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Abstract

In chromatographic separations the heights of peaks are proportional to the

concentrations of sample components present in an injected mixture.  In general, an increase in

the peak height cannot be achieved by simply increasing the injection time or the sample plug

length.  An exception occurs if some form of on-line preconcentration is possible.  We present a

new strategy for achieving on-line preconcentration by the use of a porous chromatographic

material that acts as a solid-phase extractor as well as a stationary-phase separator. We are able

to realize significant on-line preconcentration using capillary columns filled with a

photopolymerized sol-gel (PSG). More than 2-cm plugs of sample solution can be loaded into

the capillary and concentrated using a running buffer that is the same as the injection buffer (to

avoid solvent gradient effects). As a demonstration, mixtures of three different polycyclic

aromatic hydrocarbons, eight different alkyl phenyl ketones, and five different peptides in

solutions of aqueous acetonitrile have been injected onto the PSG column and separated by

capillary electrochromatography. The preconcentration is marked in terms of peak heights, with

up to hundred-fold increase for the PAH mixture, thirty-fold for the alkyl phenyl ketone mixture,

and twenty-fold for the peptide mixture.  Preconcentration takes place because of the high mass

transfer rates possible in the highly porous structure, and the extent of preconcentration follows

the retention factor k for a given analyte.



Introduction

A common strategy for the analysis of trace species in complex mixtures is to

preconcentrate the species of interest prior to separation.  This procedure is most readily

accomplished with some type of on-line preconcentrator.  For example, in gas chromatography

this goal is met by passing the gas stream through a cold column that is subsequently heated1.  In

high-performance liquid chromatography (HPLC) this process is usually done by gradient HPLC

in which the analytes are retained on the column much more strongly for the first solvent than for

succeeding ones2.  On-line preconcentration has also enjoyed some success in electrophoretic

separations.  For example, in capillary zone electrophoresis Mikkers et al.3 and Chien and Burgi4

demonstrated that changes in electric field strength between sample and background solution

zones can focus (stack) charged species, in electrokinetic chromatography Quirino and Terabe5,6

have shown that micelles can act to concentrate (sweep) neutral and charged species, and in

capillary electrochromatography (CEC)7 Taylor et al.8 reported that solvent gradients similar to

gradient HPLC can concentrate neutral species.  We describe here the ability of a

photopolymerized sol-gel (PSG) capillary column (monolithic structure) to concentrate neutral

and charged species in a liquid stream, which are subsequently separated by application of an

electric field.

Methodology

All electrophoresis experiments were performed with a Beckman P/ACE 2000 (Beckman

Instruments, Fullerton, CA) equipped with fused silica capillaries (75-µm inside diameter x 365-

µm outside diameter) purchased from Polymicro Technologies (Pheonix, AZ).  The capillaries

were thermostated at 20° C.  Detection was done by absorption at 214 or 254 nm.  Injections



were done using pressure (0.5 or 20 psi) or voltage (1 kV to 10 kV) and varied in duration from 2

s to 1920 s.  UV irradiation at 365 nm of sol-gel solutions to form the PSG stationary phase was

performed in a Spectrolinker XL-1500 (Spectronics Corp., Westbury, NY).  Data analysis was

performed with GRAMS/32 version 4.02 (Galactic Industries Corporation, Salem, NH).  All

electropherograms presented here were drawn to the same scale using GRAMS/32 software.

Unless stated, all reagents were purchased from Sigma-Aldrich (Milkwaukee, WI) in the

highest grade available.  The sol-gel solution was prepared as follows.  A mixture of 375 µl of

tri-methoxy-silyl-(propyl)methacrylate (Gelest, Tullytown, PA or Sigma-Aldrich, Milkwaukee,

WI) and 100 µl of 0.12 M hydrochloric acid was stirred for 30 min at room temperature.  27

parts of this mixture were combined with 73 parts of toluene (porogenic agent) to give 200 µl of

the final solution.  5% by weight of the final solution of the photoinitiator Irgacure 1800 (Ciba

Geigy, Tarrytown, NY) was added, and the resulting sol-gel solution was stirred for 5 min before

use.  The PSG column was prepared by filling a 75-µm i.d. fused silica capillary with the sol-gel

solution and exposing the column to UV light to affect photopolymerization.  The

polymerization length of the monolithic structure was controlled by removing a 15-cm stripe of

the polyimide coating of the capillary prior to irradiation for 5 min.  Unreacted reagents were

flushed from the column with ethanol.  The total length of the capillary was 25.6 cm (18.8 cm

from inlet to the detector window).  The detector window is positioned after the PSG material.

The resulting PSG column is conditioned with the separation solution prior to use.  The PSG

structure acts as the chromatographic stationary phase9.  Different selectivities can be achieved

with the PSG phase by post modification with chlorosilane compounds containing various

functional groups10.



For the peptide experiments the PSG column was prepared in the following way.  A

mixture of 575 µL of tri-methoxy-silyl-(propyl)methacrylate and 100 µL of 0.12 M hydrochloric

acid was stirred for 30 min at room temperature.  20 parts of this mixture were combined with 80

parts of toluene to give 200 µl of the final solution.  The photoinitiator was added as 10% of the

total volume of the final solution, and the resulting sol-gel solution was stirred for 5 min before

use.  The PSG column was prepared as described above.  The column was rinsed with toluene.

The PSG surface was modified by continuous flow of pentafluorophenyltrichlorosilane through

the capillary for 45 min at room temperature and followed by rinsing with toluene.

For the alkyl phenyl ketone experiments the PSG column was prepared in the same

manner as the column for the peptide experiments, except that the column was post-modified by

continuous flow of  (3,3,3-trifluoropropyl)trichlorosilane for 30 min at room temperature and

followed by rinsing with toluene.

The samples were thiourea, naphthalene, phenanthrene, pyrene, acetophenone

propiophenone, butyrophenone, valerophenone, hexanophenone, heptanophenone,

octanophenone, decanophenone, bradykinin, angiotensin II, tripeptide I (gly-gly-gly), tripeptide

II (val-tyr-val), methionine enkephalin, hydrocortisone, progesterone, and cortisone.  Stock

solutions of thiourea, polyclic aromatic hydrocarbons, alkyl phenyl ketones, and steroids were

prepared in acetonitrile or aqueous acetonitrile.  Stock solutions of test peptides were prepared in

water.  Stock solutions were mixed and then diluted prior to injection.  Careful dilution of stock

solutions with the separation solution components was undertaken to ensure that the sample

matrix is identical to the separation solution to prevent gradient effects during the CEC

experiments.  The separation solution consisted of various portions of 50 mM ammonium acetate

or 50 mM phosphoric acid, water, and acetonitrile.  A new sample solution was used for every



injection to maintain the same concentration of acetonitrile in the sample solution and the

separation solution.  Other conditions can be found in the text or figure captions.  As a

precautionary note, proper care should be taken when handling the analytes, sol-gel reagents, and

organic solvents as they are suspected to be health-threatening chemicals.

Results and Discussion

Effect of injection plug lengths on CEC peak shapes.  This work utilizes PSG columns

without chromatographic particles.  Figures 1a and 1b illustrate the increase in detection

sensitivity with an increase in injected plug length in the CEC separation of the small molecule,

thiourea, and three PAHs, and eight alkyl phenyl ketones. For the PAH mixture, the peaks are

barely visible with the typical injection of a 0.1 mm plug length (Figure 1a, red); however, the

peak heights increased when the plug length was increased to 6.8, 13.7, 27.4, and 34.2 mm

(Figure 1a, blue, pink, green, and black, respectively).  Similarly, for the alkyl phenyl ketone

mixture, the peak heights increased when the plug length was increased from 0.7 mm (Figure

1b,violet) to 57.3 mm (Figure 1b, red).  Note that for both mixtures the increase in peak height

and the extent by which peak widths are narrowed are greater for the latter eluting compounds.

The results suggest that the samples preconcentrate at the inlet of the CEC column, with the

more retentive samples accumulating more than the less retentive ones.

In Figure 1a the improvement in peak heights for a 27.4-mm injection (green) compared

to a typical injection of 0.1 mm (red) is 50, 125, and 127 times for naphthalene, phenanthrene,

and pyrene, respectively.  Note that the sample solution in the green electropherogram is a 10-

fold dilution of the sample in the red electropherogram.  In Figure 1b, the improvement in peak

heights for a 28.6-mm injection (acetophenone, propiophenone, butyrophenone, and



valerophenone) (blue) and 57.3-mm injection (hexanophenone, heptanophenone, octanophenone,

and decanophenone) (red) compared to a typical injection of 0.2 mm (not shown) is 13, 15, 19,

21, 20, 26, 28, and 32 times greater for the alkyl phenyl ketones (in the order of increasing alkyl

chain length).

Evidence of preconcentration in CEC with PSG.  Figures 2 and 3 provide proof that

preconcentration takes place in the PSG columns.  The height of a chromatographic peak is

proportional to the concentration of a sample component.  Figure 2 illustrates that peak heights

are constant for a given concentration of sample unless there is a preconcentration process.  In

general, with increasing injection plug lengths, peak heights remain constant while peak areas

and peak widths increase linearly.  Figure 3a shows an electrochromatogram of a small plug

injection of naphthalene prepared in the separation solution.  Figure 3b is an

electrochromatogram obtained from a ten-fold dilution (in the separation solution) of the

naphthalene solution used in Figure 3a but injected as a longer plug.   The corrected peak areas

(peak area / migration time) for both electrochromatograms are made close to each other by

controlling the injection time of the ten-fold dilution of sample.  The corrected peak areas of the

electropherogram in Figure 3a and 3b are 0.0023 (%RSD=0.02%, n=3) and 0.0025

(%RSD=0.00, n=3) arbitrary units/min, respectively.  This comparison was done such that the

amount of naphthalene molecules injected for each run is the same.

Preconcentration is evident because the peak height is slightly higher for the longer

injection of diluted sample while the corrected peak widths (peak width / migration time) for

both experiments are almost the same, although the sample concentrations are different.  The

peak heights of the electrochromatograms in Figure 3a and 3b are 0.0869 (%RSD=0.36%, n=3)



and 0.0937 (%RSD=0.06%, n=3) arbitrary units, respectively. The peak widths of the

electrochromatograms in Figure 3a and 3b are 0.0253 (%RSD=0.07%, n=3) and 0.0249

(%RSD=0.01%, n=3) arbitrary units/min, respectively. The shift in migration time on Figure 3b

is caused by the longer injection time, which makes the center of the sample plug closer to the

detector window.

Application to quantitative analysis.  The limit of detection (signal/noise = 3) for a

typical 0.1 mm injection plug is 1.5 mM, 0.2 mM, and 1.2 mM for naphthalene, phenanthrene,

and pyrene, respectively.   The limit of detection (signal/noise =3) for a 27.4-mm injection plug

using 0.5 psi is 24.3 µM, 5.4 µM, 3.4 µM for naphthalene, phenanthrene, and pyrene,

respectively.  The correlation coefficient (r2) is > 0.99; the reproducibility of migration time is

less than 2% RSD (n=7); and the reproducibility of peak height is less than 8% RSD (n =7).

This data suggest a one to two orders of magnitude increase in concentration detection sensitivity

compared to a typical injection.

The PSG column with on-line preconcentration may also be useful for semi-preparative

purposes, which is now being explored in our laboratory.  More than 100 nl of sample solution at

analyte concentrations in the mM levels can be injected into the column without significant

deterioration of peak shapes.  Moreover, the use of solvent gradients improves detection

sensitivity by a factor of two above and beyond the results presented here.

Application to peptides. Figure 4 shows the separation and preconcentration of five

peptides in a PSG column modified to contain a pentafluorophenyl moiety. Note here that the

cathode directed velocities of the peptides are dictated by both electrophoretic and

electroosmotic flow effects.  The peptides have a net positive charge at the pH of the separation



solution (pH ~2). The improvement in peak heights for the longer injection (Figure 4b, red)

compared to a typical injection (Figure 4a, blue) is 21, 19, 16, 18, and 22 times for bradykinin,

angiotensin II, tripeptide I, tripeptide II, and methionine enkephalin, respectively.  The sample

solution in both electropherograms is the same.  Note that the enrichment factors for the first two

eluting compounds (bradykinin and angiotensin II) are slightly higher than the next two

compounds (tripeptide I and tripeptide II).  The affinity of bradykinin and angiotensin II to the

modified PSG phase must be greater than that of the tripeptides.

Application to real analysis. A urine sample, spiked with hydrocortisone, progesterone,

and cortisone, is evaluated with the PSG column (Figure 5).  These steroids after protein

precipitation of urine sample with acetonitrile are easily detected with a 21.4-mm injection of the

resulting sample solution (Figure 5b), but are weakly detected with a typical injection (Figure

5a).  To prevent solvent gradient effects, the resulting sample solution was made to contain the

same amount of acetonitrile as the separation solution.  Electrophoretic preconcentration effects

caused by the presence of salts in the resulting sample solution is also not possible because the

steroids are neutral and thus unaffected by an electric field.  A comparison between the blank run

(Figure 5c) and the spiked run (Figure 5b) show that the sample matrix, which still contains other

biomolecules, did not significantly interfere with steroid separation on the PSG column.  This

demonstrates the usefulness of the strategy for biofluid analysis.

Preconcentration mechanism.  Highly porous structures like the PSG material used in

this study have high rates of mass transfer and low resistances to flow.11  The high mass transfer

rates arise from the enhanced accessibility of the analytes to the binding sites of the porous

structure.  This behavior is similar to high mass transfer rates observed in monolithic stationary

phases11 and in perfusion chromatography.12  Because of the high mass transfer rates, the kinetics



of analyte-PSG interaction (i.e., the partitioning of the analyte between the mobile and stationary

phases)  is not the rate-limiting step in the separation. Consequently, it is possible to inject and

concentrate larger volumes of sample solution than in columns containing normal

chromatographic materials.

It is useful to introduce the retention factor k, which is the ratio of the number of moles of

solute in the stationary PSG matrix to that in the mobile phase, to describe the separation

process.  We carried out measurements that showed that the value of k is unchanged for

electrically neutral solutes separated by pressure or by voltage.9 Moreover, we found that the

flow rate hardly influenced the extent of preconcentration. Consequently, we conclude that the

total preconcentration effect is directly proportional to the k value, with the longer injection plug

lengths (e.g., > 25 mm) leading to severe peak broadening of analytes having low-k values

(thiourea and naphthalene in Figure 1a, black; and thiourea, acetophenone, propiophenone,

butyrophenone, valerophenone, and hexanophenone in Figure 1b, red).  This behavior implies a

maximum length of sample plug for each analyte before peak shape becomes compromised.

Thus, the porous structure created in photopolymerized sol-gel acts to extract the analytes from

solution as well as provides the stationary phase for chromatographic separation of the analytes.

It is this extractor-separator combination that gives this method such power.

The preconcentration effect should occur to some extent in other CEC studies, but to our

knowledge has not been previously reported.  Recent studies by Zhang et al.13, Hilhorst et al.14,

and Chen et al.15 under nongradient conditions in packed CEC columns actually showed no

substantial increase in peak heights with longer than typical sample injections.



Conclusion

A new strategy for sample preconcentration is described in which the column acts

simultaneously as a solid-phase extractor as well as the stationary phase for chromatographic

separation.  Preconcentration occurs in a porous structure that is capable of rapid mass transfer

allowing for the injection of large volumes of sample solution.  Preconcentration is dependent on

the retention factor k for a given analyte. Applications to various samples have been

demonstrated using monolithic columns filled with photopolymerized sol-gel (PSG), and the

preconcentration effects achieved have been sizeable. This method of preconcentration is a

general one and other porous structures in addition to PSG are expected to show this feature.
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Figure 1. Electrochromatograms of the separation of (a) thiourea (peak 1; 12.5 µM),

naphthalene (peak 2; 51.0 µM), phenanthrene (peak 3; 1.0 µM) and pyrene (peak 4: 123 µM);

plug lengths, red = 0.1 mm, blue = 6.8 mm, pink = 13.7 mm, green = 27.4 mm, black = 34.2 mm;

sample and separation solution, 50 mM ammonium acetate/water/acetonitrile (1/4/5); applied

voltage, 20 kV; detection, 214 nm; (b) thiourea (peak 1; 5 µM), acetophenone (peak 2),

propiophenone (peak 3), butyrophenone (peak 4), valerophenone (peak 5), hexanophenone (peak

6), heptanophenone (peak 7), octanophenone (peak 8), and decanophenone (peak 9); plug

lengths, violet = 0.7 mm, orange = 7.2 mm, green = 10.7 mm, black = 17.9 mm, blue, 28.6 mm,

red, 57.3 mm; sample and separation solutions are the same as in (a); applied voltage, 15 kV;

detection 254 nm;  the concentration of each of the alkyl phenyl ketones is 0.1µg/mL in the

separation solution.

Figure 2.  Expected peak shapes for sample prepared in the separation solution injected as (a)

short or (b) long plug.

Figure 3.  Electrochromatograms showing the 1 kV injection at (a) 5s of a 39.0 mM and (b) 85 s

of a 3.9 mM of naphthalene in the separation solution; sample and separation solution, 50 mM

ammonium acetate/water/acetonitrile (1/3/6); applied voltage, 15 kV; detection, 214 nm.

Figure 4.  Electrochromatograms showing the 0.5 psi injection at (a) 0.1 and (b) 12 mm of test

peptides in a matrix having the same composition as that of the separation solution; test peptides,

bradykinin (peak 1), angiotensin II (peak 2), tripeptide I (peak 3), tripeptide II (peak 4), and

methionine enkephalin (peak 5); peptide concentrations, 16.7 µg/ml each; separation solution, 50

mM phosphoric acid/water/acetonitrile (1/5/4); applied voltage, 15 kV; detection, 214 nm, 20°C.



Figure 5.  Electrochromatograms showing the injection at (a) 0.1 mm and (b) 21.4 mm of urine

spiked with hydrocortisone (1), progesterone (2), cortisone (3), and (c) 21.4 mm of urine blank;

sample preparation, spiked urine contained 0.1 mM of 1, 0.3 mM of 2, and 0.2 mM of 3, 4 parts

of spiked or unspiked urine was mixed with 6 parts of acetonitrile and centrifuged to remove the

proteins, 1 part of each supernatant was mixed with one part of 50 mM ammonium

acetate/water/acetonitrile (1/7/2) before injection; separation solution, 50 mM ammonium

acetate/water/acetonitrile (1/5/4), applied voltage, 17 kV; detection, 254 nm.
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Fig. 2

a, typical short injection

b, long injection
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