of the wave 

vector be small compared to the range of the potential. Far 
from the turning points, the wave functions Kn,(X) and 
Kn(X) are well approximated by their WKB counterparts 
K~;(X) and K~C(X), respectively. Close to the turning 
points, the QC approximation K

QC to K fails, but since the 
singularity is integrable, the integral (AI) for globally qua­
siclassical conditions can be calculated as 

v;,~= I V(X)K~,C(X)K~C(x)dx, (A2) 

although some reservations have been expressed about this 
possibility? As shown in Fig. 1, the integration domain 
- 00 < x < 00 is partitioned into three regions. Within these 
regions, the products of the QC wave functions are (the 
common normalization factor is omitted here) 

(region 3) 

K~,CK~C= IPn'Pn 1-1I2sin(sn' +1T/4 ) sin (sn +,1T/4 ); 
(A3a) 

(region 2) 

K~CK~C= IPn'Pn 1-1I2( 1/2) exp ( -un' ) sin (sn +1T/4 ); 
(A3b) 

and (region l) 

K~;K~C= Ipn'Pnl- 1I2 (1/4)exp( -un,-un). (A3c) 

Here, sk = Sk(X) = (1/11) f~lk(x)dx, Uk(x) = ISk(X) I, 
and Pk is the momentum corresponding to energy E k. 

Assume that the potential U(x) is an analytic function 
of x across all three regions in the x axis. Each of the 
functions in Eqs. (A3a)-(A3c) are not analytic continua­
tions of one another, however. The reason is well known­
the passage from one region to another requires crossing a 
Stokes line,23 which is not smooth. This situation explains 
why the conventional quasiclassical formulation cannot be 
used directly to calculate the integral (A2) by the analytic 
continuation technique. One method is provided by the 
uniform approximation technique, which ensures a smooth 
transition between regions via the Airy function. 

Landau7 and Landau and Lifshitz2 suggested a method 
to evaluate quasiclassical matrix elements when the value 
of Vn'n is exponentially small. The derivation of this 
method given below is based on the assumption that the 
main contribution to the integral (A2) (taken along the 
real-valued x axis) comes from the classically allowed re­
gion 3 and the partly classical region 2. The contribution 
from the quantal region 1 is neglected and the contribution 
from the classical region 3 is taken into account approxi­
mately by resolving the product of oscillating functions 
K~CK~C into slowly and rapidly varying parts and by omit­
ting the latter. Thus we accept the following representation 
of K~;K~C in the three regions: 

(region 3) 

(K~,CK~C) L= Ln'n(x) = IPn'Pn 1-1I2( 1/2)cos(sn,-sn), 
(A4a) 

(region 2) 
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y 

L' 

z=x+iy 
L 

FIG. 5. The integration contours for the Landau method. L is the 
original contour, L' is a displaced contour, and xn' and xn are the turning 
points. 

(K~CK~C) L= Ln'n(x) 

= !Pn'Pn!-1I2( 1/2) exp ( -O"n/-IZ)sin(sn' +1T/4) , 

(A4b) 

and (region 1) 

(K~CK~C) L=O. (A4c) 

We can obtain the same result by changing the integration 
contour in such a way that portions (A4a) and (A4b) can 
be regarded as a single analytic function on this contour, 
and the contribution from region 1 can be omitted alto­
gether. The analytic function Ln'n(z) is of the form 

Ln'n(z) = [Pn,(z)Pn(z)] -1I2( 1/4 )exp [sn' (z) -sn(z)], 
(AS) 

with Sk(Z) = (1/-IZ)f~"Pk(z)dz and Pk(z) = (2fL) 1I2[Ek 
_ U(Z)] 112. 

The above functions are defined on the complex Z plane 
with branch cuts running from the turning points Xn' and 
xn to the right. The integration contour L circumvents this 
cut starting and ending at + 00 (see Fig. 5). 

It is easily verified that the sum of contributions from 
two parts of the contour adjacent to opposite sides of the 
cut will give expression (A4a) in region 3 and expression 
(A4b) in region 2, provided that all additional phases that 
originate from Pk upon passing by the turning points are 
carefully taken into account. 

The analytic continuation of Eq. (AS) into region 
reads 

L II'II(x) = !PII'Pn !-1I2( 1/4 ) exp (O"II,/-IZ-O"m/-IZ) , (A6) 

which differs substantially from Eqs. (A3c) and (A4c). 
The only restrictions for the contour displacements are 
related to the branch cuts and singular points of the po­
tential U(x) and interaction Vex). No Stokes lines remain, 
which is the main advantage of the Landau method. 

In this way, we arrive at the following expression for 
the Landau-Lifshitz matrix element of a function VCx): 

V~ = f V(Z) Ln'n(z)dz, 
n n L 

(A7) 

where L is the contour shown in Fig. 5 or its equivalent. 
An "equivalent" contour may be quite different in shape 
from the original. Only a small portion of it usually is 
important, since the value of the integral under near­
adiabatic conditions is determined by integrand singulari­
ties that are the closest to the real axis of z. Yet another 
form of the integral is of interest-VL can be represented 
as a real part of an integral taken over the real axis from 
any point in region 1 to infinity VLL= V+ + V- (see Ref. 
2, Sec. 52). 

The correspondence principle limit follows from the 
Landau formula when the energies of the initial and final 
states are so close that two turning points are allowed to 
coalesce into one XII" xll ..... xii and the difference in the ac­
tion integrals in region 3 is replaced by its first-order term 
in En,-En- The change of the X variable into the t variable 
via a mean trajectory x(t) =x(ii,t) transforms the loop 
contour over the x axis into the whole of the t axis. The 
final result is a familiar expression 

T'sC J+oo y 11'11= -00 V[Xii(t) ]exp[iAncu(ii)t]dt. (A8) 

Next we turn our attention to the integral (Al) and 
analyze a contribution from the first maxima of the upper 
state wave function, assuming that the rest of the integrand 
varies slowly over the range of this maxima. We compare 
two approximations to the upper-state wave function: (i) 
the Airy function in the classically forbidden and classi­
cally allowed regions; and (ii) the Airy function's asymp­
totic form in the classically allowed region. 

Because the prefactors and scales are immaterial for a 
relative comparison, we compare two integrals 

J
+OO 

J(Airy) = -00 Ai( -x)dx (A9a) 

and 

(+OO 
JAs(Airy) = Jo As[Ai( -x) ]dx, (A9b) 

where the Airy function Ai( -x) and its asymptotic form 
As [Ai ( -x)] in the classically allowed region are 

Ai(x)=(1T)-1 fooo cos(s3/3+sx)ds (AlOa) 

and 

As[Ai( -x)] = (1T) 112. (x) 1I4sin[ (2/3 )X3/2+ 1T/4 ], 

x>O. (AlOb) 

Calculation of the integrals (A9a) is facilitated by noting 
that (21T)-lf~: exp(isx)dx=8(s), and the substitution 
(2/3)x3/2=y2 brings the integral (A9b) to a sum of stan­
dard integrals fO' sin(y2)dy=fO' cos(y2)dy= (1T/2) 112/2. 

The final results are 

J(Airy) = 1 (Alla) 

and 

hsCAiry) = C4/3) 112. (Allb) 
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APPENDIX B: SEMICLASSICAL MATRIX ELEMENT OF 
THE EXPONENTIAL FUNCTION FOR THE 
EXPONENTIAL REPULSIVE INTERACTION AND THE 
MORSE POTENTIAL 

We consider the Fourier component at frequency m of 
the function V (x) = exp ( - yx) for the motion of a particle 
in the field of an exponentially repulsive potential U(x) 
=exp( -(3x) when this matrix element is exponentially 
small. With y={3, this problem is encountered in the semi­
classical version of the Jackson-Mott model,22 which is 
equivalent to the Landau-Teller model.24 

We use the result of this calculation for three purposes: 
(i) to show that the exponent does not depend on y; (ii) to 
demonstrate the efficiency of the symmetrization proce­
dure in approximating the quasiclassical (Landau) expo­
nential; and (iii) to study the accuracy of the steepest de­
scent approximation. 

The classical trajectory for this problem is very simple 
(e.g., see Ref. 12) and the time dependence of V[x(t)] (up 
to a constant factor that is not of interest here and that is 
chosen for convenience to be (3v/2) is 

V[x(t)] = ({3v/2) cosh). ({3vt/2), (B1) 

where v is the mean asymptotic velocity (at x-> 00) and 
A=2y/{3. The integral 

1= f ({3v/2)cosh-).({3vt/2)exp(imt)dt 

= f cosh-).(7)exp(is7)d7, (B2) 

where s=2m/{3v is calculated by displacing the contour 
into the upper half-plane and letting it go around the sin­
gular point (similar to the dash-dot portion of the contour 
shown in Fig. 2). The singular point 7s corresponds to zero 
of the denominator, viz., 

(B3) 

Taking advantage of the rapid falloff of the exponential 
along this integration path, we approximate cosh-).( 7) by 
its leading term (7-7s) -). and use one of the representa­
tions of the gamma function. In this way we get 

(B4) 

This formula provides the asymptotic limit (for s~ 1) to 
the integral (B2). 

From Eq. (B4), we find the following: 
(i) The exponent 1TS/2 does not depend on y and 

therefore on the form of the potential. This conclusion is 
true until the higher terms in the expansion of cosh -). ( 7 ) 
about 7s begin to affect the integral. The relative impor­
tance of the second term in the power expansion of 
cosh-).( 7) about 7s over the integration range lis is A/S2, 
and therefore the form of the potential does not manifest 
itself in the exponent provided 

A~S2. (BS) 

(ii) The symmetrization procedure applied to the 
semiclassical exponent is meant to bring it into an approx-

imate correspondence with the quasiclassical exponent. 
For our semiclassical model, the exponent is 

~C=1T(E-E')/l1{3v, (B6) 

where (E-E')/fz is substituted for m (E and E' are the 
initial and final kinetic energies). The symmetrization be­
tween initial and final states implies a substitution v= (v 
+v')/2. In this way, we obtain the symmetrized semiclas­
sical exponent ~SC, 

(B7) 

where p and p' are the initial and final asymptotic mo­
menta, respectively. Reference to Medvedev,17 Uzer and 
Childl9 or Landau and Lifschitz2 reveals that the right side 
of Eq. (B7) represents exactly the quasiclassical exponents 
€Qc. Thus for this model, the symmetrization procedure 
brings the semiclassical exponent into complete agreement 
with its quasiclassical counterpart. 

(iii) We next discuss the accuracy of the STP approx­
imation for calculating the integral (B2). The STP point 
7STP is found from the requirement that the first derivative 
of the exponent of the integrand exp[is7-A In (cosh 7)] 
vanishes. Making use of the condition s~ 1, we find 

7sTP=i1T/2-iA/S· (B8) 

The Gaussian approximation to the integrand about 7STP is 

exp(is7)cosh-).7=exp( -1Ts/2+A) . (S/A»). 

Xexp[ -S2. (~7)2/2A], (B9) 

where ~7=7=7STP. Integrating Eq. (B7) over ~7 along a 
horizontal straight line [this horizontal line in t represen­
tation corresponds to a vertical line in the z representation 
(see Appendix A)], we obtain 

IsTP(S,A) =21TA· S).-I . exp( -1TS/2)/St(A+ 1), 
(BlO) 

where St(A + 1) is the Stirling approximation to gamma 
function 

St(A+ 1) =A).· exp( -A) . (21TA) 1/2. 

Comparing Eq. (B4) to Eq. (B9), we find 

IsTP(S,A)/I(S,A) =r(A+ 1)/St(A+ 1). 

(B11) 

(B12) 

Note that as the steepness of interaction increases, the ratio 
IsTP(s,A)/I(s,A) tends quickly to unity. For A=2, the 
result ofUzer and Child19 and Nikitin and Ovchinnikoval6 

is recovered I sTP(S,2)/I(S,2) = 1.042. As A decreases, the 
STP approximation becomes worse and breaks down com­
pletely for a linear interaction A->O. [Of course, Eq. (B4) 
gives a correct result in the limit A->O.] The STP approx­
imation fails for a simple reason. For the STP approxima­
tion to be applicable, the range of the stationary phase 
region ~7STP (the width of the Gaussian peak) must be 
small compared with the distance between 7STP and any 
other singular point, in our case 7 so 

(B13) 
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