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Diagrammatic perturbation theory combined with a spherical tensor treatment allows the degenerate 
four-wave mixing (DFWM) signal resulting from an isotropic molecular sample to be decomposed 
into a sum of three multipole moments in the weak-field (no saturation) limit. The zeroth moment 
gives the relative internal-state population contribution, the first moment the orientation 
contribution, and the second moment the alignment contribution to the DFWM spectra. This 
treatment makes explicit how the magnitude of the DFWM signal depends on the polarizations of 
the other three beams and the collisional relaxation caused by the environment. A general expression 
is derived for the DFWM signal for an arbitrary geometric configuration of the beams (arbitrary 
phase matching geometry). Under the assumption that the rates of collisional relaxation of the 
population, the orientation, and the alignment are the same, simple analytic expressions are found 
for the most commonly used experimental configurations, which should facilitate the practical 
analysis of DFWM spectra. 

I. INTRODUCTION 

Laser-induced fluorescence (LIF) is a powerful spectro- 
scopic technique for analyzing molecular species in experi- 
ments that range from chemical reaction dynamics to plasma 
physics. A common goal of these experiments is to extract 
accurate values for relative populations from the relative in- 
tensity distribution of the emitted light. Several authors have 
shown how the emitted light intensity depends on the 
excitation/detection geometry (polarization),‘-3 the tempera- 
ture, pressure, and chemical composition of the experiment 
(collisional relaxation),4-6 and the laser power employed 
(saturation).7-9 In general, the population as well as the ele- 
ments of the first- and second-rank multipole moments of the 
total angular momentum, called the orientation and the align- 
ment, respectively, can be determined from low-pressure ex- 
periments performed under single-collision conditions. In 
collisionally dominated environments, however, the determi- 
nation of these quantities becomes extremely difficult. 

An appealing alternative approach to the study of colli- 
sionally dominated environments is the use of a nonlinear 
technique called degenerate four-wave mixing (DFWM).” 
DFWM uniquely provides information regarding the chemi- 
cal composition, kinetics, and dynamics of environments that 
are inherently difficult to study because of radiant interfer- 
ence from the emission of excited species.” One of the most 
important features of DFWM is the large four-wave mixing 
enhancement exhibited when the laser frequency is tuned to 
a molecular one-photon resonance (this includes electronic, 
vibrational, and rotational transitions); this feature makes 
DEWM a very sensitive molecular probe. Other important 
features include sub-Doppler spectral resolution, excellent 
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spatial and temporal resolution, imaging capabilities, nonin- 
trusive detection, and remote sensing. Because of these at- 
tributes, the potential of DFWM spectroscopy to obtain 
chemical and dynamical information has generated much ex- 
citement. Like LIF, however, DFWM requires an understand- 
ing of polarization, collisional, and saturation effects before 
information can be extracted from the signal intensities. 

At present, DFWM signal intensities are most commonly 
interpreted by applying the stationary absorber model pro- 
posed by Abrams and Lind,“,‘* which considers a nondegen- 
erate two-level system in the presence of arbitrarily strong 
pump fields. This model accounts only for population contri- 
butions to the DFWM response and neglects contributions 
from orientation and alignment. This model’s predictions 
have been applied with much success to relate saturated 
DFWM signal intensities to populations in experiments per- 
formed under collisionally dominated conditions.“~‘3-‘6 
Note, however, that signals from a single rotational branch 
and polarization configuration were used in these experi- 
ments. These conditions serve to minimize the error intro- 
duced from applying this model to molecular systems with 
degenerate magnetic sublevels.17 

To date, attempts to formulate a complete model that 
includes polarization, collisional, and saturation effects have 
been unsuccessful. Studies that emphasize saturation 
effects’8-27 are limited to level degeneracies in the range of 1 
to 3. Even numerical approaches** are computationally im- 
practical at present for level degeneracies typical of molecu- 
lar species. Many authors20,29-39 have thus resorted to pertur- 
bative treatments (no saturation) to gain insight into the 
DFWM response of degenerate systems. 

The aim of this paper (WZRl) is to present a theory of 
DFWM that can be used to interpret the spectra of molecular 
species. This goal is accomplished by deriving expressions 
via time-independent diagrammatic perturbation theory that 
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FIG. I. Phase matching geometries: (a) Forward box, FB-DFWM; (b) Back- 
ward box, BB-DFWM; (c) Phase conjugate, PC-DFWM. 

account for the DFWM polarization, collisional, and velocity 
effects in the weak-field limit. We consider three input fields 
of arbitrary polarization that interact with an isotropic 
sample to produce a fourth field and assume that field propa- 
gation effects can be ignored (negligible absorption). In our 
treatment, we assume that the DFWM process couples levels 
of sharp (definite) angular momentum J (omitting nuclear 
spin). Therefore, our treatment is general in that it applies to 
molecular species for which J is a good quantum number. 
The general result is specialized to apply to circularly and 
linearly polarized fields that interact in nearly collinear phase 
matching geometries in collisional environments where the 
multipole moments of the total angular momentum distribu- 
tion relax independently (isotropic relaxation) and at the 
same rate. Figure 1 shows the three specific geometries we 
treat. In the following paper (WZR2),17 we extend the key 
results presented here to interpret data taken under saturated 
conditions. 

The remainder of this paper is organized into four sec- 
tions and one appendix. In Sec. II we present expressions for 
the DFWM signal intensity as a function of input polariza- 
tion, collisional relaxation and dephasing, and experimental 
geometry under the assumption that the rates of collisional 
relaxation of the population, the orientation, and the align- 
ment are the same. This section is intended as a guide for the 
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FIG. 2. Energy-level diagram for DFWM of a degenerate two-level system. 
In the figure i=l, j=3 or i=3, j=l. 

experimentalist. In Sec. III we interpret the DFWM signal 
intensity, as has been done for LIF, in terms of the popula- 
tion, the orientation, and the alignment. In Sec. IV we com- 
pare our results with those of other treatments, and in Sec. V 
we present conclusions of our findings. In the Appendix ex- 
pressions are presented for the polarization tensor products 
necessary to extend this treatment to other experimental con- 
figurations. 

II. DEPENDENCE OF DFWM SIGNAL INTENSITIES ON 
POLARIZATION, COLLISIONS, AND PHASE 
MATCHING GEOMETRY 

A. Expressions and discussion 

In four-wave mixing three incoming waves with electric 
fields E,(r,t), E,(r,t), and E,(r,t), propagation vectors k,, 
k,, and k, , and frequencies oi , w2, and w interact through 
the third-order nonlinear susceptibility x 3, 7 to generate a 

fourth field, Ed, with propagation vector k, and frequency 
0,. The electric fields are defined as 

(1) 
where Ej is the vector amplitude, ~j is the scalar amplitude, 
and ~j is the normalized (~j 1 ~7 = 1) polarization unit vec- 
tor of the electric field labeled j. The conventions for ex- 
pressing the unit vectors are given in the Appendix. 

For fully resonant DFWM w1 = 02=w3=w4=w, and we 
assume that the excitation bandwidth is sufficiently narrow 
compared with the density of states (including Doppler 
broadening) of the absorbing molecules so that the interac- 
tion is exclusively between ,me degenerate magnetic sublev- 
els of the two levels involved in the one-photon resonant 
transition. These levels are assumed to be characterized by 
total angular momentum J. Figure 2 shows a schematic 
energy-level diagram of the process described above. In this 
figure we restrict the letters g and g’ to refer to two degen- 
erate magnetic sublevels (either the same or different) of the 
lower level (usually the ground electronic state), and the let- 
ters e and e’ refer to two degenerate magnetic sublevels 
(either the same or different) of the upper level (usually an- 
other electronic state). In the following discussion we adopt 
the standard nomenclature for the four fields involved in 
four-wave mixing: 1 and 3 refer to the two pump fields, 2 
refers to the probe field, and 4 refers to the signal field. 
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FIG. 3. Double-sided .Feynman diagrams used to construct the DFWM 
third-order susceptibility. The first set of eight resonant contributions is 
formed by substituting i = 1, j = 3 and the second by i = 3, j = 1. The energy- 
resonant denominators of Eq. (23) associated with each set of diagrams is 
indicated. 

The general expression for Xc3) that applies here consists 
of 96 terms (48 for the upper level and 48 for the lower 
level) that completely describe the interaction of the electric 
fields with the molecular system.40V41 These terms differ in 
the time ordering of the interaction fields and the permuta- 
tions of the quantum states involved. Evaluating all of these 
terms is a formidable task in general; however, in a fully 
resonant four-wave mixing experiment, the intensity at a par- 
ticular resonance in the spectrum is dominated by only 16 
terms. This result is well established in the literature on reso- 
nant coherent anti-Stokes Raman spectroscopy (CARS).33V40 
These terms are represented using double-sided Feynman 
diagrams in Fig. 3. For fully resonant DFWM the summation 
over all state permutations reduces to a summation over the 
magnetic sublevels M, , M,!, M, , and M,t of the two levels 
involved. Furthermore, if the initial magnetic sublevel distri- 
bution is isotropic, i.e., all degenerate M levels are equally 
populated and no phase relation exists between them, the 
summation is equally weighted. Taking these aspects into 
consideration and assuming that the collisional relaxation 
rates of the population, the orientation, and the alignment are 
the same, we write the DFWM signal intensity as 

zDFWMocz1z2z3 
OJ,+ 1) 

N,- (2 J,+ 1) N, I 2~&-,~J, ,J,H4 

where 

~(W)=[Lf2(W)+L~2(0)+L~Z(W)+Le32(W)I 
is the total line shape function and 

G~(Eq,E,,g33,g2;JgrJe;O) 

(3) 

=W13(W)GF(g44,g.1rg3,gE2;Jg,Je) 

+W31(0)G~(g44,g33,gl,g22;J~,Je) (4) 
is the total geometric factor. In Eq. (2) Zj is the intensity of 
the electric field labeled j, N, , and N, are the total popula- 

tions of the levels g and e, respectively, in the absence of 
applied fields, and B,,(J, ,J,) is the Einstein absorption co- 
efficient that connects the level with total angular momentum 
J, to the level with J, . In Eq. (3) the Ly2(o) are complex line 
shape functions. In Eq. (4) the GF(g4,4,gj,g2;Jg,Je) are 
geometric factors and depend solely on the polarization unit 
vectors of the electric fields ej and the total angular momen- 
tum quantum numbers J, and J, . The dimensionless weight- 
ing factors W,,(w) and W,,(o) of Eq. (4) are defined as 

and 

w (+~42w+G2(W) 
31 S(w) ’ 
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(5’4 

and they satisfy the condition 

W,,(w)+W31(w)=l. (6) 

Equation (2) is the key result of this section and expresses 
the DFWM signal intensity as a product of a concentration 
part, AN2, a one-photon molecular part, B‘&, a line shape 
part, /L?(o)[~, and a laboratory-frame geometric part, IGF12. 
These quantities relate to different aspects of the experiment, 
and the DFWM signal intensity is directly proportional to 
them. 

The Einstein absorption coefficients describe the 
strength of the interaction of the molecule with the excitation 
fields in the molecular frame. These coefficients can be re- 
lated to other molecular parameters such as the absorption 
cross section, the oscillator strength, the line strength, the 
spontaneous emission lifetime, and the transition-dipole 
moment.42 The literature provides an extensive theoretical 
and experimental data base of these parameters. The phys- 
ical interpretation of the geometric factors 
G,(g4,gi ,gj ,q;J, ,J,) is given in Sec. III. The crucial point 
here is that these factors are just real numbers that account 
for the geometry of the interaction of the molecule with the 
electric fields in the laboratory frame. These terms are given 
in Table I for the allowed polarization configurations of cir- 
cularly and linearly polarized light for the phase matching 
geometries of Fig. 1. The angle 8 in Fig. 1 is small, usually 
less than 2”, so we assume that all of the electric fields in- 
volved in the DIWM process (excitation and signal) propa- 
gate along the space-fixed Z axis. The collinear beam ap- 
proximation in turn restricts the electric fields to lie in the 
space-fixed XY plane, and we use the following conventions: 
R for right circularly polarized, L for left circularly polar- 
ized, X for +=O linearly polarized, and Y for 4= 7r/2 linearly 
polarized (Fig. 4). Finally, the line shape functions Ly2(w) 
are defined as 

Ly 0) 

f W3v 1 
= [(kj-k,).v-ir,] [wo-w+ky-ire,] 

1 

I 

1 
-[coo-w+k2.v+X,, [coo-w+k4.v-iir,J (7) 
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TABLE I. Geometric factors for circular and linear polarization combinations with the following conventions: R for right circular polarization; L for left 
circular polarization; X for Cp=O linear polarization; and, Y for +=d2 linear polarization. Permuting R ++L or X-Y does not change the values of the 
geometric factors. 

P Branch Q Branch R Branch 

4e, 3 +?2 G,(~hveiT~j t+;JvJ- 1) High-J limit GF(Q v4 vcj 74 39.0 High-J limit GF(~~,~~~,E~,~~;J,J+~) High-J limit 

RRRR 1 (6/2-l) 1 1 (U2+u+l) 2 1 12J+q (6Jz+ 1 -- 
15J(U-1) 5 is J(J+l) TJ Is (u+3)(J+ 1) 5 

RLRL 1 (2JZ-5J+3) 1 1 (452+4J-3) 2 1 (U*+9J+ 10) 1 
56 &U-l) 5 30 J(J+l) Is 30 (21+3)(J+ 1) 30 

RRLL 1 @+sJ+3) 1 1 (4JZ+4J-3) 2 1 (2.CJ) 1 
30 5(2J-1) 36 5-3 J(J+l) T3 30 (u+3)(J+ 1) 30 

YYYY 1 (4J2+1) 2 1 1) (3JZ+3J- 1 1 (4J2+8J+5) 2 -- 
lSJ(2.F1) Is i? J(J+l) 5 Is (21+3)(J+ 1) Is 

YXYX 1 1) (6.?-5J- 1 1 (2J*+u+l) 1 1 17J+ 10) (6.&k 1 
30 J(W-1) lo 76 J(J+l) is Tl (21+3)(J+ 1) iii 

YYXX 1 1) @+55- 1 1 (2?+u+l) 1 1 @J2+7J) 1 
55 J(2.F1) E 30 J(J+l) Is 30 (2&3)(J+ 1) iti 

YXXY 2 (P-1) 1 1 (52+5-2) 1 2 (P+w) 1 
--- -- 15 J(2F1) 73 15 J(J+l) i3 73 (U+3)(5+ 1) -15 

where f(v) is the normalized (Maxwell-Boltzmann) 
velocity-distribution function, hw, is the energy difference 
between the e and g levels, and 2r,, is the homogeneous 
full-width (no Doppler broadening) of a dipolar transition 
between the e and g levels. The sub- and superscripts on L 
refer to the first terms of Eq. (7). Specifically for the line 
shape function LyZ(o), n is the quantum-state label of r, 
where l/r, is the total lifetime of the n* level, and j is the 
field label, either 1 or 3, that corresponds to the k vector 
difference Akja = (kj - k2). As written, the specific collisional 
rates are dependent on temperature but independent of veloc- 
ity. The velocity integration of Eq. (7) has been performed by 
many au~ors10.29-31.~.43 and is not discussed here. 

Effects resulting from finite laser bandwidths and veloc- 
ity changing collisions are not included in Eq. (7), and to our 
knowledge, have not been treated. Furthermore, only colli- 

Y 
Ei 

FIG. 4. Electric field vectors E, and Ea in the laboratory frame for linear 
and right circular polarized light waves, respectively. The propagation di- 
rection is the 2 axis. 

sional relaxation is considered (no spontaneous emission), 
and we assume that the collisional relaxation of the popula- 
tion, the orientation, and the alignment can be represented by 
a single rate r, . This “single relaxation” assumption is often 
valid; however, in experiments where efficient energy trans- 
fer collision partners such as water are absent, levels charac- 
terized by low values of J may relax with multiple rates and 
Eq. (2) no longer applies. This topic is discussed in Sec. 
III c. 

In Eq. (4), the geometric factors are weighted by the line 
shape functions defined in Eq. (7). Therefore, the total 
DFWM polarization dependence for a given experiment is 
sensitive to more than the polarizations of the excitation 
fields; it is also sensitive to the phase matching geometry, the 
velocity distribution of the absorbing molecules, and the col- 
lisional dynamics caused by the environment. This interde- 
pendence is an important aspect of DFWM. 

For many cases the two geometric factors of Eq. (4) are 
equal or equally weighted. In these situations the total geo- 
metric factor becomes 

=+ [GF(~44,6,,E3,~22;Jg,Je) 

and is independent of the velocity distribution of the absorb- 
ing molecules and the collisional dynamics caused by the 
environment. All of this information is then contained exclu- 
sively in the total line shape function Z(W)! This is a pow- 
erful result because the DFWM polarization dependence has 
been disentangled from the collisional dynamics of the ex- 
perimental environment and depends only on the polarization 
states of the incident fields and the total angular momentum 
of the levels involved. Equation (8) has been evaluated for 
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TABLE II. Total geometric factors for FE%-DEWM and for BB-, PC-DWM when Eq. (8) is valid. The conventions are the same as Table I, and permuting 
R t--t L or X++ Y does not change the values of the total geometric factors. 

P Branch Q Branch R Branch 

G~(~~,~,,E~.~~z;J,J-~) High-J limit G;(w, .e3 +?2 ;J,J) High-J limit G3q,r,,q~4;J,J+ 1) High-J limit 

RRRR 1 (6&l) -- 
15 J(U- 1) 

RLRL 1 (U2+3) -- 
30 J(U- 1) 

RRLL 1 (2J2+3) -- 
3OJ(U-1) 

YYYY 1 (4Js+l) -- 
15 3(2J- 1) 

YXYX 1 (652-l) -- 
30 J(U- 1) 

YYXX 1 (6.&-l) -- 
30 J(U- 1) 

YXXY 2 (Cl, --- 
15 J(U-1) 

1 
3 

36 
1 

56 
2 

Is 
1 

z 
1 

i-6 
1 

-is 

1 (U2+u+l) 
E J(J+l) 
1 (4JZ+4J-3) 

30 J(J+l) 
1 (4JZ+4J-3) 

5 J(J+l) 
1 (3JZ+3J- 1) 

TJ J(J+l) 
1 (2Js+u+l) 

55 J(J+l) 
1 (Us+U+l) 

5 J(J+l) 
1 (P+J-2) -~ 

15 J(J+l) 

2 
E 
2 

is 
2 

Is 
1 
s 
1 

E 
1 

is 
1 

Is 

1 (6./s+ 121+5) 
E (u+3)(J+ 1) 

1 (u2+4J+5) 
30 (21+3)(J+ 1) 
1 (U2+45+5) 

76 (2J+3)(5+ 1) 
1 (4J*+sJ+5) 

i3 (2J+3)(3+ 1) 
1 pJs+ lU+5) 

30 (2J+3)(5+ 1) 
1 @.Js+ 121+5) 

30 (2J+3)(J+ 1) 
2 (J2+2J) 

-TJ (U+3)(J+ 1) 

1 
3 
1 

?;ii 

30 
2 

E 

ici 

lo 
1 

-i5 

all allowed polarization configurations for circularly and lin- 
early polarized light, and the results are given in Table II as 
a function of transition type using the same conventions as in 
Table I. 

The total geometric factors of Table II can be related to 
what is more commonly referred to as four-wave mixing line 
strength factors S m(~4,q ,~3,~22;J~ ,Je)33*36v37 by 
S~(4,E1,~33.~22;Jg,Je) 

=(~~~J~)~G~(E~,E~,~,~~;J~,J,)/(~J,+~), (9) 

where SJ” J is the molecular rotational line strength (Honl- 
London ’ iactor) for a one-photon transition3 and 
GF(e4,eI ,E~,E~;J~ J,) is defined in Eq. (8). In the general 
case, population distributions cannot be extracted using the 
line strength factors of Eq. (9), because the total geometric 
factor depends on the line shape functions, i.e., the overall 
DFWM polarization response depends on more than the po- 
larization of the excitation fields. 

In our discussion of polarization effects, it is useful to 
derive expressions that relate how observed DFWM signals 
vary for a given transition as the polarization of the excita- 
tion fields is varied. This variation in DFWM signals is best 
expressed in terms of a polarization ratio defined as 

p( $Z;Z;j =& (10) 

which is merely the ratio of the DFWM signal intensities for 
two different polarization configurations in which all other 
aspects of the experiment are the same. The three fundamen- 
tal polarization ratios for circularly and linearly polarized 
light derived using the values of Table II in Eq. (10) are 
given in Table III. Note that more ratios can be formed by 
permuting R-L and X-Y, but they are identical to those 
given in Table III. The polarization ratios rapidly approach a 
high-1 limit, and therefore, these values generally describe 

TABLE III. Polarization ratios’ calculated using the values of Table II with J=J, . 

P(I) 

P Branch High-J limit 

1 
s 

Q Branch High-J limit R Branch High-J limit 

PW 

P(II1) 

9 
16 
1 

36 [ 1 (JZ+J-3/4) * 
(J*+J+ l/2) 

1 

“P,I,=PP(~),P(II,=P(~)=P(~)=;P($$$ and P,III,=i=($)=;P(~)=$+$)=P(~) 

=;P(gg)=;P(ggj. 
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the DFWM signal variation, as the polarization configuration 
is changed for those systems for which Eq. (8) is valid. 

We turn to a discussion of specific experimental condi- 
tions in which we point out the cases for which Eq. (4) 
reduces to Eq. (8). Here, we invoke the grating picture of 
DFWM to gain some insight as to the relative magnitude of 
the line shape functions Lyz(w). The grating picture of 
DFWM involves the interference of the excitation fields. 
When the excitation fields are tuned to a one-photon reso- 
nance, the interference between two of the fields, E2 and Ei 
(j= I or 3), leads to a spatial modulation in the (complex) 
refractive index and hence forms a grating that can scatter 
the third field into a fourth field (DFWM signa1).‘0’44 The 
grating is characterized by the grating k-vector, 
~42 = (kj - k2), which describes the grating’s orientation and 
spacing in the laboratory frame. The grating spacing Djz is 
given by 

Di2-/ikT2/ =2 sini0/2) 
-- 

q,(o)3q,(@J); .q,b)=GW. (13) 

Unlike for FB-DFWM, the total geometric factors for BB- 
and PC-DFWM that correspond to the interchange of the two 
pump fields (1 and 3) are generally not weighted equally. 
Hence the overall DFWM polarization response, i.e., the to- 

(11) 
tal geometric factor G~(E~,E, ,e3,e2;Jg ,J, ;w) of Eq. (4), 
will be sensitive to the collisional environment because the 
weighting factors W,,(w) and W,,(o) are dependent on the 
relative relaxation rates of the g and e levels. This depen- 
dence complicates the interpretation of DFWM spectra for 
these phase matching geometries, and the weighted average 
expressed in Eq. (4) generally must be performed. 

where IAkj2) is the magnitude of the grating k vector and 0 is 
the angle between the two propagation vectors, kj and k,, of 
the fields forming the grating (OS Krr). When 0 is small the 
grating spacing is large, and when 19 is large the grating spac- 
ing is small. If the absorbers involved in forming the grating 
are moving, such as in a gas, the grating with the smallest 
spacing is “washed out” to a higher degree when Doppler 
broadening is significant.45 This argument is useful in pre- 
dicting the general DFWM polarization dependence and is 
substantiated by evaluating the integrals of Eq. (7).43 

B. Phase matching geometry 1: Forward box DFWM 
(FE-DFWM) 

We are prepared to consider the polarization effects for 
specific phase matching geometries and the relative sensitiv- 
ity of these effects to the collisional environment. For the 
FB-DFWM geometry of Fig. 1, all fields are nearly copropa- 
gating, &O, and jAk12(=jAk321=0. Therefore, all the grat- 
ings formed in the FB-DFWM phase matching geometry 
have large grating spacings, D,,= D32-+ar and 

LP,(w)=q,(w); L;,(o)=L;,(w). 02) 

Substituting Eq. (12) into Eqs. (5a) and (5b) shows that geo- 
metric factors that correspond to the interchange of the two 
pump fields (1 and 3) are equally weighted. The total geo- 
metric factor has the simple form of Eq. (8) for all transition 
types and polarization configurations. Therefore, Tables II 
and III contain all of the relevant polarization information for 
FB-DFWM. As shown in Table III, the polarization ratios are 
equal for any entry with orthogonally polarized pump fields 
(ei . et = 0). This result distinguishes the FB-DFWM con- 
figuration from the other configurations as we shall see be- 
low. This distinction is in addition to the fact that FB-DFWM 
is not a sub-Doppler spectroscopic technique. 
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C. Phase matching geometries 2 and 3: Backward 
box and phase conjugate DFWM (BB- and 
PC-DFWM) 

For the BB-DFWM and PC-DFWM geometries of Fig. 
1, fields 1 and 2 are nearly copropagating, IAki21=0, and 
fields 3 and 2 are nearly counterpropagating, 
(Ak32(=2k=4rr/h. Therefore, two types of gratings are 
formed in these phase matching geometries: one has a large 
grating spacing, D,,+m; and the other has a small spacing, 
D,,-+Al2. Allowing for more wash out of the small-spaced 
grating compared to the large-spaced grating when the mol- 
ecules are moving, we may write the following inequalities: 

In some cases, however, the polarization dependence for 
BB- and PC-DFWM can be disentangled from collisional 
effects. These cases arise when 

or when 

rg=l--,~Lf2(w)=L;2(w); L;2(w)=L;2(w). (14b) 

For these cases Eq. (4) reduces to Eq. (8), and again, the 
DFWM polarization response only depends on the polariza- 
tion states of the incident fields and the total angular momen- 
tum of the levels involved. Equation (14a) is satisfied for all 
Q branch (AJ=O) transitions and for P branch (AJ= - 1) 
and R branch (AJ=+l) transitions when the two pump 
fields are of the same polarization ( l , . e$ = 1). Therefore, 
the simple results of Tables II and III can be used to evaluate 
BB- and PC-DFWM signal intensities for Q-branch transi- 
tions and for P- and R-branch transitions when el . er 
= 1 in addition to FB-DFWM signal intensities. For P- and 
R-branch transitions with orthogonally polarized pump fields 
(El * e$ = 0), however, Eq. (14b) must be satisfied for the 
results of Tables II and III to apply, i.e., the upper and lower 
levels must relax at the same rate. If neither Eq. (14a) nor 
Eq. (14b) is satisfied, the DFWM polarization response de- 
pends on the dynamics of the collisional environment under 
study. This drawback is offset because collisional relaxation 
information can be obtained from polarization-ratio measure- 
ments without having to resolve spectral line shapes.17*46 

Grating wash out leading to the inequality in Eq. (13) 
often occurs for Doppler-broadened systems in which the 
homogeneous full-width 2I’,, of the spectroscopic transition 
between levels e and g is smaller than the Doppler width 
A@,. Experiments conducted under low-pressure, high- 
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temperature conditions, such as atmospheric-pressure (and 
lower) flames and plasmas, are examples of Doppler- 
broadened systems. Again invoking the grating picture of 
DFWM for this case yields Lf2>Lg2 and LT2>Lz2; in other 
words, the small-spaced grating is washed out more than the 
large-spaced grating. Substituting these inequalities into Eq. 
(4) shows that P- and R-branch transitions with orthogonally 
polarized pump fields are sensitive to differences in the re- 
laxation rates of the g and e levels. To emphasize this point 
consider the case when F,<I’, . Given two orthogonal po- 
larization states E’ and E”, we have 

for P-branch (AJ= - 1) transitions, and 

signal direction. The most likely candidate is a thermal grat- 
ing that results from the localized absorption of the laser 
energy and subsequent heating of the medium. This absorp- 
tion leads to a spatial-density modulation in gases that can 
produce signals on the order of or greater than the DFWM 
response under some conditions.46’49.50 Another intensity 
grating effect observed at high laser intensities is an electro- 
strictive grating5t that results from an electric-field induced 
modulation in the gas density. These types of effects, how- 
ever, can result only from the interference of two fields that 
have the same polarization (intensity gratings); jelds wit/z 
orthogonal polarizations do not produce such effects (polar- 
ization gratings) because there is no spatial modulation of the 
field intensity (only its polarization is spatially 
modulated) .52,53 If the molecule is optically active (chiral), 
however, then circular-dichroism induced thermal gratings 
can be formed with orthogonally polarized fields.54 

for R-branch (AJ=+l) transitions. If F,>r,, the inequali- 
ties of Eqs. (15a) and (15b) are reversed. These inequalities 
hold for frequency-integrated DFWM signal intensities as 
well. Analytic expressions for the line shape functions in the 
Doppler-broadened limit are found in Refs. 10, 30, and 43 
and can be used to quantify the inequalities of Eqs. (15a) and 
(15b). 

Recall that for P- and R-branch transitions with rg = Fe , 
the total geometric factor is invariant to the exchange of the 
polarizations of the pump fields. This result is important be- 
cause even though most flame and plasma experiments are 
Doppler-broadened, diagnostic applications typically involve 
the investigation of molecular species in which rotational 
energy transfer collisions are the dominant type of collision. 
Furthermore, the energy-level spacings of the g and e levels 
of these species are usually similar, and as a result, they have 
similar rotational energy transfer rates. For these experi- 
ments, I’,=l?, , and to a first approximation, the simple re- 
sults of Tables II and III describe the DFWM polarization 
response. This response is discussed in detail in WZR2 for 
the case of the CH radical in an atmospheric-pressure flame. 

If other types of gratings are present, polarization depen- 
dences different from those discussed above are observed. In 
particular, polarization configurations that involve large- 
spaced intensity gratings have anomalous signal intensities if 
additional intensity grating contributions are present. A good 
way to test for this effect is to measure the polarization ratio 
of a Q-branch transition with orthogonally polarized pump 
fields in the BB- or PC-DFWM phase matching geometry. If 
the polarization ratio is not unity, another process is likely to 
be contributing.i7 Rahn and Brown46 used similar polariza- 
tion techniques to determine that thermal gratings make sig- 
nificant contributions to OH spectra taken in atmospheric- 
pressure flames. If other gratings are determined to be 
contributing, the YXXY polarization configuration best dis- 
criminates against their contribution for all experimental 
conditions, but the YYXX and RRLL configurations are also 
good choices for Doppler-broadened systems with grating 
wash out because only small-spaced intensity gratings are 
present. 

E. Influence of hyperfine structure 

We conclude this discussion by considering systems in 
the homogeneously broadened limit, i.e., 2I’,,BAw,. Ex- 
periments performed in supercritical water47 that are charac- 
terized by high pressure (-218 atm) and relatively low tem- 
perature (-647 K) closely approximate this limit. In this 
limit Lf2( 0) = Lj2( 6.1) and LT2( 0) ~.Le3~( w) because the ab- 
sorbers are effectively relaxed before they have a chance to 
move, and thus neither the large- nor small-spaced gratings 
are washed out. Therefore, for homogeneously broadened 
systems Eq. (4) reduces to Eq. (8), and the results presented 
in Tables II and III apply. For a more precise evaluation of 
Eq. (4), Wandzura4* obtained analytic expressions for the 
line shape functions in this limit that can be used to calculate 
the DFWM polarization dependence. 

D. Other signal contributions 

The discussion above assumes that no other process con- 
tributes to the DFWM signal. For some experimental condi- 
tions, however, other types of laser-induced grating 
phenomenaa can coherently scatter light along the DFWM 

A full treatment considering the influence of hyperfine 
structure is possible,31*35 but the additional complexity re- 
quired to include such effects is not warranted2*55 for the 
conditions described in this paper, i.e., the spectroscopy of 
molecular systems in collisionally dominated environments. 
This conclusion can be justified by invoking the vector 
model of angular momenta. In the absence of collisions, the 
rotational angular momentum J couples to the nuclear angu- 
lar momentum I to form the total angular momentum F so 
that the prepared direction of J in the laboratory frame is lost 
to some degree (depolarized). This directional blurring obvi- 
ously influences the geometric factors related to the distribu- 
tion of J in the laboratory frame. If the magnitude of J is 
substantially larger than the magnitude of I (typically I takes 
values up to about 5/2), J and F will be close to parallel, and 
the hyperfine depolarization will be small. This condition is 
usually satisfied for DFWM spectra of molecular species in 
which the magnitude of J for the levels of interest is much 
larger than the magnitude of I. However, for low values of J 
(magnitudes of J close to or smaller than those of I), the 
hyperline depolarization can be significant. 
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If J is effectively decoupled from I by collisions, the 
hyperfine depolarization is small even for low J values. We 
used time-independent diagrammatic perturbation theory to 
derive the results of this paper, which implies that the results 
are valid for low-intensity, steady-state conditions in which 
population transfer is assumed to be small. Inherent in this 
approximation is the fact that the population relaxation and 
collisional dephasing times must be much shorter than the 
temporal duration of the laser pulse. These collisional times 
are typically much shorter than the precessional period of J 
about F (usually tens of nanoseconds or longer), which im- 
plies that hyperfine depolarization will not be significant for 
collisionally dominated systems. A quick experimental check 
is to determine if the hyperfine structure is spectrally re- 
solved in either the BB- or PC-DFWM (sub-Doppler) phase 
matching geometries. If it is not resolved, hyperline interac- 
tions will not significantly affect the results presented here. 
This conclusion follows because unresolved hyperline struc- 
ture suggests that the hyperfine splitting is small compared 
with the collisional broadening of the hyperfine components, 
which in turn implies that the precessional period of J about 
F is slow compared with the time it takes to collisionally 
decouple J from I. 
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The molecular levels are coupled by three input electric 
fields. The intensity of each electric field Ej(r,t) is given by 

Zj=~~~(/Ej(r,~)[2)=~ 1t%j/2, (16) 

where the angular brackets denote a cycle average and j is 
the field label, 6 is the permittivity of free space, c is the 
speed of light, and ~j is the scalar amplitude of the electric 
field. The result of the interaction of the three electric fields 
with the molecular sam 

P 
le is the generation of the third-order 

electric polarization PC3 (r,t). We note that many conventions 
are used for expressing Pc3)(r,t). Therefore, for clarity, we 
follow the convention of Butcher and Cotter62 throughout 
and write Pc3)(r,t) in SI units as 

Pc3)( r, t) = 3 Pgt!w,e -i(qt--k44+CaC.; 

where Pgt!wM is the vector amplitude, and @&& is the 
scalar amplitude, and e4 is the normalized ( e4 . 62 = 1) 
polarization vector. Pg&vM is defined in terms of the DFWM 
third-order nonlinear susceptibility ,$&w,( - w4 ,ot 40, ,-e+.) 
as 

III. INTERPRETATION OF THE DWM SIGNAL 
INTENSITY IN TERMS OF MULTIPOLE MOMENTS 

A. Derivation and general expressions 

In DFWM two molecular levels with total angular mo- 
mentum quantum numbers J, and J,, respectively, are 
coupled by the input fields. Describing the resulting coher- 
ence between these levels in terms of the total angular mo- 
mentum distribution is convenient. The most complete de- 
scription of the angular momentum distribution is in terms of 
state multipoles that represent the populations of the levels 
and the coherences existing between them.56’57 The state 
multipoles are spherical tensors of rank K and component 
Q( - KS QG K). The Q =0 components describe the projec- 
tion of J onto the space-fixed Z axis, and the Q#O compo- 
nents describe the projection of J onto the space-fixed XY 
plane. Here the monopole term (K=O) is proportional to the 
population. All odd rank multipoles (dipole, octopole, etc.) 
describe the orientation of the angular momentum, and all 
even rank multipoles (quadrupole, hexadecapole, etc.) are 
related to the alignment of the angular momentum. Below 
we show that the highest allowed value of K for unsaturated 
DFWM is 2. Therefore, we take the K=O, 1, and 2 terms to 
describe the (scalar) population, (dipolar) orientation, and 
(quadupolar) alignment, respectively. 

p(3) 
DFWM=EO LYDFWM (3) (-04,q,w3,- o,):E,E;Es. 

(18) 

where the symbol i refers to tensor contraction. The DFWM 
signal intensity is proportional to the cycle average of the 
absolute square of the third-order nonlinear polarization. In 
analogy with Eq. (16), the DFWM signal intensity is propor- 
tional to the absolute value squared of the scalar amplitude 
@f&, i.e., 

zDFWM=z4cc(lP(3)(r,t)12)=f l@&i&j2. (19) 

Therefore our concern is to calculate &&&, where 

We outline a method for calculating the third-order non- 
linear polarization for fully resonant DFWM of molecular 
gases in collisionally dominated environments. The expres- 
sions are derived using diagrammatic perturbation 
~eory40,41.58,59 

formalism.“*~*6’ 
and are evaluated using a spherical tensor 

The techniques used are standard; conse- 
quently, only the key elements of the derivation are pre- 
sented. In what follows beam propagation effects are ignored 
because it is assumed that the absorption of the incident 
beams is negligibly small. 

xX~~,(-W4,W,rW3,-W2)~,~~~ (20) 

and x&&,,( - w4 ,o, ,03 ,- w2) is the scalar form of the third- 
order susceptibility. (See Ref. 62, p. 27.) 

The significant contributions to the DFWM third-order 
nonlinear susceptibility are represented using double-sided 
Feynman diagrams in Fig. 3. Note that 16 diagrams are nec- 
essary to account for all of the time orderings that correspond 
to the energy-level diagram of Fig. 2. These diagrams repre- 
sent the following expression33 for ~~&w,( - 0, ,wi ,03 , - w2) 
in the perturbative (weak-field) limit 

1 
=6EOfL3rC(-W4rW,r~3r-W2) 

+c(-~4,~3,~*,-~2)1, (21) 

where 
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=N 
i 

c (gl~~.~le')(e'I~j.~lg')(g'I~~~~le> 
all M 

The first step in the evaluation is to recognize that the 
summation over projections onto the several degenerate sub- 
levels of the level n constitutes a single projection operator 
indicated by 

X(eI~i*PIg)(A-B1)+ C <e’Iej-PIg’) 
all M 

P’C ]n)(~l=l, (24) 
‘+f” 

which is scalar (tensor of rank 0). Substituting Eq. (24) into 
the first term of Eq. (22) gives 

z (gl&h (25) 
8 

and where 

A=(P;‘-P%[ wo-o+ki.V-ir,g] 

X[(ki-k2).V-irg,g][00-W+k4.~-ir,r,]}-’, 

(234 

&=(p$ -p~~)){[w0-co+k2~v+ir,,r] 

X[(ki-k2).v-ir8,g][wO-W+kq.v-ire,g]}-*, 

@W 

6=(@‘~4)(~ji’luj)(~‘c4?)(Ei.Ici), (26) 

and the energy-resonant denominators have been omitted for 
simplicity. The transition dipole moment operators p have 
been subscripted for bookkeeping. The tensor product in Eq. 
(26) has four dipole (rank 1) terms that can be organized in 
various ways to produce a tensor of rank 4. In DFWM, how- 
ever, the process initiates and terminates in the same level, 
denoted here as IanJnMn>, where M, is the projection of the 
total angular momentum J, (quantum number J,) on the 
space-fixed Z axis, and a, represents all other quantum~num- 
bers, i.e., electronic and vibrational. The only operator 0 that 
can connect the ket la,J,M,) to the bra ( anJnMnl is a sca- 
lar, c, i.e., 

X[(kj-b) 

and 

B,=(P,,,, ee (0) -p(o) 1. 

(234 

In Eq. (22), N is the total number of absorbers, the ket in) 
represents the total molecular wave function for the quantum 
level characterized by total angular momentum J,, fi is the 
electric dipole moment operator, and A, B1, B,, and B, rep- 
resent energy-resonant denominators. In Eqs. (23a)-(23d), 
pit) is the initial density matrix element for the magnetic 
sublevel M, of the level n and refers to the initial probability 
of the system being in that sublevel, fiwo is the energy dif- 
ference between the levels e and g, kj is the propagation 
vector of the field label j, v is the velocity vector of the 
absorbing molecule, and l?,, represents the total dephasing 
rate of the coherence between the magnetic sublevels M, 
and M,. 

We seek to evaluate Eqs. (21)-(23) using a spherical 
tensor formalism and to express the DFWM third-order non- 
linear polarization in terms of its multipole components. This 
method provides a well developed and efficient way of using 
the inherent symmetry of the system and enables dynamic 
and geometric factors to be separated from each other. The 
evaluation is similar to that of coherent LIF by Greene and 
Zare (GZ)2 with the exception that four photons are in- 
volved. This greater complexity, however, does not signifi- 
cantly increase the difficulty of solving the problem, which 
illustrates the power of the spherical tensor method. 

(a,J,Mnl~)lanJ,M,)=(anJnMnl~la,J,M,)=c (27) 

because any higher rank tensor will cause the matrix element 
to vanish. A tensor of rank zero can be formed by contracting 
tensors of higher and equal rank. For example two tensors of 
rank 1 (vectors) make a tensor of rank 0 by the vector dot 
product. Similarly, two vectors of rank two (quadntpoles) 
can also be contracted. Recall that Eq. (26) has four dipole 
(rank 1) terms that can be organized in various ways, for 
instance as a tensor product of three dipoles to form tensors 
up to rank 3 and a single dipole of rank 1. However, this 
tensor product cannot be contracted to form a scalar. There- 
fore, we organize Eq. (26) in terms of tensor products of two 
dipoles to form tensors up to rank 2 which can be contracted 
to give a scalar. The resulting expressions are readily inter- 
preted using the grating picture of DFWM. We note here, 
however, that higher-order tensors will contribute to the 
DFWM signal as the laser intensity approaches saturation. In 
a perturbative treatment, an increase in the laser intensity is 
accounted for by including higher order terms in the pertur- 
bative expansion, i.e., ,$, x7, ,$, es* f. These additional 
terms contain matrix element products with 6, 8, 10, a** n + 1 
factors and can form tensors up to rank (n + 1)/2. 

The spherical tensor convention adopted here is that of 
Zare.3 Below C9 refers to the tensor product and X refers to 
scalar multiplication. We begin by expressing the vector dot 
product involved in the electric dipole interaction in spheri- 
cal tensor notation: 

(E.Y)=-~[E(‘)~~u(‘)]~‘)=C (-l)Q,$l,:L, (28) 
Q 
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In Eqs. (28) and (29) each vector is written in terms of its 
spherical tensor components. See the Appendix. The product 
of two dipole terms is 

where the general expression for the scalar product is 

[P’@V(q”)=~ (- l)K-Q(2K+ 1)-“2T(pK)vY& 
Q 

(29) 

where the operators have been regrouped using the recou- 
pling transformation of four angular momenta. The summa- 
tion over K in Eq. (30) is from K =O to K=2 because the 
tensor product of two dipoles can form a scalar (the dot 
product), a vector (the cross product), or a tensor of rank 2. 
The factor in angular brackets is a recoupling coefficient and 
involves a 9-j symbol, three of whose arguments are zero. 
This coefficient has been evaluated [GZ Eq. (37)] and has the 
general form 

((KK’)K”(KK’)K”O((KK)O(K’K’)OO) 

=(2K+ l)-“‘(2K’+ 1)-t” (2K”+ 1)1’2. (31) 

The operator d defined in Fq. (26) can be represented 
using Eqs. (29)-(31) as 

6= 2 (2K-c 1)“2(2K’+ 1)“2[[[E4*(l)~,,~‘)](K) 
K.K’ 

~[r(Lk’)~‘ILL(,I)](K)](0)~,[E:(l)~E!l)](K’) 
3 t 

~.[~~~)~~(LI~)](K’)I(O)]~O), (32) 

and with one more recoupling transformation all of the po- 
larization factors can be grouped together. Performing this 
transformation gives 

6= c (2K+ 1)1’2(2K’+ 1)1’2 
K,K’.K” 

x((KK’)K”(KK’)K”O~(KK)O(K’K’)OO) 

X[[[k:‘I)~~~l)](K)~[E~(l)~E~l)](K’)](K”) 

8[[~~“8ELjl)]‘K)~[~:‘)~~~1)](K’)](K”)]~O) (33) 

which can be simplified using Eq. (31) and expanded in 

Williams, Zare, and Rahn: DRNM spectra. I. Weak-field limit 

terms of its tensor components by Eq. (29) to yield 

Equation (34) is the same as Eq. (39) of GZ for LIF with the 
important distinction that four different electric fields are in- 
volved. Recalling that only a scalar operator, i.e., a tensor of 
rank K”=O, can connect the ket ]LY,J,M,) to the bra 
( CY,J,M,I, we have K = K’ because only two tensors of 
equal rank can be contracted to form a scalar. Therefore, the 
summation over K, K’, and KN of Eq. (34) is replaced with a 
single summation over K. Substituting into Eq. (25) gives a 
key result, namely, 

~[~.ll)~~~l)](K)]bo)lagJgMg) , 
1 

(35) 

i 
where K can have values of 0, 1, and 2 (the range of K and 
K’), and the shorthand notation for the molecular wave func- 
tions In) has been replaced with I a,J,M,). Equation (35) 
displays the disentanglement of the geometric aspects (polar- 
ization tensors) of the problem from the dynamics (transition 
moment tensors) of the electric dipole interaction. 

The first factor of Eq. (35) represents the scalar contrac- 
tion of two polarization tensors to form a scalar and is es- 
sentially in its most fundamental form. The explicit evalua- 
tion of this factor is straightforward and is shown in the 
Appendix. The second factor of Eq. (35), on the other hand, 
can be reduced to a more fundamental form. Applying the 
Wigner-Eckart theorem [Ref. 3, Eq. (5.14)] yields after 
some simplification 

c (~,J,M,I[CCL~“~‘~~~I’~’ 
M, 

~‘C~~~‘)~.r~j’)](~)]~‘)la J M 88 L? ) 

=(2J,+ 1)1’2(~gJgll[[~~1)~~j1)](K) 

~[~~l)~~~‘)](K)](0)lla J ) I g g* (36) 

The last factor of Eq. (36) is the reduced matrix element of a 
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compound tensor operator and can be evaluated using the 
following relation [Ref. 3, Eq. (5.74)]: 

= ( CUJII[ T(~I)CZI ~(~2)](~)lld J’) 

where the term in curly brackets is a 6-j symbol. Applying 
Eq. (37) to (36) gives the following result after some simpli- 
fication: 

=(-1)K+Js(2K+1)1’2x c 2 (-1)3J 
nJ a’J’ a”J” 

x(: ; qJ; fg ;] c 

X(a,Jsll~kl)llcrtJt)(atJrll~~‘)ll”J) 

X( ~J~~~~‘)~~L~‘~J~‘)(~“J”~~~~‘)~~LY J ) I 8 g* (38) 

For fully resonant DFWM we have assumed that the excita- 
tion bandwidth is sufficiently narrow compared to the den- 
sity of states (including Doppler broadening) of the absorb- 
ing species so that the interaction is exclusively between the 
degenerate magnetic sublevels of the two levels involved in 
the one-photon resonant transition. Therefore, the electric di- 
pole operators in Eq. (38) can only connect J,++J,, i.e., 
J”--+J, , J--+J, , and J’+J, , and Eq. (38) simplifies to 

=(- 1)K(2K+ 1) 112( J; ) ;)’ 

Xl+ J e e Il~(‘)lb J >I” &?8 ’ (39) 

where the labels on the electric dipole moment operator have 
been dropped. The square of the reduced matrix element 
(cr,~,~Ip(l)JI~g~g) is the molecular line strength 
S( crgJ, ;cY,J,) of the gee transition, i.e., 

S@J, ;c.u,J,)=I(aeJ,(I~U(1)II~gJ,)12 

= I((Y~J~~~~~‘)II~,J,)~~. (40) 

Equation (40) is often expressed3 as 

SC a,J, ; (y,J,) = SQb$ J , 8e (41) 

where SJ” J is the strength of the ag+-+ LY, vibronic band (in 
many cas8ei simply the product of the Franck-Condon fac- 
tor(s) and the square of the electronic transition moment), 
and SJ” J is the rotational line strength (Honl-London fac- .ee 
tor). 

Equations (29), (35), and 
key result 

c (agJ,M,k%,J,M,) 
M8 

=I(aeJ,II~U(“lI~gJs>14C 
K 

K 

(39) are used to express the 

LJlf :g Jr]’ 
x c (- l)Q[Eq*(l)~~~l)]~)[EZ*(‘)~EI*)]~~. 

Q=-K 

(42) 

The first factor of Eq. (42) represents the dependence of the 
DFWM signal intensity on the dynamics of the electric di- 
pole interaction, i.e., the greater the line strength of the mo- 
lecular transition, the larger the DFWM signal intensity. The 
second factor of Eq. (42) represents the dependence of the 
DFWM signal intensity on the level degeneracies and the 
polarization vectors of the electric fields. 

The final step in the derivation of the macroscopic po- 
larization is to average over the initial molecular distribution. 
For an isotropic gas all of the magnetic sublevels of a given 
level are equally populated (pk: = pz’, ,>, and no phase rela- 
tion exists between levels. Therefore the average consists of 
integrating over the velocity distribution of the absorbing 
molecules, which is defined as follows: 

N= (43) 

In most experiments f(v) is the normalized Maxwell- 
Boltzmann velocity distribution. Using Eqs. (20)-(23), (42), 
and the identity 

[~“~,V(‘)]‘,K’=(-~)K[V(‘)~~(‘)]~) , (44 

the scalar amplitude of the macroscopic polarization be- 
comes 
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K 

x 2 ( - l)Q[ E,*% #]F)[ E,*(‘)B &)](_K 

Q=-K 

(45) 

where the line shape factors have the form 

I fW3u 1 1 

I 

1 
L’2(o*K)= [(kj-k2)‘V-iT,(K)] Oo-w+kj.V-iT,,]-[oo-w+k2.V+ireg] [oo-W+k4-v-iir,g] ’ (46) 

In Eq. (45), the K=O, 1, and 2 terms describe the (scalar) 
population, (dipolar) orientation, and (quadupolar) align- 
ment, respectively, and in Eq. (46) the phenomenological 
relaxation rates T,(K) of the spherical tensor representation 
have replaced the F,!, rates. The r,(K) are defined as fol- 
lows: F,(O) is the relaxation rate of the global population of 
the prth level, and F,( K = 1) and I?,( K = 2) are the relaxation 
rates of the molecular orientation and alignment of the nth 
level, respectively. Furthermore, we considered only colli- 
sional relaxation of the molecular system (no spontaneous 
emission), and we made the reasonable assumption that for a 
dipolar transition Fergt = Felg= Fcgt = Feg, i.e., that only 
one optical relaxation rate need be considered.63 

Equation (45) together with Eq. (46) represents the gen- 
eral solution to the DF?VM third-order polarization for mo- 
lecular systems (no hyperfine structure) excited by electric 
dipole radiation in the weak-field limit and can be evaluated 
explicitly for the phase matching geometry and polarization 
configuration of interest. Physically, the third-order DFWM 
polarization of Eq. (45) is interpreted as resulting from the 
contributions of four terms: the first term represents the con- 
tribution of the diffraction of wave 3 from a ground-state 
grating formed by fields 1 and 2, the second term represents 
the contribution of the diffraction of wave 3 from an excited- 
state grating formed by fields 1 and 2, the third term repre- 
sents the contribution of the diffraction of wave 1 from a 
ground-state grating formed by fields 3 and 2, and the fourth 
term represents the contribution of the diffraction of wave 1 
from an excited-state grating formed by fields 3 and 2. In 
addition the multipole components can be interpreted as 
ground- and excited-state population, orientation, alignment 
gratings for K =O, 1, and 2, respectively. This treatment dem- 
onstrates that in the most general case the DFWM signal 
may be regarded as arising from the contributions of twelve 
different gratings! The gratings can be distinguished by spac- 

ing (Ak,, or Ak,,), by the level in which the grating is 
formed (ground or excited), and by the multipole nature of 
the grating (population, orientation, or alignment). 

To complete our derivation, Eq. (45) is substituted into 
Eq. (19) to yield the expressionti for the DIVM signal in- 
tensity 

N, 1 ‘PgetJ, ,J,H4Mb 

+c L~~(w,K)G(J,,J~;K)F(E~,~I,~~,,E:!;K) 
K 

+c L92(0,K)G(JB,J,;K)F(~q,ej,~1,q;K 
K 

2 

+ c -&(wfW(J, ,J, ;KP(e,,g ,el ,EZ;W , 
K 

(47) 

where the following substitutions have been made: 

VJ,+ 1) 
Ng-(2J,+ 1) N,=N(2J,+ 1)(&j-pplp,)), (48) 

[B,,(J, ,J,)12= & [ 1 2 I(~,J,II~(L(1’ll~gJg)14 
(2J,+ 1)2 ’ (49) 

G(J,Jt;K)=(2Jg+l)(: ; ;i2, (50) 

and 
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1084 Williams, Zare, and Rahn: DFWM spectra. I. Weak-field limit 

TABLE IV. Analytic expressions for G(J,J’,K) = (25, + I){~{~,}’ as a 
function of transition type and K value. 

J’-J G(J,J’;O) G(J,J’; 1) G(J,J’;2) 

-1 gc?s] jq5$9] g-J++~,;~‘]~] 

O gs] i&iJ2GJ $-y:,-“]~] 

F(~~,q,q,q;K)= 2 (-l)Q[~q*(l)@+l)]~) 
Q=-K 

x[e,*(‘) 63 •y)]F~ . (50 

In Eq. (50) the G( J,J’,K) factors are simply 6-j symbols 
and depend only on K, J, , and J, . These values are listed in 
Table IV as a function of transition type. Conversely, the 
F(e4,ei ,~j ,q;K) factors of Eq. (51) depend on the field po- 
larizations but not on J, and J, . The polarization tensor 
products of Eq. (51) are evaluated in the Appendix, and the 
results for specific polarization cases treated in Sec. II are 
given in Table V. 

B. Equal relaxation of the multipole moments 

In Sec. II we assumed that the relaxation is isotropic and 
that all of the state multipoles relax at the same rate. For 
many experiments, population relaxation rates such as 
quenching are much larger than collisional rates that only 
perturb the magnetic sublevel distribution. Therefore, a 
single relaxation rate might be expected to characterize the 
nth level. Some experimental evidence supports this “single 
relaxation” assumption.‘7@ 

Under the “single relaxation” assumption the line shape 
factors of Eq. (46) become K independent and take the form 
of Eq. (7) of Sec. II A, i.e., Ly2( o,K)+L,?,(o). Removing 
the line shape factors from the summations of Eq. (47) gives 
the familiar expression of Eq. (2) with the total geometric 
factor G$(e4,,el ,e3,e2;Jg ,J, ;w) defined in terms of an ex- 
pansion in K as 

TABLE V. Analytic expressions for F(e, ,$ ,ej ,q ; K) = LX:= -K 
(.- l)Q[&') 8 +)I$Q[~;(') @ ei “I!!& as a function of polarization configu- 
ration and K value. 

RRRR l/3 l/2 l/6 
RLRL l/3 -l/2 l/6 
RRLL 0 0 1 
YYYY l/3 0 2l3 
YXYX l/3 0 -113 
YYXX 0 l/2 l/2 
YXXY 0 -l/Z l/2 

T 

Lf2b)C G(J, ,J, ;O?E~,E, ,e3,q;K) 
K 

+L;2(& G(J,,J, ;K)F(e+,a, .e3 ,E~;K) 
K 

+L32(& G(J,,J,;K)F(~4,4,e,,ei;K) 
K 

+L;2(& G(J,,J, ;K)F(~~,~,EI,E~;K) 
K 

=c G;'K)k4,4,,~3,e2;Jg rJe;w), 
K 

(52) 

where the dependence of the line shape factors on collisions 
and phase matching is the same as in Sec. II. Equation (52) 
reduces to Eq. (4) of Sec. II A because 

= “; :t ;]’ i (-l)Q[eq*(‘)Be~‘)]~) 

Q=-K 

x[ e;(1) @ ej.“]r”:, . (53) 

This identity is proven in Appendix A of Ref. 30. Equation 
(53) results from the fact the tirst four-photon matrix element 
product in Eq. (22) differs from the second product only in 
the ordering of the matrix elements. Because each matrix 
element is simply a complex number, it is immediately ob- 
vious that 

x(g14.Cclet). (54) 

Note, however, that the ordering of the angular momentum 
coupling is different for the two four-photon matrix element 
products of Eq. (54). From Eqs. (4), (52), and (53), the geo- 
metric factors are defined as 

=C G(J,,J,;K)F(~4,q,Ej,E2;K) 
K 

=C G(J,,J,;K)F(~4,~j,q,~2;K). (55) 
K 

Equation (55) was used to generate the results found in 
Tables I-III. 
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FIG. 5. Evaluated GrcK’( Y,Y,Y,Y;J, J, ;o) factors as a function of J, for 
(a) P-branch. (b) Q-branch, and (c) R-branch transitions. Permuting Xu Y 
does not change the plots. In the figure -A- and -Cl- correspond to K=O and 
2, respectively. 

The geometric factor GFCK’ k~,q,~+2;Jg ,J, ;w> of& 
(52) is interpreted as being proportional to the total contri- 
bution of the 2K multipole moment of the total angular mo- 
mentum distribution to the DFWM signal amplitude along 
e4. We have plotted the GFCK)(e4,9 ,e3,e22;Jg ,J, ;o) for ex- 
perimental conditions where Ly2( CO) = L&( o) and the upper 
and lower levels relax at the same rate, i.e., for the cases 
where the total geometric factor is decoupled from the colli- 
sional effects and phase matching geometry of the experi- 
ment. These results are shown in Figs. 5-8. Note that inher- 
ent in E!q. (52) is the assumption that the relaxation is 
isotropic and all of the state multipoles relax at the same rate. 
The conditions that Figs. 5-8 describe are very specific; 
however, the discussion presented below can be extended to 
most experiments. 

Figures 5 and 6 show the G~‘K’(~4,e,,~3,~2;J, ,J, ;w) 
values as a function of J, when the fields have identical 
polarizations, either linear (X or Y) or circular (R or L). 
According to the grating picture, interference of the grating- 
forming fields produces a spatial modulation of laser inten- 
sity with spacing given by Eq. (11). These intensity gratings 
are usually referred to as population gratings, but as can be 
seen in Figs. 5 and 6, the DFWM signal amplitude has sig- 
nificant contributions from higher-order moments. For in- 
stance, the population and alignment contributions to the 

(a) 1 
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J, 

FIG. 6. Evaluated GFCK)(Y,X,Y,X;J, .J, ;w) =GFCK’(Y,Y,X,X;J, ,J, ;o) 
= iG:CK)(R,R,R,R;J, J, ;o) factors as a function of J, for (a) P-branch, 
(b) Q-branch, and (c) R-branch transitions. Permuting X-Y or R++L does 
not change the plots. In the figure -A-, -0-, and -Cl- correspond to K=O, 1, 
and 2, respectively. 

DFWM signal amplitude for a Q-branch transition excited 
with linear polarized light [see Fig. 5(b)] are nearly equal! 
This and other effects can be understood by employing 
known concepts from linear spectroscopy to develop a quali- 
tative picture of DFWM. 

The first step is to recognize that, although the intensity 
is spatially modulated, the field polarization in these regions 
is preserved. Thus we can think of the initial isotropic distri- 
bution of absorbers interacting with polarized light in spa- 
tially distinct regions. For linearly polarized light, we would 
expect to create a spatial modulation of the population and 
alignment of the absorbers, i.e., population and alignment 
gratings. As shown in Fig. 5, only population and alignment 
gratings contribute. Likewise for circularly polarized light, 
we would expect to create a spatial modulation of the popu- 
lation, orientation, and alignment of the absorbers, i.e., popu- 
lation, orientation, and alignment gratings. Figure 6 shows 
that this expectation is indeed met. 

Another interesting case involves linear polarized light 
in which both pump fields have the same polarization but are 
orthogonally polarized with respect to the probe field (see 
Fig. 7). The interference produced in this case is spatially 
uniform in intensity but spatially modulated in polarization. 
This polarization grating is typically referred to as a coher- 
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PIG 7 Evaluated GFCK’( Y,X,X,Y;J, ,.I, ;o) factors as a function of J, for . . 
(a) P-branch, (b) Q-branch, and (c) R-branch transitions. Permuting XctY 
does not change the plots. In the figure -0-, and -Cl- correspond to K= 1 and 
2, respectively. 

ence grating because spatial population modulation does not 
exist. Under these circumstances only orientation and align- 
ment contributions are expected, as confirmed in Fig. 7. 

In Fig. 7 orientation gratings are found to dominate for 
A J= ? 1 transitions and alignment gratings dominate for 
AJ=O transitions. Furthermore, inspection of Figs. 6-8 
shows that this conclusion is generally true. This behavior 
can be understood, again, if we consider the interaction of an 
isotropic distribution of molecules interacting with polarized 
light. After the absorption of linearly polarized light the sys- 
tem will be aligned, and after the absorption of circularly 
polarized light the system will be oriented and aligned. 
Q-branch transitions are more easily aligned than oriented, 
and the opposite is true for P- and R-branch transitions. 

Finally, the most significant aspect of Figs. 5-8 is that 
the relative multipole moment contributions are very depen- 
dent on the value of J for low J values, but rapidly approach 
a high-J limit, i.e., for 524 the total geometric factor and its 
relative contributions are essentially independent of J. This 
behavior means that the J dependence of the DFWM signal 
intensity for a given branch (P, Q, or R) taken in a single 
polarization configuration will primarily reflect the J depen- 
dence of the one-photon absorption coefficient B,, as well as 
any J-dependent relaxation effects. Molecules are often in 
the high-J limit, especially at flame and plasma temperatures 

-0.05- c K=I , 

-0.10~. 7J 
0.15 

0.10 
= K=O 
6 0.05 

p: 0.00 

-0.05 

-0.10 
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J, 

PIG. 8. Evaluated G ;cK)(R,L,R,L;J, ,J, ;w)=G;(~)(R,R,L,L;J, .J, ;o) 
factors as a function of J8 for (a) P-branch, (b) Q-branch, and (c) R-branch 
transitions. Permuting R-L does not change the plots. In the figure -A-, 
-O-, and -Cl- correspond to K=O, 1, and 2, respectively. 

at which J values ranging from 5 to 50 are typically popu- 
lated. 

C. Unequal relaxation of the multipole moments 

We have assumed thus far that the multipole moments 
relax at equal rates, which is a good approximation in flame 
experiments where efficient energy transfer collision part- 
ners, such as water, are present. We have recently dbserved65 
experimental conditions for which these rates are not the 
same, particularly for low values of J, in collisional environ- 
ments in which light species such as helium are the dominant 
collision partners. Such species have slow inelastic colli- 
sional rates (quenching) compared with elastic collisional 
rates (disorienting). The presence of unequal relaxation can 
be determined by polarization-ratio measurements.‘7@ 

In the event that the multipole moments of the angular 
momentum distribution do not relax equally, the expressions 
for the DFWM signal intensity presented in Sec. II do not 
apply. If the relaxation is isotropic, however, the multipole 
moments relax independently, and the expressions presented 
in Sec. III A are valid. The effects of unequal relaxation has 
been discussed by Ducloy and Bloch3’ and is the topic of a 
future publication.65 Finally, if the relaxation is anisotropic, 
for example, the gas is in a static electric or magnetic field, 
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then the situation is considerably more complicated.34*56 
Note, however, that the interpretation of DFWM signal in- 
tensities at this level of detail is not necessary for most ap- 
plications. 

IV. COMPARISON WITH PREVIOUS WORK 

In what follows we attempt to place our work in the 
context of previous perturbative theoretical treatments of 
DFWM. Lam and Abrams (LA)29 were among the first to 
describe the polarization effects for a degenerate two-level 
system. They used a density matrix approach to express the 
DFWM response as a summation of matrix element products 
that represented different coherences corresponding to con- 
tributions from normal population, cross-population, and 
Zeeman coherence mechanisms. Although this model pro- 
vides an intuitive picture for the origin of the DFWM polar- 
ization effects, its application depends on the coordinate sys- 
tem chosen. This coordinate-frame dependence also makes 
the inclusion of collisional relaxation difficult, and LA ac- 
knowledged that an accurate description of the DFWM col- 
lisional effects in systems with degenerate sublevels necessi- 
tates the introduction of the irreducible (spherical tensor) 
representation of the density matrix.56’57 

Such an approach was presented by Ducloy and Bloch 
(DB),“’ who discussed the DFWM response in terms of its 
irreducible tensor components. In their tensorial density ma- 
trix treatment, DB considered the degeneracy of the resonant 
levels, unequal relaxation of the magnetic sublevels, sponta- 
neous emission (optical pumping), thermal motion, and the 
effect of pump-probe angular separation (noncollinear ge- 
ometries). In later papers Berman, Steel, Khitrova, and Liu 
(BSKL)“’ and Alekseev3’ derived similar expressions that 
also included the effects of hyperfine structure. Together the 
work of DB, BSKL, and Alekseev illustrates the fundamental 
aspects of DFWM in the perturbative regime and represents 
general solutions of the problem. Unfortunately these studies 
have not been available to most experimentalists because the 
final results, expressed in density matrix notation, are quite 
complicated. Recently Kupiszewska and Whitaker (KW)38 
addressed this problem by specializing the treatment of 
BSKL to stationary diatomic molecules described by Hund’s 
case (a) coupling with no hyperline structure. The simplified 
expressions presented by KW provide some insight into the 
polarization effects in DFWM for molecular systems; how- 
ever, the specialization of the treatment necessarily limits the 
applicability of the results. 

An alternative approach to interpret DFWM signal inten- 
sities is to use diagrammatic perturbation theory (double- 
sided Feynman diagrams) to evaluate the DFWM polariza- 
tion and collisional effects.40*41*58 The diagrammatic method 
is equivalent to the density matrix formalism but has the 
advantage that the third-order nonlinear polarization can be 
evaluated directly without the need to calculate lower-order 
processes. Using diagrammatic methods, Attal-Tretout, 
Monot, and Miiller-Dethlefs (TMD)33 and Aben, Ubachs, 
van der Zwan, and Hogervorst (AUZH)36 have derived ex- 
pressions for resonant CARS spectroscopy. This work fo- 
cused on obtaining four-wave mixing line strength factors for 
diatomic molecules (omitting nuclear spin) to be used di- 

rectly in the analysis of experimental signal intensities. Both 
TMD and AUZH note that the CARS expressions could be 
extended to describe DFWM, i.e., fully resonant CARS. We 
noted in Sec. II that the line strength factors themselves are 
dependent on the relaxation caused by the environment and 
not just angular momentum considerations. Consequently, 
this suggestion is correct only with qualification. 

The general CARS expressions involve four distinct fre- 
quencies wl, ~2, 03, and WI, and four independent states 
Ia), lb), Ic), Id) 0 a e e b 1 d a, n, b, n’ in TMD and a, b, c, d 
in AUZH). In the fully resonant case, wt =02= %=04=o, 
and the four independent states converge to four distinct 
magnetic sublevels, i.e., Iu)--+lg), lb)-Ie), Ic)--+lg’), and 
Id) = le’). This mapping leads to the inclusion of eight dia- 
grams (eight more if N,#O) and four distinct resonant four- 
photon matrix element products, namely, 

C (~l~~~Ccl~‘)(~‘I~3~)ulg’)(g’I~~~Ccl~)(~l~~~~l~)~ 
all h4 

t56b) 

C (~l~~~lul~‘)(~‘I~~~~l~‘~(~‘I~~~Ccl~)(~l~3~Jlcl~~~ 
all M  

(564 

and 

(564 

Equations (56a) and (56b) have the same value when 
summed over all M, but the ordering of the angular momen- 
tum coupling is different, and thus they represent different 
contributions from the zeroth, first, and second rank multi- 
pole moments. The same is true for Eqs. (56~) and (56d). 
The proper accounting of the multipole moment contribu- 
tions, to our knowledge, has not been done using diagram- 
matic perturbation theory but has been done using density 
matrix approaches.30*31’38 In addition Eqs. (56a) and (56~) 
appear quite similar, but have distinctly different values even 
when summed over all M, and the same is true for Eqs. (56b) 
and (56d). Therefore care must be taken in extending CARS 
expressions to DFWM. 

Bervas, Le Boiteux, Labrunie, Attal-T&out (BBLT)37 
and Freidman-Hill, Rahn, and Farrow (HRF)39 recently re- 
duced the CARS expressions to apply to DFWM. The ex- 
pressions of BBLT contradict our results for BB- and PC- 
DFWM but agree fortuitously with our results for FB- 
DFWM. We offer the following explanation for these results. 
In Fig. 4 of BBLT, diagrams (a)-(d) describe the primary 
contributions to BB- and, PC-DFWM in the Doppler- 
broadened limit, and diagrams (a)-(h) describe the primarily 
contributions to FB-DFWM. Because BBLT do not distin- 
guish between g and g’ or e and e’, all of the diagrams 
appear to be represented by the same matrix element prod- 
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1088 Williams, Zare, and Rahn: DFWM spectra. I. Weak-field limit 

uct, namely Eq. (8) of BBLT. Diagrams (a) and (c) of BBLT 
Fig. 4 correspond to our Eq. (56a), diagrams (b) and (d) of 
BBLT Fig. 4 correspond to our Eq. (56d), diagrams (e) and 
(g) of BBLT Fig. 4 correspond to our Eq. (56c), and dia- 
grams (f) and (h) of BBLT Fig. 4 correspond to our Eq. 
(56b). In terms of the notation developed in this paper, the 
result of BBLT predicts the following proportionality for the 
BB- and PC-DFWM signal intensity: 

zBB,PCCCIGF(g44,g1rg3,g22;Jg,Je)[L~2(W)+Lq2(0)11*, 
(574 

which is independent of the difference in the relaxation rates 
of the g and e levels for all polarization configurations, 
whereas our treatment predicts that 

taneous emission, and in most circumstances unequal relax- 
ation of the multipole moments of the angular momentum 
distribution can be neglected so that relatively simple expres- 
sions are obtained without unnecessarily trivializing the 
treatment. Thus we have attempted to combine the best as- 
pects of the two approaches by presenting analytic expres- 
sions with the relevant collision, velocity, and polarization 
considerations for the most-utilized experimental configura- 
tions. These expressions can be used directly in the evalua- 
tion of DFWM spectra for these specific cases. Finally, the 
polarization tensor products evaluated in the Appendix can 
be used to extend the general expressions of Sec. III A to 
other experimental geometries of interest. 

b,eIG&,,Q1 ,g3vq2;Jg ,J,Wf,(o) 

+GF(g4,g3,g,,g2;Jg,Je)L~Z(w)12, W’b) 
which is dependent on the relative relaxation rates of the g 
and e levels whenever the two geometric factors differ (see 
Sec. II). Furthermore, our result, Eq. (57b), agrees with Eq. 
(45) of DB derived using a density matrix approach and ex- 
perimental DFWM polarization ratios obtained in our labo- 
ratory for the CH radical.17 The expressions for FB-DFWM 
presented by BBLT agree with our results because 
Lf2(o)=L&(0) and L;~(w)=L;~(w). In our notation, 
BBLT predict the following proportionality for the FB- 
DFWM signal intensity: 

The above results were derived in the weak-field (no 
saturation) limit. An appealing aspect of DFWM is that in the 
saturation regime, the DFWM signal intensity becomes rela- 
tively insensitive to the specific value of the relaxation 
rates.“‘28 In this regime, the problem of extracting relative 
population distributions essentially reduces to knowing the 
absorption coefficients. This aspect is discussed in detail in 
WZR2. 

V. CONCLUSIONS 

+GF(g4,gq,g1,g2;Jg,Je)[L92(W)+Lj2(0)112, 
684 

which is equivalent to our result 

+GF(g44,g3,g1,g2;Jg,Je)[LS2(0)+L92(0)11*, 
6W 

In the present paper we derived expressions via time- 
independent diagrammatic perturbation theory that account 
for the DFWM polarization, collisional, and velocity effects 
in the weak-field limit (no saturation). In our treatment, we 
assumed that the DFWM process couples levels of sharp 
(definite) angular momentum J. Three input fields of arbi- 
trary polarization interact with an isotropic sample to pro- 
duce a fourth field. The general result (Sec. III) was special- 
ized to apply to circularly and linearly polarized fields that 
interact in nearly collinear phase matching geometries in col- 
lisional environments where the multipole moments of the 
total angular momentum distribution relax independently 
(isotropic relaxation) and at the same rate. These specialized 
expressions (Sec. II) generally apply to DFWM experiments 
performed in collisionally dominated environments. 

when Lf2( w) =Lj2( 0) and Lf,( 0) = L;,( w). HRF consid- 
ered three-level or “crossover” resonances that occur when 
two transitions that share a common level become resonant 
because of a simultaneous Doppler shift. HRF show that 
crossover resonances can influence DFWM signal intensities 
even if they are not spectroscopically resolved from their 
parent transitions. Such considerations could be important in 
spectrally congested regions with overlapping branches. 

In summary, the work to date can be classified in two 
categories: first, density matrix approaches that emphasize 
the complex relation between polarization, collisional relax- 
ation, and phase matching at the expense of simplicity; and 
second, diagrammatic approaches that focus on expressing 
the polarization effects (without specifying multipole contri- 
butions) analytically while treating relaxation effects super- 
ficially. The emphasis of this paper has been on the key 
aspects of interpreting molecular DFWM spectra in colli- 
sionally dominated environments because these types of ex- 
periments are those for which DFWM has found the largest 
application. In these experiments, hyperfine structure, spon- 

In Sec. II we showed that the DFWM signal intensity for 
collisionally dominated systems is proportional to the square 
of the concentration difference of the levels involved in the 
one-photon resonant transition, the fourth power of the one- 
photon transition strength, the square of a total line shape 
function, and the square of the total geometric factor. The 
total geometric factor was shown to depend not only on the 
polarization of the input fields but also on the specifics of the 
experiment, i.e., collisional relaxation, velocity, and phase 
matching. This interdependence complicated the interpreta- 
tion of the DFWM polarization response but also enabled 
qualitative information about the collisional relaxation 
caused by the environment to be obtained from polarization 
measurements. 

Finally in Sec. III, we showed that in the most general 
case the DFWM signal may be regarded as arising from the 
contributions of 12 different gratings. These gratings are dis- 
tinguished by spacing (Ak,, or Ak,,), by the level in which 
the grating is formed (ground or excited), and by the multi- 
pole nature of the grating (population, orientation, or align- 
ment). Therefore, simple population vs coherence grating 
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pictures of DFWM are not adequate descriptions. For in- 
stance, DFWM experiments in which all fields are the same 
polarization (either linear or circular) have contributions (in 
addition to population) from higher-order moments of the 
total angular momentum distribution, namely, alignment for 
linear, and orientation and alignment for circular. We also 
showed that the relative multipole moment contributions de- 
pend strongly on J for low J values but rapidly approach a 
high-J limit. In this limit the J dependence of the DFWM 
signal intensity for a given branch (P, Q, or R) taken with a 
single polarization configuration primarily reflects the J de- 
pendence of the one-photon absorption coefficient B,, as 
well as any J-dependent relaxation effects. 

We have discussed the key aspects of DFWM in refer- 
ence to molecular species in collisionally dominated environ- 
ments. We presented explicit expressions for the DFWM sig- 
nal intensity that can be used with molecular absorption and 
relaxation data to obtain the relative population distributions. 
Absorption data in the form of cross sections, line strengths, 
emission coefficients, etc., are available for most molecules 
of interest. However, obtaining an accurate and complete set 
of relaxation rates for a given molecule in a specific environ- 
ment is a formidable task. 
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APPENDIX: CALCULATION OF THE POLARIZATION 
TENSOR PRODUCTS 

In this Appendix we establish the notation used for ex- 
pressing the polarization unit vectors and evaluate the polar- 
ization tensor products necessary to calculate the DFWM 
signal intensity for experimental configurations not treated in 
the text. In what follows, we rely on the definitions of sym- 
bols already introduced. 

An arbitrary vector r can be expressed in Cartesian co- 
ordinates as 

r= r,e, + rye! + r,e, , (Al) 
and its complex conjugate r* as 

r*=r:e,+r*e +r*e y-v ZZ’ 642) 

where e, , eY , and e, are unit vectors and rX, r,, , and rZ are 
the standard Cartesian components of the vector r. The con- 
ventions for relating the unit vectors and the standard com- 
ponents of the Cartesian (real) basis to the spherical tensor 
(complex) basis are defined as follows: 

ezI= T$ (e,rtie,), e0=e,, (A3) 
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and 

r(,‘l=T-& (r,+ir,), rbl)==rz. (A4) 

It follows that 

e,*=(-l)qe-q, eq-e,*,=~qqt, (A5) 

and 

(r*)F)=(-l)q[rF{]* (A@ 

where q =0, 2 1. Equations (A3) and (A4) in turn define the 
conventions for relating the unit vectors and the standard 
components of the spherical tensor basis to the Cartesian 
basis, i.e., 

1 
ex=-z e+l ( -e-,), e =-!- (e+,+e-l), 

y tpz e,=%, 

(A7) 

and 

1 
r,=-- (ry{--rrti), 

v2 
r =L (r$!l+r(f{), 

y v2 

rz=r6’), 648) 

Consequently, we have for the Cartesian basis 

ep*=ep, ep-ept pp~, *=a (A9) 

and 

(r*)p=[rpl*~ (AlO) 
where p =x,y,z. Therefore adopting the standard definitions, 
we are left with the conclusion of expressing an arbitrary 
vector r and its complex conjugate r* in the spherical tensor 
basis as 

r=r!lleT,+rb’)e,*+r(_flei, (All) 

and 

r*=[r~l]*e+,+[r~)]*eo+[r?l]*e-l. 6412) 

Hence we can express an orthonormal set of unit vectors 
gj in a generalized notation as 

Ej=C (Ej)$!T, t$=(tZj)*=~ [(Ej)i]*ei, 
i i 

4 ’ go = Sij 1 
(A13) 

where the standard components of the unit vectors are de- 
fined as 

(CYj)i=Ej*ei, [(Ej)i]*=E~*e*, ($)i=$*ei. 
(Al4) 

Special care must be taken in interpreting Eq. (A14). We take 
(gj)j>i to represent the i component of the unit vector gj, 
[(gj)i] * to represent the complex conjugate of the i compo- 
nent of the unit vector gj, and ($)i to represent the i com- 
ponent of the complex conjugate of the unit vector gj, i.e., 
q. 
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For light in a pure state of arbitrary polarization propa- 
gating along the space-fixed Z axis (such a choice is always 
possible), its polarization unit vector and its complex conju- 
gate may be represented by 

~j=COS C$jie,+e’*j sin (bjie, 

=~ [COS ~jj- ie’3 sin #j]e*_, 

--& [COS c#Jj+iieisi sin c$j]ez, (Al% 

and 

$=COS $jie,+e-'*j sin +jjey 

=--& [COS +j-it?-‘3 sin (bj]C?*_, 

-$ [COS c$j+ie-“j sin 4j]eT,, 6416) 

where ~j ranges from 0 to rr and 4 is the phase necessary to 
describe elliptical polarization. Reference to Eqs. (A13)- 
(~16) shows that 

(~j)+=COS ~j f (,~),=COS ~j) 

(Ej)y=ei8j sin 4, (e~)r=e-“j Sin ~jj, 

1 
(S)!‘l=--[COS c$j+ie”j sin ~j], v2 

(t$)$!~=--& [COS +j+if?-“j sin ~j], 

1 
(Ej)(_l)=- [COS 4j- ie’5 sin ~j], 

’ v2 

(t$)?~=& [COS +j-iie-“j sin ~j]. (A171 

For completeness we define left circularly polarized light66 
(~~=lrl4, S,=d2) as 

1 
q=z (e,+ie,)=e*_, , w4 

I 

right circularly polarized light (&=5~/4, &= -r/2) as 

I 
ERR=-3 (e,-ie,)=er,, 6419) 

and light of arbitrary linear polarization (4 = 0) as 

q=COS c$jie,+SiIl ~je,=~[e-‘~je*l-e’~je*,I]. 

WO) 
The polarization tensors of Eq. (51) in the text are ex- 

panded and expressed in the spherical tensor basis as 

F(QvEirEjTc2;K) 

=QTq, (-1)Q(2K+1)(~)(_‘~(ej)b’!Q(~)~~, 

.  9 

11 K 
-Q 

6421) 

where the terms in parenthesis are 3-j symbols. The polar- 
ization tensors in the Cartesian basis are readily worked out 
using Eq. (A4) and (A21). The resulting expression does not 
have a compact form, so the polarization tensors are pre- 
sented for each value of K, i.e., 

Ft&,~~,rj,~22O)=;{[(~~:)X(~j)*+t~L)yt~j)j, 

+(C),(Ej),lI:(~),(Ei),+ tEZL)y(S)y 

+(@)z(S)zl19 (A22a) 

F(E4,Ei,Ej$E2;1) 

F(e4,eivejve2;21Ek {[2(~4*),(~j),-(C),(~j>,-(8>,(~j),I[2(~~2*),(~ii),-(~‘>,(S>,-(~2*>,(~i),I}+ f {[(G’>z(ej>x 
+~@>~~~ji)~l~~~;)~~~ii)x+~~~2*)x~~ii)~l+C~~~~~~j~y+~~T)y~~j~~l~~~~~~Ei~y+~~~2*)y~Ei~zl 
+[(~)*(~ji),-(~),(q),lC(~~z*)x(4),-(~),(q),l+[(~),(q),+(~:),(q),l 
X[($),(~ii>r+(~~2*)r(~i)~l}. (A22c) 

Equations (A21) and (A22) can be used to obtain the DFWM signal intensity along e4, i.e., the DFWM signal direction. It is 
often possible to predict the direction of 4 by invoking symmetry arguments of x (3) 62 These equations also apply for polarized . 
detection in which case eq is the polarization axis of the DFWM detector. 

For experiments in which it is difficult to predict the DFWM signal direction by symmetry arguments or for unpolarized 
detection, it is more useful to express the DFWM signal intensity in terms of its components. Rewriting the DFWM signal 
intensity of Eq. (19) in Set III A in terms of the components of the generalized basis of orthonormal unit vectors defined by 
Eqs. (A13) and (A14) yields 
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IDrrM-(IP’3’(r,r)12)=~ c l@j3)12 i 
where .~j3’ is the scalar amplitude of the j component of Pc3)(r,t) and is defined as 

.+‘=Pg&$. 6. 

Equation (A24) can be rewritten using the notation of Eqs. (45)-(51) as 

6423) 

w4) 

Ne [Bge(Jg,Je)12g~Gg3 1 C L~,(~,K)G(J,,J,;K)F(~~,~,~~,E~;K) 
K 

+C LF,(o,K)G(J,,J,;K)F(Ej,E,,~~,q;K)+C L~,(w,K)G(J,,J,;K)F(~j,~3,Q,,~2;K) 
K K 

+C ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1 
K I 

6425) 

I 

where all of the terms have their previous meanings. 
Equation (A25) can also be expressed in terms of its 

standard components. In the spherical tensor basis Ej = e: , 
and the polarization tensors in Eq. (A25) take on the form 

F(e,*,q,gj,+;K) 
K 

= c (- l)Q[ek’)~~l)]~)[~(‘)sell)]~K~. (A26) 
Q=-K 

Substitution of (e,)(li,, = eq . emqPt = ( - l)qS,,,, into Eq. 
(A2 1) gives 

1 1 K 1 

i( 

1 K 
X 

-4 q+Q -Q -4' q’-Q Q 6427) 

which can be used in Eq. (A25) to generate the expression 
for the scalar amplitude of the q component of the nonlinear 
polarization Pf3)(r,t). The resulting expression is equivalent 
to Eqs. (33) and (34) of Ref. 30 derived using a density 
matrix approach in the weak-field limit. In the Cartesian ba- 
sis ~j = e; , and substitution of (eJP~~=eP.eP~~= &,” into Eq. 
(A22) for p = 4’ gives the Y component of the polarization 
tensors as a function of K, namely, 

(A28a) 

(A28b) 

and 

x(gii)ylI+ S {[(gj>,(~~),(gi>r+(gj),(g~>rtgi),l 

x(g~2*>,(gi>,+(gj),(g2*)y(gii)xl}. (A28c) 

The X and Z components are readily evaluated by reiterating 
the procedure for p =x and z, respectively. 

For the near collinear phase matching geometries and 
pure polarization states described in this paper, only one 
standard component is nonzero. This result can be verified by 
substituting the polarizations of the input fields E, , E2, and 
E3 into Eqs. (A27) and (A28) using the definitions of Eqs. 
(A18) and (A19) for circularly polarized light and Eq. (A20) 
for ~j=O and ~j=~l2 linearly polarized light. These substi- 
tutions yield the results presented in Table V. For noncol- 
linear phase matching geometries, mixed polarization states, 
or both, all of the components must be determined. 

The above expressions refer to the standard components 
of the electric fields when all the fields are defined with 
respect to a common reference frame. For example, in the 
case of noncollinear phase matching geometries, all the fields 
must be rotated into a common frame of reference (we sug- 
gest the detection frame) before the standard components can 
be determined. Such frame rotations are readily carried out in 
the spherical tensor basis using Wigner rotation matrices or 
in the Cartesian basis using direction cosine matrices. For 
more information on this topic, see Ref. 3, Chap. 3. 

‘D.A. Case, G. M. McClelland, and D. R. Herschbach, Mol. Phys. 35, 541 
(1978). 

*C. H. Greene and R. N. Zare, J. Chem. Phys. 78, 6741 (1983). 
3R. N. Zare, Angular Momentum (Wiley, New York, 1988). 
4D. R. Crosley, Opt. Eng. 20, 511 (1981). 
‘A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Spe- 

cies (Abacus, Cambridge, MA, 1988). 
6K. J. Rensberger, J. B. Jeffries, R. A. Copeland, K. Kohse-Hoinghaus, M. 

L. Wise and D. R. Crosley, Appl. Opt. 28, 3556 (1989). 
7R. P Lucht and N. M. Laurendeau, Appl. Opt. 18,856 (1979); R. P. Lucht, 

J. Chem. Phys., Vol. 101, No. 2, 15 July 1994 
Downloaded 09 Feb 2010 to 171.64.124.75. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



1092 Williams, Zare, and Rahn: DFWM spectra. I. Weak-field limit 

D. W. Sweeney, and N. M. Laurendeau, ibid. 19, 3295 (1980). 
*R. Altkom and R. N. Zare, Annu. Rev. Phys. Chem. 35, 265 (1984). 
9N. Billy, B. Guard, G. Gouedard, and J. Vigu6, Mol. Phys. 61, 65 (1987). 

‘OR. L. Abrams, J. F. Lam, R. C. Lind, D. G. Steel, and P F. Liao, in Optical 
Phase Conjugation, edited by R. A. Fisher (Academic, New York, 1983). 
Chap. 8. 

**R. L. Farrow and D. J. Rakestraw, Science 257, 1894 (1992). 
‘*R. L. Abrams and R. C. Lind, Opt. Len. 2, 94 (1978); 3, 205(E) (1978). 
13R. L. Farrow, D. J. Rakestraw, and T. Dreier, J. Opt. Sot. Am. B 9, 1770 

(1992); T. Dreier and D. J. Rakestraw, Appl. Phys. B 50, 479 (1990); T. 
Dreier and D. J. Rakestraw, Opt. Lett. 15, 72 (1990). 

14M. Winter and P P. Radi, Opt. L&t. 17, 320 (1992). 
isB. Yip, P M. Danehy and R. K. Hanson, Opt. Lett. 17, 751 (1992). 
16S. Williams, D. S. Green, S. Sethuraman, and R. N. Zare, J. Am. Chem. 

Sot. 114, 9122 (1992); T. G. Owano, C. H. Kruger, D. S. Green, S. 
Williams, and R. N. Zare, Diamond Relat. Mat. 2, 661 (1993); D. S. 
Green, T. G. Owano, S. Williams, D. G. Goodwin, R. N. Zare, and C. H. 
Kruger, Science 259, 1726 (1993). 

“S. Williams, R. N. Zare, and L. A. Rahn, J. Chem. Phys. 101, 1093 (1994). 
‘*D. R. Meacher, A. Charlton, P. Ewart, J. Cooper, and G. Alber, Phys. Rev. 

A 42.3018 (1990); J. Cooper, A. Charlton, D. R. Meacher, P Ewart, and 
G. Alber, ibid. 40,5705 (1989); G. Alber, J. Cooper, and P Ewart, ibid. 31, 
2344 (1985). 

19D. Bloch and M. Ducloy, J. Opt. Sot. Am. 73, 635 (1983); 73, 1844(E) 
(1983). 

2oG. G. Adonts and D. G. Akopyan, J. Phys. B 18, 3407 (1985). 
“M. Ducloy, E A. M. de Oliveira, and D. Bloch, Phys. Rev. A 32, 1614 

(1985). 
**S Le Boiteux, P. Simoneau, D. Bloch, F. A. M. de Oliveira, and M. 

I&cloy, IEEE J. Quantum Electron. QE-22, 1229 (1986). 
23G. P. Agrawal, Opt. Lea. 8, 359 (1983). 
uG. Grynberg, M. Pinard, and P Verkerk, Opt. Commun. 50, 261 (1984). 
=M. Pinard, B. Kleinmann, and G. Grynberg, Opt. Commun. 51, 281 

(1984). 
%G. Grynberg, M. Pinard, and P Verkerk, J. Phys. (Paris) 47, 617 (1986). 
*‘P. Verkerk, M. Pinard, and G. Grynberg, Phys. Rev. A 35 (1987). 
zsR. P. Lucht, R.L. Farrow, and D. J. Rakestraw, J. Opt. Sot. Am. B 10, 

1508 (1993). 
29J. E Lam and R. L. Abrams, Phys. Rev. A 26, 1539 (1982). 
MM. Ducloy and D. Bloch, Phys. Rev. A 30, 3107 (1984). 
3’P. R. Berman, D. G. Steel, G. Khitrova, and J. Liu, Phys. Rev. A 38, 252 

(1988). 
32F. Aguillion, IEEE J. Quantum Electron. QE-25, 1947 (1989). 
33B. Attal-T&tout, P Mono& and K. Miiller-Dethlefs, Mol. Phys. 73, 1257 

(1991); B. Attal-T&tout and K. Miiller-Dethlefs, Ber. Bunsenges. Phys. 
Chem. 89, 318 (1985). 

34A. A. Panteleev, Sov. Phys. JETP 72, 939 (1991). 
3J A. I. Alekseev, Sov. Phys. JETP 74, 227 (1992). 
361. Aben, W. Ubachs, G. van der Zwan, and W. Hogetvorst, Chem. Phys. 

169, 113 (1993). 
37H. Bervas, S. IX Boiteux, L. Labrunie, and B. Anal-T&out, Mol. Phys. 

79, 911 (1993). 
38D. Kupiszewska and B. J. Whitaker, J. Chem. Sot. Faraday Trans. 89, 

2951 (1993). 
“E. Freidman-Hill, L. A. Rahn, and R. L. Farrow, J. Chem. Phys. (in press). 

4oS. A. J. Druet and J.-P E. Taran, Prog. Quantum Electron. 7, 1 (1981). 
4’ Y. Prior, IEEE J. Quantum Electron. QE-20, 37 (1984). 
42R. C. Hilbom, Am. J. Phys. 50, 982 (1982). 
43M. Ducloy and D. Bloch, J. Phys. (Paris) 42, 711 (1981). 
44H. J. Eichler, P. Giinter and D. W. Pohl, Laser-Induced Dynamic Gratings 

(Springer, Berlin, 1986). 
451n laser-induced grating phenomena molecular diffusion will fill the grat- 

ing nulls and will deplete the peaks, i.e., cause wash out. In general the 
entire molecular velocity distribution along the grating k-vector contrib- 
utes. This effect is discussed in T. S. Rose, W. L. Wilson, G. WEkerle, 
and M. D. Fayer, J. Chem. Phys. 86, 5370 (1987). In DFWM, however, 
the counterpropagating pump fields insure that only the sub-Doppler pro- 
jection of the molecular velocity distribution on the grating k-vector con- 
tributes. Because both the grating spacing and the velocity projection in- 
crease as llsin(W2). the large- and small-spaced gratings wash out to the 
same degree in the infinite Doppler limit. If the Doppler width is finite, 
however, the projection along the large-spaced grating’s k vector is finite, 
and it will be washed out to a lesser degree. 

&L. A. Rahn and M. S. Brown, Opt. Lett. (in press). 
47J. W. Tester, H. R. Holgate, E J. Armellini, P. A. Webley, W. R. Killilea, G. 

T. Hong, and H. E. Banter, in Emerging Technologies in Hazardous Waste 
Management ZIZ, edited by D. W. Tedder and F. G. Pohland (American 
Chemical Society, Washington D.C., 1993), Chap. 3. 

48S. M. Wandzura, Opt. Lett. 4, 208 (1979). 
49P H Paul R. L. Farrow, and P M. Dam&y, in preparation. 
5oS~ Williams, L. A. Rahn, P. H. Paul, J. W. Forsman, and R. N. Zare, Opt. 

Let. (submitted). 
“D. E. Govoni, J. A. Booze, A. Sinha, and F. F. Grim, Chem. Phys. Lett. 

216, 525 (1994). 
“J. T. Fourkas, R. Trebino, and M. D. Fayer, J. Chem. Phys. 97, 69 (1992). 
53 J T Fourkas, R. Trebino, and M. D. Fayer, J. Chem. Phys. 97,78 (1992). . . 
“J. Nunes, W. G. Tong, L. A. Rahn, and D. W. Chandler (in preparation). 
55U. Fano and J. H. Macek, Rev. Mod. Phys. 45, 553 (1973). 
56A. Omont, Prog. Quantum Electron. 5, 69 (1977). 
s7K. Blum, Density Matrix Theory and Applications (Plenum, New York, 

1981). 
‘*T. K. Yee and T. K. Gustafson, Phys. Rev. A 18, 1597 (1978). 
“R. Trebino, Phys. Rev. A 38, 2921 (1988). 
6oU. Fano and G. Racah, Irreducible Tensoriul Sers (Academic, New York, 

1959). 
6’B. R. Judd, Angular Momentum Theory for Diatomic Molecules (Aca- 

demic, New York, 1975). 
62P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cam- 

bridge University, Cambridge, 1990). We use the numerical definitions 
and convention established by these authors; however, our analysis uses 
double-sided Feynman diagrams whereas these authors use single-sided 
diagrams which can lead to errors. 

63A good discussion of isotropic relaxation and broadening of optical tran- 
sitons is given in Ref. 56, pp. 108-113. 

64Because %4=(ik4L/2e,J9’$3) there is an additional L2 dependence where 
L is the interaction length of the fields in the medium. See Ref. 30, Eq. 
(23) and Ref. 62, pp. 217-218. 

@S. Williams, R. N. Zare and L. A. Rahn (in preparation). 
@E. Hecht, Oprics (Addison-Wesley, Reading, 1987), pp. 270-273. 

J. Chem. Phys., Vol. 101, No. 2, 15 July 1994 

Downloaded 09 Feb 2010 to 171.64.124.75. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp


