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Introduction

Traditional fluorescent measurements of molecules in solution
(many-molecule spectroscopy) yield quantities that are averag-
es over the large number of molecules present in the observa-
tion volume being probed. Single-molecule spectroscopy
breaks this ensemble average and can reveal details that are
lost in the extensive averaging that is associated with tradition-
al fluorescence measurements.[1–5] Nevertheless, in single-mole-
cule spectroscopy, meaningful information can only be extract-
ed by means of a statistical analysis of many single-molecule
events. Consequently, it may be preferable to study a few mol-
ecules at a time, a sufficiently small number so that rare excur-
sions from the mean behavior are not hidden by the averaging
process but a sufficiently large number so that the acquisition
of data can be significantly sped up. We call this method “few-
molecule spectroscopy”. This paper concerns the analysis of
few-molecule fluorescence for yielding the maximum informa-
tion about the molecules present in a studied observation
volume.

Few-molecule spectroscopy concerns the fluctuations in the
fluorescence signal. Thus, it is also aptly named “fluorescence
fluctuation spectroscopy”. As one of its analytical methods, the
well-established fluorescence correlation spectroscopy
(FCS)[6–10] focuses on the time-correlated information contained
in the fluorescence fluctuation time trace. FCS gives informa-
tion about the time scale of diffusion and of other chemical or
physical processes that might be occurring,[7] and it also pro-
vides some amplitude-related information, such as the concen-
tration.

An alternative to FCS is the analysis of the amplitude-corre-
lated fluctuations in the signal trace. Qian and Elson[11,12] initiat-
ed this approach, which is referred to as “higher order
moment analysis”. In 1999, Kask et al.[13] refined this procedure,
which then became known as “fluorescence intensity distribu-
tion analysis” (FIDA). The same year, Chen et al.[14] developed
independently what is called the “photon counting histogram”
(PCH) approach. These two methods differ but are, however,
mathematically essentially equivalent. It might be that the PCH

treatment has the advantage of not requiring calibration meas-
urements. In any case, these two methods are able to deter-
mine two parameters for each fluorescent species present.
These parameters are the average number of particles in the
observation volume, denoted by N̄, and the molecular bright-
ness, denoted by e. These techniques (PCH and FIDA) can pro-
vide information that is not accessible through FCS, because
they allow the distinction between different species based on
their different degrees of brightness. Since Chen et al. pro-
posed their PCH analysis, all published PCH experiments have
used two-photon excitation (2PE). The PCH analysis has been
successfully used to characterize molecular brightness (in
vivo),[15] ligand–protein binding,[16,17] and interactions between
oligonucleotides and polymers.[18]

In the PCH theory for 2PE, the square of a Gaussian–Gaussi-
an–Lorentzian function adequately describes the observation
volume profile (OVP). Chen et al. suggested that the same
analysis procedure could be applied to the one-photon excita-
tion (1PE) in which a three-dimensional Gaussian (3DG) approx-
imation is used to describe the observation volume (this same
approximation was used very successfully in FCS).[14] However,
this assertion, which had not been previously tested, was
found by us to be false.[19] As shown in our previous publica-
tion, the 3DG PCH model fails to fit the experimental data at
low concentration and high molecular brightness. This failure
is particularly distressing because these conditions are exactly
those for which PCH has the best resolution.[20]

Although Van Rompaey et al.[18] reported the failure of the
3DG PCH model in fitting one-photon excitation PCH data for
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The photon counting histogram (PCH) analysis is a fluorescence
fluctuation method that is able to characterize the brightness
and concentration of different fluorescent species present in a
liquid sample. We find that the PCH model using a three-dimen-
sional Gaussian observation volume profile is inadequate for fit-
ting experimental data obtained from a confocal setup with one-
photon excitation. We propose an improved model, which is

based on the correction to the observation volume profile for the
out-of-focus emission. We demonstrate that this model is able to
resolve different species present under a wide range of condi-
tions. Attention is given to how this model allows the examina-
tion of the effects of different instrumental setups on the resolva-
bility.
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a labeled oligonucleotide/polymer complex, they did not ques-
tion the model itself. Inspired by the work of Hess and Webb
in 2002, who showed that the 3DG approximation introduces
artifacts into FCS,[21] we found that the 3DG approximation
also fails in the case of PCH.[19] What we present here is a full
treatment of the brief Communication[19] that we previously
published on this topic. In this Article, we present the source
of the deviation and derive a corrected PCH model that can fit
the experimental data. We then examine how the instrument
configuration can affect the shape of the observation volume
profile and the ability of the PCH analysis to resolve two fluo-
rescent species.

Theory

1. The PCH Model

Consider a reference volume V0 that is so large that all the
emitted photons can be regarded to originate from V0. In the
case of a particle that diffuses within V0, if the observation
time is long enough, this particle has the same probability of
appearing at any different position within V0. Therefore, the
probability of observing k photons is given by Equation (1):[14]

pð1Þðk; V0, eÞ ¼
1
V0

Z
Poisson½k, e � Wð r!Þ�d r! ð1Þ

where Equation (2):

Poissonðk, lÞ ¼ lke�l

k!
ð2Þ

is the Poisson distribution with mean value l. Here W( r!) is
the observation volume profile, which describes the combina-
tion of the excitation laser intensity and the detection efficien-
cy as a function of the particle position. In this Article, W( r!) is
normalized so that W(0)=1. All other factors that affect the
photon count rate, such as laser power, absorption cross sec-
tion, fluorescence quantum yield, detector efficiency, etc. , are
absorbed into a single parameter, the molecular brightness, e.
In this way, e characterizes the photophysical properties of a
certain fluorescent species in a particular setup. Equation (1) is
the central step of the PCH model; therefore, we name it the
PCH integration.

The next step is to consider the possibility of finding multi-
ple particles inside the reference volume, V0. If N particles dif-
fuse independently inside V0, the resulting photon-count distri-
bution will be the Nth convolution of the one-particle photon-
count distribution with itself,[14] see Equation (3):

pðNÞðk; V0, eÞ ¼ ðpð1Þ 	 pð1Þ 	 � � � 	 pð1ÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
N times

ðk; V0, eÞ ð3Þ

No photons should be detected when no particles are pres-
ent in the reference volume. We express this condition by
means of Equation (4):

pð0Þðk; V0, eÞ ¼
�

1, k ¼ 0
0, k 6¼ 0

ð4Þ

Then, we consider the fluctuation in the number of particles
in V0. Given a certain particle concentration, c, the probability
of finding N particles in V0 follows the Poisson distribution
with the mean value c·V0.

[14] Consequently, the overall photon-
count distribution will be the weighted average of each indi-
vidual case[14] [Eq. (5)]:

Pðk; c, eÞ ¼
X1
N¼0

pðNÞðk; V0, eÞ � PoissonðN, c � V0Þ ð5Þ

While c is adequate to characterize the concentration of par-
ticles, it is more straightforward to use the number of particles
in a certain volume as the fitting parameter. In FCS, we use the
average number of particles in the observation volume, N̄, to
measure the concentration, which is the reciprocal of the cor-
relation amplitude in the case of a three-dimensional transla-
tional diffusion.[22,23] The size of the observation volume, V, that
corresponds to this definition of N̄ is given by Equation (6):

V ¼ w2
1

w2

ð6Þ

where [Eq. (7)]:

wj ¼
Z

½Wð r!Þ�jd r! ð7Þ

Then, Equation (5) can be rewritten as Equation (8):

Pðk; N, eÞ ¼
X1
N¼0

pðNÞðk; V0, eÞ � Poisson

	
N, �N � V0

V



ð8Þ

Chen et al.[14] proved that this expression for P(k ; N̄, e) is inde-
pendent from the choice of V0 as long as V0 is large enough to
obtain a positive probability of zero photon counts. Moreover,
to simplify the numerical computation, we can set the ratio of
V0 to V as a fixed constant, see Equation (9):

V0 ¼ QV ð9Þ

In this way, the units of volume in the PCH integration
[Eq. (1)] can be directly canceled when an analytical expression
of V is available. Equations (1) and (8) become Equations (10)
and (11):

pð1Þðk; Q, eÞ ¼ 1
QV

Z
Poisson½k, e � Wð r!Þ�d r! ð10Þ

Pðk; �N, eÞ ¼
X1
N¼0

pðNÞðk; Q, eÞ � PoissonðN, Q�NÞ ð11Þ

In all our data analysis, we arbitrarily chose Q=6.
Equation (11) describes the photon counting histogram for

one fluorescent species, which depends on the parameters N̄
and e, on the function W( r!), and on the choice of V.

Finally, if multiple independent species are present, the
photon counting histogram is obtained by convoluting the
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PCHs of individual species,[14] see Equation (12):

Pðk; �N1, e1, �N2, e2, . . . ,�Nn, enÞ
¼ Pðk; �N1, e1Þ 	 Pðk; �N2, e2Þ 	 � � � 	 Pðk; �Nn, enÞ

ð12Þ

2. The Observation Volume Profile

As already discussed, the shape of the photon counting histo-
gram depends on the observation volume profile, W( r!), and
on the size of the corresponding observation volume, V. In the
theory for one-photon excitation FCS, W( r!) is approximated
by a 3D Gaussian function WG( r!)[22] [Eq. (13)]:

WGð r!Þ ¼ exp

	
�2

x2 þ y2

w2
0

�2
z2

z2
0



ð13Þ

where w0 and z0 are the distances from the origin for which
WG( r!) drops to e�2 on the x–y plane and on the z axis, respec-
tively. With this definition of WG( r!), the integration of its jth
power is given in Equation (14):

wGj ¼ j�3=2

	
p

2


3=2

w2
0z0 ¼ j�3=2wG1 ð14Þ

Then, the size of the observation volume VG is given by Equa-
tion (15):

VG ¼ w2
G1

wG2
¼ p3=2w2

0z0 ð15Þ

This 3D Gaussian approximation was also proposed by Chen
et al.[14] for analyzing PCHs with one-photon excitation and
confocal detection. Then, the analytical expression for the PCH
integration [Eq. (10)] becomes[14] Equation (16):

pð1Þ
G ðk; Q, eÞ ¼ 1

Qp1=2k!

Z1
0

gðk, ee�2x2Þdx ð16Þ

where g(a, x) is the incomplete Gamma function. Contrary to
the model of FCS (where the axial ratio K=z0/w0 appears in
the final expression), no focus-shape-related parameters
appear in the final PCH expression because both the PCH inte-
gration, pð1Þ

G (k ; V0, e), and the observation volume, VG, are pro-
portional to w2

0z0. Consequently, in the PCH treatment there
are no parameters that can be adjusted to compensate for any
deviation of the 3D Gaussian approximation from the true ob-
servation volume profile.

As shown by Hess and Webb,[21] the 3DG approximation
does have significant deviations. This fact usually does not seri-
ously affect the validity of the 3DG FCS model because, when
fitting an FCS curve, it is common to let the axial ratio K float,
thus making it a semiempirical parameter that can compensate
for the differences between W( r!) and WG( r!). However, for
PCH, our recent publication[19] demonstrates that this deviation
causes the PCH model to fail under certain conditions, which
could lead to a complete misinterpretation of the data.

Figure 1A presents an experimental PCH of tetramethylrhod-
amine-5’-maleimide (TMR) at a typical concentration and exci-
tation laser power for PCH measurements. As shown in Table 1,
its 3DG PCH model fitting shows an anomalously large value
(of more than 900) for the reduced c2. Although a two-species
fitting could lower the value of the reduced c2, such a fitting

Figure 1. Experimental PCH and fit with different models. A) 2 nm TMR in water
with an excitation laser power of 75 mW; B) 0.8 nm TMR in water with an exci-
tation laser power of 170 mW. Both histograms are built with a bin time of
10 ms. The fitting results are listed in Table 1.

Table 1. Fitting results for the PCHs of Figure 1. The number of significant
figures is set according to the estimated standard deviation of each fitting
parameter.

Data PCH Model N̄ e F F2 c2
red

A 3D Gaussian 1.123 1.178 914
calculated OVP 1.00 2.44 365
first-order correction 1.005 1.880 0.42 1.72
second-order correction 1.015 1.91 0.50 0.024 1.00

B first-order correction 0.498 3.77 0.43 46.3
second-order correction 0.494 4.00 0.54 0.025 1.89
first-order, two-species 0.8 0.5 0.2 1.41

0.28 4.0
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would yield a second species that is extremely bright with an
extremely low concentration (fitting not shown), which is phys-
ically unreasonable. Moreover, as shown by FCS measure-
ments, intersystem crossing of TMR does not appreciably
occur at this excitation laser power, so that triplet formation is
not the major cause for the failure of the 3DG PCH model.
Dead time can also be ruled out because our bin time was not
too short and the average photon-count rate was not too
high.[24] We conclude that the 3DG approximation is inade-
quate to describe the observation volume profile in PCH with
one-photon excitation.

3. Deviation of the 3DG Approximation

To understand the nature of the deviation caused by the 3DG
approximation, we calculated W( r!) by using electromagnetic
diffraction theory based on the actual instrument configura-
tion.[21,25–28] Details of the calculation procedure are presented
in the Supporting Information. We then used the calculated
observation volume profile in the PCH model to fit the experi-
mental PCH. The fitting is shown in Figure 1A. In comparison
with the 3DG model, the calculated observation volume profile
corrects the deviation in the right direction, as shown by the
value of the reduced c2, although it overcorrects the fitting res-
idues. Unfortunately, the reason why the calculations do not
match the experiments is still unclear to us. Nevertheless, the
calculated observation volume profile is obviously a much
better description of the actual profile. Therefore, we can dis-
cover the source of the deviation by comparing the calculated
observation volume profile and the 3D Gaussian approxima-
tion.

Figure 2 compares the cross-sections of the calculated ob-
servation volume profile, WC( r!), with the Gaussian fit along z
(Figure 2A) and along x (Figure 2B). Although the cross-sec-
tions appear to be in close agreement, the PCH method re-
quires an integration of W( r!) [see Eq. (10)] , which is shown to
magnify the disagreement.

Equation (14) states that the integral of the jth power of a
3D Gaussian is a constant, so that in particular : j3/2wGj=wG1. On
the other hand, if we numerically calculate the integrals of
WC( r!) (denoted by us as wCj, see Table 2), we find that the
values of j3/2wCj are close to each other only for j>1. For j=1,

wC1 differs dramatically from the value of wG1. This fact sug-
gests that the integral of WC( r!) exhibits a quite different be-
havior than that of a 3D Gaussian function for j=1.

Another demonstration that WC( r!) behaves almost identi-
cally to a 3D Gaussian at higher powers is given by fitting the
fourth power of WC( r!), W4

C(x, z), with a 2D Gaussian function.
This function corresponds to the fourth power of WG( r!). Then,
we compare the integrals of WC( r!) and WG( r!). Table 2 shows
that wC1 has almost twice the value of wG1, while the difference
is minor between wC2 and wG2. With j>3, wCi and wGj differ
only in the last significant digit ; this difference can be attribut-
ed to the computation error.

We found that the differences between wC1 and wG1 arise
from a region that is far away from the focal point. This conclu-
sion is verified by changing the limits of integration. The last
two rows of Table 2 indicate that the integral within the cylin-
der of x2+y2<w2

0 and z2<z2
0 contributes 82% to the value of

wG1 but only 44% to the value of wC1. Moreover, within the
layer between 
z0, it contributes 95% to the value of wG1 but
only 58% to that of wC1. The values of the integrals of WC( r!)
and WG( r!) within these two limits are actually very close to
each other. These results can be explained by the similarity be-
tween these two functions. Outside the focal region, the abso-
lute values of the two functions are very small, which makes
the differences between them appear to be unimportant on a
linear scale plot (Figure 2). However, the vast extent of a 3D

Figure 2. Cross-sections of the calculated observation volume profiles and their
Gaussian fittings. The calculation is for the 60 D NA 1.2 water-immersion objec-
tive with a 50 mm diameter pinhole. The wavelength of the circularly polarized
excitation laser is 530 nm and its 1/e2 diameter is the same as the back aper-
ture of the objective. The emission wavelength is chosen as the emission maxi-
mum for TMR (575 nm). The profile is normalized to unity at the origin:
A) z cross-section ; B) x cross-section

Table 2. Integrals of the jth power of the calculated observation volume
profile and its 3D Gaussian approximation.

j wCj wCj·j
3/2 wGj

1 301.3 301.3 151.4
2 57.71 163.2 53.52
3 29.46 153.1 29.13
4 18.94 151.5 18.92
5 13.54 151.4 13.54
6 10.31 151.5 10.30
7 8.19 151.7 8.17
1[a] 131.9 – 124.9
1[b] 173.2 – 144.5

[a] Integrating within z2%z2
0 and x2+y2%w2

0. [b] Integrating within z2%z2
0.
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space makes up for the small value. For example, a fivefold dif-
ference in the length would result in a 125-fold difference in
the volume, which could turn a 1% difference in the value of
the function into a 125% difference in the value of the inte-
gral. In addition, if we consider the square of the function, this
1% difference becomes 0.01%, thus contributing only 1.25%
to the total integral. The same reasoning explains why wC1 and
wG1 are extremely different, whereas the integral of higher
powers between the actual observation volume profile and
the 3D Gaussian approximation are similar.

4. Correction to the 3DG Approximation

Three different approaches can be used to overcome the prob-
lem of the misfit between the experimental OVP and its 3D
Gaussian approximation. The first approach is to refine the
electromagnetic diffraction theory that describes the observa-
tion volume profile so that we can numerically obtain a profile
that can adequately fit the experiment. This procedure is not
practical, however, because no optical components and align-
ments can be completely ideal. Moreover, even if such a profile
could be computed, this approach would be unrealistic be-
cause any minor changes in the optical system would lead to a
recalculation of the observation volume profile, which is ex-
tremely time-consuming.

The second approach is to find a functional form other than
a 3D Gaussian function to describe the OVP. It is extremely dif-
ficult to find a simple, defined function because of the com-
plexity of the real profile ; instead, only an empirical function
can be easily obtained. Kask et al.[13] employed this approach
in FIDA using a polynomial function with two or three parame-
ters. This approach is fast and can be applied to any general
system even without knowing the specific shape of the obser-
vation volume profile. However, it introduces several additional
fitting parameters that do not have a specific physical mean-
ing. These parameters must be determined before the analysis
of any experiment, which can be accomplished by calibration
with known dyes.

We advocate a third approach: the design of a correction to
the 3D Gaussian approximation based on our understanding
of the source of the deviation, which is the contribution to the
PCH integral from the out-of-focus region.

We define Fj as the relative difference between the integral
of the jth power of the actual observation volume profile,
W( r!), and that of its 3D Gaussian approximation, WG( r!)
[Eq. (17)]:

Fj ¼
wj�wGj

wGj
ð17Þ

Using Fj as the correction parameter, we can first correct for
the size of the observation volume [Equation (18)]:

V ¼ w2
1

w2
¼ ð1 þ F1Þ2

1 þ F2
VG ð18Þ

We then expand the Poisson function in Equation (10) into a
Taylor series [Equation (19)]:

pð1Þðk; Q, eÞ ¼ ek

QVk!

Z
Wkð r!Þexp½�eWð r!Þ�d r!

¼ ek

QVk!

Z
Wkð r!Þ

X1
j¼0

½�eWð r!Þ�j
j!

d r!

¼ 1 þ F2

ð1 þ F1Þ2

1
QVGk!

X1
j¼k

ð�1Þj�k

ðj�kÞ! e
jwj

ð19Þ

where wj is defined as
R

Wjð r!Þd r! in Equation (7). We also
have [Eq. (20)]:

pð1Þ
G ðk; Q, eÞ ¼ 1

QVGk!

X1
j¼k

ð�1Þj�k

ðj�kÞ! e
jwGj ð20Þ

By subtracting Equation (20) from Equation (19), we obtain
Equation (21):

pð1Þðk; Q, eÞ ¼ 1 þ F2

ð1 þ F1Þ2

�
pð1Þ

G ðk; Q, eÞ þ 1
QVGk!

X1
j¼k

ð�1Þj�k

ðj�kÞ! e
jFjwGj




ð21Þ

By comparing the value of VG in Equation (15) with the value
of wGj in Equation (14), Equation (21) can be simplified to Equa-
tion (22):

pð1Þðk; Q, eÞ ¼ 1 þ F2

ð1 þ F1Þ2

�
pð1Þ

G ðk; Q, eÞ þ 1
Qk!

X1
j¼k

ð�1Þj�k

ðj�kÞ!ð2jÞ3=2
ejFj




ð22Þ

4.1. First-Order Correction

As a first-order approximation, we equate all the higher-order
integrals of W( r!) with those of WG( r!), that is [Eq. (23)]:

Fj � 0 when j > 1 ð23Þ

In this case, we use a simple F to represent the only nonzero
correction parameter, F1. We have [Eq. (24)]:

pð1Þð1; Q, eÞ ¼ 1

ð1 þ FÞ2

�
pð1Þ

G ð1; Q, eÞ þ eF

2
ffiffiffi
2

p
Q



ð24Þ

and [Eq. (25)]:

pð1Þðk; Q, eÞ ¼ 1

ð1 þ FÞ2 pð1Þ
G ðk; Q, eÞ for k > 1 ð25Þ

Equations (24) and (25) give the PCH model for a confocal
microscope with one-photon excitation. We had to introduce
an additional variable: the out-of-focus emission ratio, F. This F
parameter indicates the fraction of detected photons from the
non-Gaussian part of the observation volume profile, especially
from the out-of-focus region. Therefore, we name this non-
Gaussian part of the observation volume profile the “out-of-
focus emission profile”, WF( r!). Because both the excitation
strength and the detection efficiency are extremely low in this
region, usually no more than one photon can be detected
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from a molecule in this region in a time bin. Therefore, the cor-
rection causes additional terms to appear only in the probabili-
ty of detecting one photon. Nevertheless, the convolutions
propagate this correction to all possible photon counts [see
Eqs. (3), (11), and (12)] .

The parameter F can be used to characterize the 3D-section-
ing ability of a confocal microscope. Because of its exponential
nature, the 3D Gaussian profile is tightly confined in the region
that is near the focal point. On the other hand, our theoretical
calculations have illustrated that the integration of WF( r!)
mainly comes from the region where jz j> z0, that is, it repre-
sents a backgroundlike emission signal. In this sense, the recip-
rocal of F represents the ratio of the in-focus signal to out-of-
focus background in the confocal microscopy of a continuous
sample.[29,30]

4.2. Second-Order Correction

We can also perform a second-order correction by considering
both F and F2, see Equations (26)–(28):

pð1Þð1; Q, eÞ ¼ 1 þ F2

ð1 þ FÞ2

�
pð1Þ

G ð1; Q, eÞ þ eF

2
ffiffiffi
2

p
Q
� e2F2

8Q



ð26Þ

pð1Þð2; Q, eÞ ¼ 1 þ F2

ð1 þ FÞ2

�
pð1Þ

G ð2; Q, eÞ þ e2F2

16Q



ð27Þ

pð1Þðk; Q, eÞ ¼ 1 þ F2

ð1 þ FÞ2 pð1Þ
G ðk; Q, eÞ for k > 2 ð28Þ

This second-order correction is important when the photon-
count rate in the out-of-focus region is sufficiently high so that
a probability exists that the molecule contributes two photons
from this region. In this case, some probability is shifted from
k=1 to k=2.

According to Table 2, the difference between w3 and wG3

and those of even higher powers are very small and negligible
at almost all conditions. Therefore, we only need to consider
the first- and second-order corrections to the PCH for a one-
photon excitation. In the Results section, we discuss when to
use the first- or second-order corrections.

Results and Discussion

1. Comparison of Different PCH Models

Using our typical microscope configuration with a 60x water-
immersion objective and a 50 mm pinhole, we measured the
PCH for TMR (2nm) with an excitation power of about 70 mW.
We then fitted the acquired photon counting histogram with
different PCH models (Fig. 1A). Table 1 lists the fitting results,
which clearly demonstrate the failure of the 3DG PCH model.
The PCH model based on the calculated observation volume
profile for this setup gave a smaller c2

red value [see Eq. (29)] , al-
though it appeared to exaggerate the deviation of the 3DG
profile. The first-order correction to the 3DG model was suffi-
cient to correct almost completely for the deviation; this cor-
rection gave a c2

red value that was close to unity. Under these

experimental conditions, the second-order correction only
slightly improved the fitting. Moreover, the value of the fitted
F2 was easily locked into local minima with similar c2

red values
but very different fitted values (which ranged from 0.01 to
0.03). These facts suggest that the first-order correction is suffi-
cient for the data analysis under these conditions.

In our recently published Communication,[19] we demonstrat-
ed that, when varying the TMR concentration from 1 to 20nm,
or varying the laser power so that e changes from 1 to
7 counts per 10 ms per molecule, the first-order correction is
able to obtain values for N̄ or e that are proportional to the
actual concentration or the laser power, respectively. In both
cases, the fitted F parameter stays in the range: 0.35 to 0.45.
Recently, we measured the PCH for other dyes, such as Cy3
and Alexa Fluoro 555, all of which showed similar values of F
(although the values of F did vary slightly from dye to dye,
possibly due to their different photophysical properties or dif-
ferent stabilities). This similarity in F enables the simultaneous
observation and analysis of dye mixtures. These results suggest
that the first-order correction is a robust method for a wide
range of experimental conditions.

Nevertheless, we must point out that, at the lower end of
the concentration range and higher end of the excitation-
power range tested by us, the first-order correction was not
enough to give a perfect fit of the experimental data. Fig-
ure 1B shows the PCH for 0.8nm TMR with about 170 mW of
excitation laser, and Table 1 shows the corresponding fitting re-
sults. Under these conditions, the first-order correction gives a
c2

red value of about 50, whereas the second-order correction
can significantly reduce the fitting residues (c2

red=1.89). There-
fore, the second-order correction is preferred in this case, but
the first-order correction can still be used to analyze one-spe-
cies data because it is able to return the correct values for N̄, e,
and F despite the imperfect fitting. In addition, although it
cannot exactly fit the data, it does not lead to the false conclu-
sion that two species are present in the sample. When the
data are fitted to a two-species, first-order model, not only
does this procedure return an F value that is far outside the
normal range (F=0.17), but the estimated fitting errors for the
parameters are also excessively large. These facts are the evi-
dence that the two-species model does not account for the
data.

The decrease in accuracy for the first-order correction at
lower concentration and higher laser power can be attributed
to three reasons: Firstly, the lower number of particles in the
observation volume produces larger fluctuations in the fluores-
cence signal, while brighter molecules can diminish the contri-
bution of the Poisson-distributed shot noise to the PCH. Both
of these effects make the PCH more sensitive to deviations in
the model, which results in a larger c2

red value with the same
level of deviation. Secondly, the second-order correction term
is proportional to the square of e and is thus more significant
in the case of larger e values. Finally, at very high excitation-
laser-power levels, a large portion of the fluorescent molecules
is trapped in the triplet state. The existence of a triplet state
substantially lowers the fluorescence saturation level so that,
at such excitation powers, the fluorescence emission is no
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longer proportional to the excitation strength, especially at lo-
cations near the focal point. As a result, the shape of the ob-
servation volume is altered so that it further deviates from a
3D Gaussian function.

In summary, we found that, in most cases, the first-order cor-
rection is sufficient to determine the concentration and bright-
ness of one or more analytes present in a sample. The second-
order correction is necessary only if it can dramatically reduce
the value of c2

red after introducing an additional fitting parame-
ter, and return a well-defined value for F2. The first-order cor-
rection also has the advantage that the semiempirical fitting
parameter, F, has a straightforward physical meaning. As a
result, we used (almost exclusively) the first-order correction in
the following studies.

2. Dependence of F on Instrument Configuration

We performed all our experiments with circularly polarized ex-
citation in order to be consistent with our calculations. Accord-
ing to Richards and Wolf,[26] the focus of circularly polarized or
unpolarized light is symmetric with respect to the optical axis,
whereas that of linearly polarized light is slightly elongated in
the plane of polarization. To verify the significance of this
effect on our PCH model, we measured a series of PCHs by ro-
tating the quarter wave plate in the excitation light path. We
found that, when changing the polarization of the excitation
laser from circular to elliptical and then to linear, the value of
the fitted F remains the same (within the fitting error). This
result demonstrates that, although our model is based on the
analysis of excitation with circularly polarized light, it can also
be applied to systems with linearly or partially polarized excita-
tion.

The shape of the observation volume is greatly affected by
the optical configuration of the setup (i.e. , by parameters such
as the objective type or the size of the confocal pinhole). To
quantify these effects, we performed PCH measurements on
our microscope using either the 60N water-immersion objec-
tive or the 100N oil-immersion objective. For each pinhole, we
measured the PCH of TMR in water at three different concen-
trations and three different excitation powers for each concen-
tration. Then, we fitted the nine PCHs for each pinhole size
with the first-order-correction model. The average F is shown
in Figure 3. We can clearly see that the value of F increases as
the size of the pinhole increases. Although the 100N oil-im-
mersion objective has a higher magnification, which makes the
50 mm pinhole equivalent to a 30 mm pinhole for a 60N objec-
tive, it still results in a larger F value than that obtained with
the water-immersion objective. From these results we can con-
clude that the water-immersion objective, with a smaller pin-
hole, can produce a more Gaussian-like observation volume
and a better rejection of the out-of-focus background.

The waist of the excitation laser beam compared with the
objective back aperture is another essential parameter for con-
trolling the shape of the observation volume. According to
Hess and Webb,[21] overfilling the back aperture creates a small-
er focal volume but the OVP deviates more from a 3D Gaussian

profile than with underfilling. We found that the value of F in-
creases with the size of the excitation laser waist.

3. Resolving a Mixture of Two Fluorescent Species

The major application of the PCH technique is to differentiate
between fluorescent species according to their molecular
brightness. We demonstrated in our recent Communication
that our corrected 3D Gaussian model for one-photon excita-
tion PCH was able to resolve a binary mixture of fluorescent
dyes (TMR and Cy3) having a fivefold difference in bright-
ness.[19] A one-species fitting to the PCH of the mixture would
result in an F value that is much larger than that expected for
either of the two individual dyes. If F is fixed to the correct
value during the fitting, a large c2

red value is obtained. These
two facts indicate the presence of more than one species in
the sample. We find that a two-species model is needed to fit
the data. This two-species fitting is usually able to recover the
correct F value without any input from the one-species mea-
surement, which is an important advantage of our model.[31]

To characterize the ability of the PCH technique to discrimi-
nate two different fluorescent species, MOller et al.[20] fitted a
one-species model to a calculated or experimentally measured
two-species PCH. They denominated the c2

red in this fit specifi-
cally as c2

d. A value of c2
d<1 indicates that the one- and two-

species models are statistically indistinguishable, whereas a
value of c2

d>1 means that the two species can be resolved.
This c2

d analysis was used by MOller et al. to illustrate how dif-
ferent experimental conditions, such as the fluorophore con-
centrations and their brightness, can affect the resolution of
the PCH analysis. Generally, they concluded that a reasonably
lower concentration, a higher brightness, and a larger differ-

Figure 3. Dependence of the fitted F on the objective and the pinhole size.
Water-immersion-objective measurements were taken with the focal point at
100 mm above the glass surface, whereas this distance was 10 mm for oil-im-
mersion-objective measurements. For each pinhole size, nine PCHs were meas-
ured, with the TMR concentration being 2, 4, and 8 nm, and the excitation
power being 35, 70, and 130 mW. The shown F values are the averages of all
nine measurements and the error bars represent the standard deviations.
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ence in the brightness of the two species would lead to a
higher resolvability in the PCH analysis.

When applying these c2
d statistics to our corrected model, a

subtle problem may arise: Because the correction introduces
additional fitting parameters (one parameter for the first-order
correction and two for the second-order correction), the one-
species corrected model has more degrees of freedom to
adjust in a fit. Therefore, the c2

d alone is sometimes not suffi-
cient to judge the number of species in the sample. In addi-
tion, either the fitted value of F should be used as a criterion,
or F should be fixed during the fitting.

Practically, we calculate a two-species PCH with our correct-
ed PCH model [Eqs. (24) and (25)] for a given value of F. Then,
we fix F to this value during the fitting of the calculated PCH
with a one-species model and we find the value of c2

d. In this
way, the resulting c2

d value is able to quantify the resolvability
of the method for a given set of experimental conditions.

We found that the value of c2
d showed qualitatively the same

dependence on N̄ and e as that found by MOller et al.[20] How-
ever, when fixing the N̄ and e values of both species, we found
that c2

d decreased as the value of F increased (Figure 4). This

trend suggests, not surprisingly, that the out-of-focus emission
is detrimental to the resolution of the PCH analysis, that is, an
ideal 3D Gaussian observation volume profile would have the
highest resolution. Thus, factors that can result in a large F,
such as instrument misalignment, excessive overfilling of the
objective back aperture, an excessively large pinhole, and the
use of an oil-immersion objective, should be avoided in order
to achieve a better discriminating ability for the PCH. Never-
theless, we must point out that a tradeoff exists. An extremely
small pinhole, which decreases the detection efficiency, or an
extreme underfilling of the objective back aperture, which in-
creases the size of the observation volume, also decreases the
resolution of the PCH method.

Conclusions and Perspectives

PCH is a new technique in the area of few-molecule spectros-
copy and is showing much promise. Our work validated the
PCH method on one-photon excitation confocal microscopes,
further expanding the applications of the PCH analysis. Actual-
ly, with a one-photon excitation, because the photobleaching
is a less serious problem than with a two-photon excitation,
the molecular brightness can usually reach a higher level, thus
increasing the resolution of the PCH analysis and decreasing
the data-acquisition time. Moreover, our correction method
can serve as a general approach to describe a Gaussian-like
function. The corrected treatment we validated for describing
the contribution of the out-of-focus fluorescence may certainly
be applied to improve the FCS analysis. A study of this effect is
in progress.

Materials and Methods

Instrumentation and Samples: For all our experiments we used a
confocal microscope (based on a Nikon Eclipse TE300 inverted mi-
croscope). The 530 nm laser from an Ar/Kr mixed gas laser (643-
AP-A01, Melles-Griot, USA) was coupled to a spatial filter through a
single-mode optical fiber (HPUC-23A-400/700 s-3.5AC-20, OZ-
Optics, Canada), and then directed by a dichroic mirror (540DRLP,
Omega Optical, USA) into a water-immersion objective (Plan Apo
60X NA=1.20, Nikon, USA) or an oil-immersion objective (Plan Apo
100X NA=1.40, Nikon). An achromatic quarter wave plate (450–
800 nm, Thorlabs, USA) was placed after the spatial filter to convert
the linearly polarized laser radiation into circularly polarized radia-
tion. The excitation power, which was about four times the power
at the sample, was measured before the spatial filter. In all experi-
ments, the e�2 diameter of the excitation laser was approximately
equal to the diameter of the back aperture of the objective. The
emitted fluorescence was collected by the same objective and fo-
cused into a pinhole (50, 100, or 160 mm of diameter) before pass-
ing through an emission filter (595AF60, Omega Optical) and being
detected by an avalanche photodiode (SPCM AQR15, EG&G,
Canada). A counter/timer data acquisition card (PCI-6602, National
Instruments, USA) recorded the delay time between two consecu-
tive detected photons.
Tetramethylrhodamine-5’-maleimide (referred to as TMR) (Molecular
Probes, USA) was used in all PCH measurements in this article. The
concentration of TMR was calibrated by absorption measurements.
PCH measurements were performed in a LabTek II chambered
cover glass (Nalge Nunc International, USA) to prevent changes in
the concentration through water evaporation.

Numerical Computing and Data Analysis: The photon-count time
trace can be reconstructed from the delay time series at any arbi-
trary bin time. The photon counting histogram was built from the
time trace and then fitted to a certain PCH model using the Leven-
berg–Marquardt least-square method in Igor Pro (WaveMetrics,
USA). Libraries that contain the PCH integration values [Eq. (10)] for
3D Gaussian or calculated observation volume models with differ-
ent k and e values were precomputed and stored to reduce the
time needed for the calculation of the theoretical histograms.
We characterized the goodness of the PCH fit using reduced c2 sta-
tistics [Eq. 29]:

c2
red ¼

1
kn�d

Xkn

k¼1

ðPk��PkÞ2

s2
k

ð29Þ

Figure 4. Dependence of the c2
d value on F. The c2

d value is calculated by fitting
a one-species, first-order PCH model to a calculated two-species PCH with
N̄1=1, e1=1, N̄2=0.5, and e2=4. The number of data points is 1 D 107. The
value of F is fixed during the fitting.
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where kn is the number of histogram points in the fitting, d is the
number of fitting parameters (degrees of freedom), Pk is the obser-
vation value, P̄k is the value of Pk predicted by the PCH model, and
s2

k is the variance of the kth histogram point, which can be calcu-
lated according to a binomial distribution model[14] [Eq. (30)]:

s2
k ¼

Pkð1�PkÞ
N

ð30Þ

where N is the total number of data points used to build the histo-
gram. A perfect fit of the data results in a c2

red value that is equal to
one. The larger the value of c2

red, the more the model deviates from
the experiments.
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