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NOTES 

Least-Squares Equivalence of Different Representations 

of Rotational Constants 

Observed spectroscopic line positions are often fitted to one of several different representations of a 

given pair of upper- and lower-state molecular Hamiltonians. For example, there are three representa- 

tions that are commonly used to fit the observed lines YC, i = 1, 2, . . ., n, of the P and R branches of 

a ‘Z-Q band. First, the band origin v0 and the upper- and lower-state rotational constants are considered 

as the unknown adjustable parameters: @ T = (Ye, B’, D’, B”, D”), where @r denotes the transpose of 

the vector 0. The 0 representation is frequently used when the observed line positions are fitted to cal- 

culated line positions obtained by diagonalizing upper- and lower-state molecular Hamiltonians (I). Sec- 

ond, the unknown adjustable parameters may include the differences between the upper- and lower-state 

rotational constants and, say, the lower-state constants: ijT = (~0, AB, AD, B”, D”), where AB = B’ - B” 
and AD = D’ - D”. The 6 representation is often used when many bands have a common vibrational 

level and when determining polyatomic vibration-rotation coupling constants (2). Third, the rotational 

constants may appear only as sums and differences: BT = (YO,LIB, AB - AD, ZD, AD), where 

ZB = B’ + B” and ZD = D’ + D”. The B representation, which can be expressed in terms of the 

integral running number m, where m = --J for P lines and m = J f 1 for R lines (3), is commonly used 

in the reduction of infrared and Raman data. The minimum-variance, linear, unbiased (MVLU) (1) 
1 fi 

estimates 9, 6, and @ of the parameters in the 0, 6, and ~1 representations are obtained by least-squares 

solution of the appropriate overdetermined equations 

v = XQ + E, (la) 

v = YS + E, (lb) 

v = 20 + E. (1c) 

The elements of the least-squares coefficient matrices X, Y, and 2 are well known (Table I). The vector 

E contains the unknown measurement errors in v, which for simplicity are assumed to be random and 

independent, to have zero mean, and to be from one probability distribution with unknown variance G. 

The purpose of this Note is to show the least-squares equivalence of these three representations and to 

examine the propagation of variance and covariance among them. 

A key feature of these representations is that the @,6, and p vectors are related by linear transforma- 

tions with square transformation matrices. One set of transformations among the representations is 

6 = A& @a) 

p = B6, (2b) 

B = CY, (2c) 

where the elements of the square matrices A, B, and C are given in Table II. (All other transformations 

can be expressed in terms of these and their inverses.) Furthermore, the coefficient matrices X, Y, and 2 

(Eq. 1) are related to the transformation matrices A, B, and C (Eq. 2) : 

X = YA, (3a) 

Y = ZB, (3b) 

z = xc, (3c) 
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lb1 v=YS+r 

as can be verified from the matrix elements given in Tables I and II. The least-squares equivalence of the 
0, 6, and p representations follows directly from Eqs. (l), (2), and (3). 

Consider, for example, the equivalence of the Q and 6 representations. The least-squares solution of 

Eq. (la) yields the MVLU estimate $of the @ representation (5) 

Lj = (XrX)-rxrv, (4) 

and the estimated variance-covariance (symmetric) matrix containing the standard errors and correla- 
L) 

tions associated with @ is A 
v&q = s&XrX)-r, (5) 

where the estimate of the variance of the measurement errors is 

&a” = (v - Xi)r(v - Xi)/(n - 5). (6) 

The transformation 6 = A@ (Eq. 2a) can be used to transform the MVLU estimates @ into a set of 

values g in the S representation: 

: = A(XTX)-IX%. (7) 

However, X = YA (Eq. 3a), with which Eq. (7) becomes 

“s = A(ArYrYA)-‘ArYrv. (S) 

Since the matrices A and YrY are square and have inverses, Eq. (8) simplifies 

: = (YrY)-‘YTv. (9) 

The right-hand side of Eq. (9) is readily identified as the least-squares s$ution of Eq. (lb) ; i.e., “6 = 6. 

Thus, the linear transformation 6 = AB carries the MVLU estimates @ over into the identical set of 

TABLE II 

Tronsformalions Among the fl.8, and p Represent~ons 
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TABLE Ill 

MVLU Estimates for the p,8. and p Representations of the IO,01 E’Z -XtZ ThO Bond” 

(al p representation : 181 degrees of freedom 

5.6773726x IO-” 

ib) 6 representot,on : $ = 000533 , 161 degrees of freedom 

(cl p representatron : $ = 0.00533 , 181 degrees of freedom 

2.2016211x10-‘g 

3.2822474 x10+ 5,7421332XlO-” 

2.2124726~10~‘~ 3.3147795X10-‘5 

1.2128946xlO~” 

-3.2532163x10-I7 5.7421332 xi0“’ 

-2.2980399x10-~’ 3.3147795 x10+ 2.2354530~1O-~~j 

1.543l483xlo-‘3 
I 
I 

-4.0467261x10-!7 8.8620193x IO-‘s 

1.3141119x lo-‘7 -3.3831853X10-” 1.2128946x IO-*’ 

h h a All mts ore reciprocal centimeters. VB , Vs , 
A 

and VP ore square , symmetric motrlces and have not been rounded. 

values that would result from a least-squares fit of v directly to the parameters 6. Similarly, one can show 

that the variance estimated in this second least-squares fit &a2 is identical to Bb2 (Eq. 6) and that the 
,. 

variance-covariance matrix $‘a is related to VB (Eq. 5) by the propagation relation 

0, = A?,#. (10) 

. A 
Thus S and @ will generally have different variances, covariances, and correlation coefficients. 

Generalizing, it is clear that one can obtain the MVLU estimates 6, 6, and $ and their estimated 

variances and covariances by making one least-squares fit using any one of the representations and then 

transforming these results to the other representations using Eq. (2) and the appropriate form of Eq. (10). 

Since all three representations are equivalent, one is free to select the one most convenient or appropriate 

for the needs at hand. These conclusions are straightforwardly verified by numerical calculations. As an 

example, Table III displays the estimated parameters and variance-covariance matrices obtained by 

fitting the high-quality measurements for the EiI: - XB(0, 0) band of ThO (6) to the three representa- 

tions. Equations (2) and (10) are fulfilled within round-off, 

It is worth noting the role of covariance in the transformation of the estimated molecular parameters, 

variance, and covariance from one representation to another. For example, Eq. (10) shows that the 

variance of $B in the S representation is related to the variances and covariance of B’ and B” in the @ 

representation by 

i-8 (A@ = ?.#) - 2 ?,&I’, B”) + &(W). (11) 

Because of the strong, positive correlation between B’ and B”, the elements of ?t in Eq. (11) are all 

positive and of comparable magnitude. Consequently, the variance of AB in the example given in Table 

III is three orders of magnitude smaller than it would be if B’ and B” were independent (uncorrelated.) 

In conclusion, we add a few remarks. First, there are representations that are not rigorously equivalent 

to the three above, but may be nearly so. Plfva and Telfair (7) are examining the combination-difference 

representation in this regard. Second, the assumptions regarding the errors E of the observed lines v are 

in no way restrictive. The foregoing analysis can be carried through to the same conclusions using the 

more general correlated least-squares formulation (8,9) should the measurements be considered to be 

unequally weighted and/or the errors to be correlated. Third, the above conclusioas, which were 
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developed for a single band, apply equally well to a group of bands being reduced to molecular constants 
simultaneously. Lastly, the above considerations have been for linear least-squares only. However, it is 
not dithcult to show that the same conclusions apply to nonlinear least-squares, a point which we have 
verified numerically in the reduction of B-Q, aP2, and 4S411 bands to molecular constants. 
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