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Numerical computation of 9-j symbols
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A formula for the algebraic calculation of a general 9-j symbol is compared
numerically with a formula using a summation over the triple products of 6-j
symbols. The latter is found to be more advantageous computationally.

Many problems involve the coupling and recoupling of four angular momenta;
this naturally leads to the need to evaluate 9-j symbols [1-3]. An example is the
numerical fitting of a spectrum by iterative adjustment of parameters. In such
problems there is much interest in improving the computational efficiency of the
algorithm used to evaluate the 9-j symbols. One commonly used procedure is to
evaluate a general 9-j symbol as a summation over the triple products of 6-j symbols
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The summation is over all possible values of k that satisfy the triangle relationships

in the 6-j symbols, and each 6-j symbol can be evaluated algebraically from the
expression [1],
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The summation in equation (4) is over all positive integer values of z such that none
of the factorials have negative arguments.

An alternative possible algorithm is to use the simplest algebraic formula which
was derived by AliSauskas and Jucys [4] and is given in Jucys and Bandzaitis [5]
with some minor modifications and (with a misprint) in Biedenharn and Louck [6].
It involves summations over only three indices
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In equation (7), the summation is over all positive integer values of x, y, z such that
none of the factorials is less than zero, that is, the integer values of x, y, z satisfying
both

0 < x<min (jo; —jz1 +J23>J13 +J23 — Jas)
0<y<min (j3; —j3z +J33sJ12 +J2z —Jazh ®)
0<z<min (jy; —jiz2 +Jissd11 +i21 — a1
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It has been thought that the calculation of a general 9-j symbol using Formula
(5), the simplest algebraic formula, would be more efficient computationally than
evaluation by recursive summations of products of 6-j symbols, formula (1). The
purpose of this brief note is to report a test of formula (5) and formula (1) in order to
determine whether the simplest algebraic formula is superior for the numerical
evaluation of 9-j symbols.

Formula (5) has been coded the same way as the algorithm for formula (1) [1]
since both are summations of products and quotients of many factorials. The
logarithms of the factorials for all integers are calculated up to the largest possible
one in the calculation and stored in an array. The array is then used in a ‘look-up
table’ fashion in the actual calculation. To ensure that the programming is correct,

Table 1. Comparison of formula (1) with formula (5) for calculating 9-j symbols: number of
factorials used and numerical stability.

Formula (1) Formula (5)
Number of Number of

9-j symbols factorials Value factorials Value
5 8 9
6 10 11 848 1-4697 x 10™# 3909 1-4697 x 1074
7 11 16
S5 6
7 8 9 824 2:4512 x 10™4 1914 2:4512 x 1074
8 9 14

18 14 8
26 18 10 2904 2-6891 x 107° 969 2:6891 x 1077
40 30 14

10 12 12

14 16 16 2032 1:0697 x 103 9033 1-0701 x 1073
14 16 26

0 9 1

5 8 4 624 1-2854 x 10™* 1053 1:2854 x 10™*
6 1L .5

12 13 14

15 16 17 4928 1-0880 x 10™% 27744 1:0189 x 10~

18 19 20




Downloaded by [Stanford University] at 14:50 27 February 2012

1266 Research Notes

the algorithm has been checked with the orthogonality relation [1-3],
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The calculations indicate that generally the algebraic algorithm, formula (5), is
much slower than the one with repeated summations over 6-j symbols, formula (1);
see table 1. Most of the computing time in both algorithms appears to be spent on
accessing the array in which the logarithms of the factorials are stored since the
programs basically consist of repeatedly accessing the array elements and adding
and subtracting them. A comparison between the number of factorials and comput-
ing time shows that they have a linear relationship. To discover why the algorithm
using formula (5) is so slow, the total number of such factorials for each algorithm in
calculating some trial 9-j symbols is printed out. It was found that although formula
(5) contains fewer summation indices, the total number of factorials needed in the
calculation usually exceeds by far that for formula (1). It is also found that the

Table 2. Comparison of formula (1) with formula (5) for calculating 9-j symbols: doubling of
the 9-j symbol arguments.

Formula (1) Formula (5)
Number of Number of

9-j symbols factorials Value factorials Value
3 45
4 3 2 216 2:5854 x 1073 969 25854 x 1073
21 3
6 8 10
8 6 4 360 1-3288 x 10~ 4560 1-3288 x 10~#
4 2 6

1. .2 3
2 3 4 232 —9:2215 x 1074 150 —9-2215 x 10~*
3 45
2 4 6
4 6 8 416 —3-8965 x 1074 339 —3:8965 x 107*
6 8 10

9 7 4

20 15 7 360 54302 x 10~% 2544 54302 x 107*
13 9 5

18 14 8
40 30 14 776 2:6891 x 10~° 13989 —0-68037
26 18 10
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Table 3. Comparison of formula (1) with formula (5) for calculating 9-j symbols: test of
symmetry properties.

Formula (1) Formula (5)
Number of Number of

9-j symbols factorials Value factorials Value
4 7 9

5§ 9 13 456 54302 x 1074 402 54302 x 10~*
7 15 20
4 7 9

7 15 20 360 —54302 x 107* 15375 —5-4302 x 107*
5 9 13

7 15 20
4 7 9 776 54302 x 104 9579 54302 x 1074
5 9 13

9 7 4

13 9 5 1144 —54302 x 107* 276 —5-4302 x 10™¢
20 15 7
4 5 17
9 13 20 360 —54302 x 107* 14178 —54302 x 1074
7 9 15

7 20 15

5 13 9 360 5-4302 x 1074 780 5:4302 x 1074
4 9 7

number of factorials increases much faster with j using formula (5) than using
formula (1); see table 2. Hence, formula (5) calculates 9-j symbols much more slowly
at high j values.

Although formula (5) contains only three summation indices, it inherently has
very poor symmetry, as mentioned by Ali$auskas and Jucys [4]. For relatively low j
values, when a symmetry operation is applied, the total number of factorials could
already vary by a factor of 50; see table 3. In contrast, the number of factorials
needed using the algorithm with 6-j symbols is relatively stable with respect to
symmetry operations. In table 3, the number of factorials varies at most by a factor
of 4. Because of the lack of symmetry of formula (5), it is also expected that this
difference under symmetry operations will increase at higher j values. These results
indicate that the efficiency of an algorithm for evaluating 9-j symbols is not directly
related to the number of summation indices.

One more disadvantage of using formula (5) is that it has a poorer numerical
stability. At double precision level, the algorithm using 6-j symbols deteriorates at
about j = 75 because of round-off errors, while the algorithm using formula (5) may
lose accuracy below j = 20, depending on the total number of summation terms as
well as the j values. In table 1 and table 2, there are a few examples for which
formula (5) failed to give the correct results. Both the inherent lack of symmetry and
the rapidly increasing number of factorials as a function of j decrease the numerical
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stability of formula (5). In addition, formula (5) is a large summation whose terms
alternate in sign because of the phase factor (—1)**?*% and the terms in the sum-
mation are calculated from products and quotients of extremely large factorials.
Consequently, the formula essentially calculates the value of a 9-j symbol whose
absolute value is smaller than one from subtractions of many possibly very large
numbers. In formula (1), the situation is better. After the 6-j symbols have been
calculated, all the numbers are between —1 and 1, and the summation of their
products can be calculated much more accurately on a computer.

Although inferior to equation (1) in general, for some types of 9-j symbols, for
example, those with small j arguments, equation (5) may give a superior per-
formance to equation (1). If the j arguments are small and very different in magni-
tude, one can exploit the symmetry properties of equation (5) and obtain an
optimized algorithm that, if numerically stable, may be faster than using equation
(1). It should be noted, however, that when one of the j arguments vanishes, the 9-j
symbol reduces to a multiple of a single 6-j symbol, which can be evaluated by a
simpler algorithm [1]. Moreover, if two of the j arguments in the 9-j symbol are 1/2,
as is the case for LS-jj coupling transformations, then its evaluation may be accom-
plished most facilely by programming the algebraic expressions for this case [7, §].

In conclusion, the algebraic formula for calculating a general 9-j symbol,
although simpler in apperance, is inferior to the formula using products of 6-j
symbols not only in terms of symmetry but also in terms of computational efficiency
and numerical stability. It does not represent an improvement for the numerical
evaluation of a general 9-j symbol. The formula involving summations of triple
products of 6-j symbols, formula (1), appears to be preferred to the simplest alge-
braic form, formula (5), for evaluating a general 9-j symbol.
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