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A diatomic molecule has in general three angular momenta: electronic orbital
angular momentum L, clectronic spin angular momentum S, and nuclear
rotation angular momentum R. They couple together to form the total angular
momentum J. Nuclear spin angular momentum I, if present, usually couples to
J to form F, but this coupling is ignored in this paper. In general, L, S, and R
are not conserved, whereas J is. We consider the limit J > L, S, where angular
momentum addition can be treated semiclassically. We present correlation
diagrams that connect five limiting coupling cases (Hund’s cases (a)—(e)) for a
given value of J at a fixed internuclear separation r. The results pertain to bound
states of a molecule as well as to two atoms ‘in collision’.

1. Introduction

A stationary state of a system of two atoms in a bound or free (scatlering) state
is specified by a set of exact quantum numbers that may be related to the symmetry
properties of the Hamiltonian H that describes the motion of clectrons and nuclei.
These quantum numbers are the total energy E (because the total Hamiltonian does
not depend on time), the square of the total angular momentum J(J + 1), the
projection of J onto the space-fixed quantization axis M (because the total
Hamiltonian is invariant under an arbitrary rotation of the coordinates of electrons
and nuclei), the total parity P (because the total Hamiltonian is invariant under the
inversion of spatial coordinates of electrons and nuclei), and the transposition
symmetry T of identical nuclei in the case of a homonuclear molecule (assuming that
the hyperfine interaction in the total Hamiltonian is ignored). The set n = E, J, M,
P, T represents exact quantum numbers that enter into the electron—nuclear
wavefunction ¥, (r). Here r stands for the vector that joins the two nuclei; as for the
spatial and spin variables of electrons, they are not expressed explicitly.

The set of exact quantum numbers n is usually complemented with a set of good
quantum numbers g that become additional exact quantum numbers in a certain
limit of angular momentum coupling. The set n, g specifies a wavefunction ¥, ,(r)
that represents the first-order approximation to the exact wavefunctions ¥, (r). By
this statement we mean that a wavefunction ¥,(r) can be expanded in the ¥, ,(r)
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as a complete basis set

V1) =) F, g ¥, (D), (1
=

with one coefficient, F, ,, being on the order of unity, and all others much smaller
than unity in their absolute values. The set of good quantum numbers g that makes
the representation (1) valid, clearly depends on the interplay of different kinds of
interactions that enter into the Hamiltonian. For a bound state of two atoms (a
stable diatomic molecule), a set of good quantum numbers usually includes electronic
quantum numbers. Different selections of such electronic quantum numbers form the
five so-called Hund’s coupling cases [1-4]. The situation becomes more complicated
for the continuum states, because the scattering boundary conditions for these states
are more versatile than the boundary conditions for the bound state. Nevertheless,
the idea put forward by Hund in his pioneering paper [1] for bound states can be
applied easily to the continuum states if, in place of an exact function ¥,(r),
consideration is given to its counterpart at a fixed internuclear distance r, ¥,(f; r),
where F is a unit vector in the direction of the molecular axis [5, 6], and the dynamical
variable f is separated from the parameter r by a semicolon. Clearly the ¥, (F;r)
represent the wavefunctions of electrons and a rotating diatom at a fixed internuclear
distance r, and they are eigenfunctions of the modified Hamiltonian, H,,, in which
the kinetic energy term that corresponds to the radial motion of atoms is removed.
We emphasize that the symmetry of the original Hamiltonian H and that of the
modified Hamiltonian H,, , are the same. Because the functions ¥, (f; r) describe the
electronic motion in the field of the rotating rigid nuclear framework, they can
be called rotronic (rotational-electronic) wavefunctions. The use of rotronic for
rotational-electronic is in the same spirit as vibronic is used for vibrational
electronic, rovibrational for rotational-vibrational, and rovibronic for rotational-
vibrational-electronic.

Similar to the representation (1) for the total wavefunction, two equations can
be written, one relating the exact rotronic function ¥, (F; ) to its zero-order counterparts
¥, o(f;r), and another expressing the total wavefunction in terms of zero-order
rotronic functions:

qju (f‘; !‘) = Z ‘F;i.g,"(r] lpu.g‘{f‘; F')., {2)
and .

l‘pﬂ (r) = Z (Dri,g'(r) an.g‘(P; l')_ (3)
a

In equation (2), r is a parameter and Tt represents two dynamic variables. If, for
a given r, only one coefficient in the sum in equation (2) is large, the corresponding
zero-order rotronic function, say ¥, , (f; r), provides a good approximation to ¥, (¥; r)
at this internuclear distance; this approximation corresponds to a particular Hund’s
coupling case at a given internuclear distance r for a set g. If two or more coeflicients
are comparable, the situation corresponds to an intermediate Hund’s coupling case.
The determination of the coefficients F, , (r) amounts to the solution of a system of
linear algebraic equations.

In equation (3), r in ¥,(r) represents three dynamic variables; r represents a
dynamic variable in @, (r) and a parameter in ¥, (F; ). If only one coefficient in
the sum (3) is large, the corresponding zero-order function, say D, (N, ,(Fr),
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provides a good approximation to ¥,(r) in the whole region of nuclear motion. This
approximation corresponds to a particular Hund’s coupling case for a given state of
the radial nuclear motion described by the radial wavefunction @, ,(r). The determi-
nation of the functions @, ,.(r) amounts to the solution of a system of coupled
second-order differential equations.

When quantum numbers comprised by the set n as well as parameter r in equation
(2) are varied, the coefficients F, ,(r) change, which implies a passage from one Hund’s
coupling case to another. This paper’s aim is to describe the interconnection between
pure Hund'’s coupling cases on the basis of the correlation diagrams of the rotronic
states of a diatom. In doing so we assume that the rotational angular momentum of
the nuclei is much larger than the orbital and spin angular momenta of the electrons.
This condition, which is often met in practice, allows a simplification of the algebra
of angular momentum addition and permits the derivation of simple expressions for
the rotronic energy levels of a diatom for any of the pure Hund's coupling cases.

Our paper is organized as follows. Section 2 briefly describes the different Hund’s
coupling cases, and section 3 considers simplifications that arise in the vector addition
scheme when one vector is much smaller than the two others. Under this condition
we introduce the J-helicity representation, which allows us to replace the addition
of vectors by the addition of (signed) scalars. In sections 4 and 5 the parity and the
nuclear symmetry of rotronic states are discussed. Section 6 examines J-helicity good
quantum numbers and the rotronic energies for different Hund’s coupling cases, and
section 7 outlines general rules for construction of the correlation diagrams and gives
an example of a correlation diagram.

2. Hund’s coupling cases

For a fixed distance between two atoms, r, the various Hund’s cases are classified
according to the relative strengths of three basic interactions present in the molecular
Hamiltonian in the body-fixed (rotating) frame: first, coupling of the electronic orbital
angular momentum L to the molecular axis f (interaction of an electrostatic nature,
V.,), second, coupling between L and electronic spin S (spin—orbit interaction of a
magnetic nature, ), and third, coupling of L and S to the total angular momentum
J (rotational or the Coriolis interaction, ¥, ). When measured in terms of frequencies,
these three interactions correspond roughly to first, the frequency ol an electronic
transition w,, between molecular states that arise from a degenerate atomic state,
second, the frequency of a fine-structure transition in a free atom w,,, and third, the
frequency of rotation of the molecular axis w,,,. Within this qualitative estimate, w,,
does not depend on r, w,, is proportional to r~? (at a fixed value of the orbital
angular momentum R of the nuclei), and the r dependence of w,, is governed by the
nature of the adiabatic molecular potential curves. At large internuclear distances,
@y, falls off usually much more quickly than e, does. In what follows we ignore
spin—spin interaction that can act, in principle, to couple S directly to f.

The qualitative pattern of different Hund’s cases corresponds to all possible
hierarchies of the type ‘strong-intermediate-weak’ among the three interactions
involved. Each hierarchy defines a sequence of coupling of appropriate angular
momenta, that is, it determines a set of good quantum numbers g.

The total number of different hierarchies is 3! = 6. L and S do not play exactly
the same role, however. For instance, L couples directly to f whereas S does not.
Because of this behaviour, only five distinct angular momentum coupling cases result.
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Table 1. Hund’s coupling cases.

Hund’s
coupling case v, Ve Vo

a strong intermediate weak

b strong weak intermediate
¢ intermediate strong weak

d intermediate weak strong

e weak intermediate strong

e’ weak strong intermediate

“ Cases e and e’ are degenerate because the good quantum numbers for
these two cases are the same. It is traditional to adopt Hund’s choice of
case ¢ and omit e’

s
B

case ¢
e

o 1
0
0 1
B
Figure 1. Different Hund’s coupling cases in the af plane, where o = w,,/w,, and f§ = w,,/w.,.

Points far away from the boundaries between different regions correspond to pure
Hund’s coupling cases, as indicated. Crossing of a boundary implies a change of the
coupling case. The dashed line shows one of many possible paths for changing the
coupling cases.

This conclusion will be clearer when the good quantum numbers are identified
explicitly (see below). For the time being, we can list six coupling cases as shown in
table 1.

Different Hund’s coupling cases can be also displayed schematically as different
regions in the plane of two variables ¢ = w /o, and f = w,,,/w, as shown in figure
I. Note that o strongly increases with increasing r (free-atom limit), and f is
proportional to the total angular momentum.

3. Angular momenta of rotronic states

For a rotating diatomic system with a fixed internuclear distance, we consider
the addition of the total electronic angular momentum j (also called J,; see Herzberg
[3], p.226) and the nuclear orbital momentum R to form the total angular
momentum J

i+R=1 (4)
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In turn, j is the sum of the electronic angular momentum L and electronic spin S

j=L+8S. (5)
Substitution of (5) into (4) yields

S+N=1J, (6)
where

N=L+R (7)

is the total orbital angular momentum of electrons and nuclel.

Each of the above five vectors, L, S, j. R, J, is characterized by projections onto
a space-fixed axis and onto the molecular axis. Let the projections of these vectors
onto a space-fixed (SF) axis be Ly, S,, jz» R,, J;, and the projections onto the
body-fixed (BF) molecular axis, L_, S., j., R., J., be 4, £, 3, 0, @, where the z axis
is chosen to lie along r. A signed projection is denoted by a superscript tilde.
According to the conventional nomenclature, these quantum numbers should be
called r-helicity quantum numbers. (The identities R, = 0 and J, = 2 follow from the
fact that R is perpendicular to r and J. = j..)

Traditionally 4 is defined as || (Herzberg [3] equation (V.2)), but X is kept as
a signed quantity denoted by X (Herzberg [3] equation (V.6)). The absolute values
of © that can arise from the addition of /4 and X can be written as 2 = |1 + 3]
(Herzberg [3] equation (V.7)). These definitions are incomplete, however, in that for
some situations the same value of 2 may correspond to different states. For example,
a *Il state in which 2 = 1/2 may arise from /i = 1 and ¥ = —1/2,and 4 = —1 and
2 = 3/2. To distinguish such states we must introduce an additional quantum number
I'defined as I' = A2 The quantum number I"serves the same purpose as the seniority
quantum number does in atomic spectroscopy [7].

Consider when J, R, N >» L, S. In this limit all the vector addition coeflicients
simplify because they can be replaced by their asymptotic representations that are
valid when two vectors are large. In particular, 3j symbols become the Wigner d
functions (see Appendix). A very simple geometric interpretation exists for this
simplification. Assume, for instance, that R and j add to form J (figure 2). In the
limit J, R > j, it can be easily seen from figure 2 that

J—R=j,(1+ k), (8)

where the correction term k is of the order of max (j,/J, j?/J?). Therefore, to a first
approximation with respect to the ratio j/J the quantity J — R can be identified with

J;» which is the projection of j onto J. We call this approximation the J-helicity

representation. In the J-helicity representation, the operators L;, S,, jz, Ry, J; are
associated with the quantum numbers L,, S,, j,, R, J.

In the J-helicity representation, equations (4), (6), and (7) for the vector quantities
become equations for scalar quantities:

jr+R=1J, 9)

S;+N=J, (10)
and

N=L,+R. (1)

Equations (9) to (11) are the key to reducing the problem of addition of vectors to
simply the addition of scalars.
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[JI=J

L

Iligure 2. Addition of two vectors, R and j, to form J under the condition R, J > j. This
figure illustrates that the projection of j onto J (J helicity) is approximated by J — R
for large J.

4. Parity of rotronic states

The total parity quantum number P is the eigenvalue of the inversion operator
P that transforms the spatial coordinates of electrons and nuclei into the negative
of themselves; by definition, the electron spin functions are invariant under this
operation.

The two possible parity quantum numbers are +1 (positive states) and —1
(negative states). Spatial inversion P can be accomplished as a succession of two
(commuting) operations: the rotation C,(v) through © about an arbitrary axis v and
the reflection o(v) in a plane normal to v [8]:

P = Gy(v)a(v) = a(v) Cy(v). (12)

Each symmetry operation on the right-hand side of equation (12) is exact if it is
carried out in a space-fixed frame; therefore, the parity quantum number P can be
related to other exact quantum numbers that correspond to rotation and reflection.
If v is taken to be directed along the Z axis of the SF frame, and if the sense of
rotation is positive, equation (12) implies

P = exp (iMn) o,,. (13)

Here o,, is an exact quantum number of a specific rotronic state. Clearly, o,, is related
to the parity quantum number P and the projection quantum number M. Because
no property of an isotropic system depends on M, we are free to fix the value of M.
We choose M = J because this choice leads to a simple, appealing semiclassical

identiﬁcat?on for the direction of J and for the meaning of ¢, in the limit of high J
values. Within this convention,

P = exp (iJn) o,,. (14)
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In the high-J limit, the rotronic quantum number o, defined according to
equation (14), becomes the electronic quantum number o, which specifies the
symmetry of the electronic wavefunction under reflection of both the spatial and spin
coordinates in the plane in which the nuclear framework rotates. Indeed, for large
J, J can be considered a classical vector with a fixed direction. The state M = J
corresponds to the situation in which J is directed along the Z axis and the rotation
of nuclei occurs in the X ¥ plane. The semiclassical rotational wavefunction for this
state looks like a pancake lying in the X, Y plane, and the reflection of the coordinates
of the nuclei in this plane does not affect this state. (Classically, it follows that a
reflection of two rotating atoms in the plane of rotation does not change the classical
state of motion.) Thus, the semiclassical limit of equation (14) clearly assumes the
form

P =exp (iJn) o,,. (15)

The difference between equations (14) and (15) in the structure of the wave-
functions yield an interesting conclusion. In the general case, when J is not large, a
rotronic wavefunction that corresponds to definite quantum numbers J, M, and P
does not factor into the product of nuclear and electronic parts, but it does factor
in the limit J >» L, §S.

If J is an integer, exp (iJm) assumes values +1 and so does ¢,,. If J is a half
integer, both exp (iJm) and g, assume values +1i. According to the nomenclature
suggested in [9], we can make the following assignment of rotronic levels of different
reflection symmetries to e and [ labels:

If J is an integer,

levels with reflection symmetry o, = | are e levels, and
levels with reflection symmetry o,, = — | are f levels.

If J is a half integer,

levels with reflection symmetry ¢, = —1i are e levels, and
levels with reflection symmetry o, =i are [ levels.

Had we chosen the opposite sense of rotation through the angle n about J, the
reflection symmetry assignment of rotronic energy levels would have remained the
same for integer values of J, but they would be reversed for half-integer values of J.
This behaviour indicates that the reflection symmetry plays a different role for
diatoms with integer and half-integer values of J. Indeed, if an external electric field
is applied to a diatomic molecule, each 4 component of the /1 doublet will be split
into Stark sublevels. For integer J, the pattern of the Stark sublevels will be different
for e and [ levels, whereas the two patterns will be the same if J is a half integer.
Assume that the Coriolis coupling is vanishingly small. Then for integer values of J,
the two Stark patterns will not coincide; for half-integer values of J, these patterns
will coincide (superimpose) exactly. This behaviour is a manifestation of the Kramers
degeneracy for half-integer values of angular momentum [4, 10], which follows [rom
time-reversal symmetry. The Coriolis interaction lifts the Kramers degenecracy
because the rotational coupling plays the role of a magnetic field.

If the spin is completely decoupled from ¥ arising from the fast rotation of the
molecule, N is a good quantum number. A counterpart of equation (15) is then
written as

P =exp (iINm) a.,, (16)
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where the prime means that the reflection affects only the spatial coordinates of the

electronic wavefunction. Because N is always an integer, o, assumes values + 1. This

is the case discussed in [11, 13]. According to the nomenclature suggested in [11],

states with o, = | are called A’ states, and those with ¢, = — 1 are called 4" states.
Since J and N are related by equation (10) we have

0 = exp(—iS;m) oy. (17)

Equation (17) allows us to generalize the A’, A” nomenclature to the cases in which
the spin—orbit coupling is not small, and therefore the J-helicity quantum number
S; loses its meaning as a good quantum number. This generalization can be
accomplished by the adiabatic variation of the magnitude of the spin—orbit coupling,
that is, by the adiabatic passage from the Hund’s case b to the Hund’s case a. In
identifying the A" and A" levels, [11] considered the case in which the spin-orbit
interaction becomes progressively smaller than the Coriolis interaction with increasing
J. The present treatment does not require the spin—orbit interaction to be much
smaller than the Coriolis interaction but does assume that J is sufficiently high that
the semiclassical picture (figure 2) is valid.

Finally, we note that in discussing the symmetry properties of rovibronic levels
of linear molecules, [ 12] introduced two different planes of reflection: one associated
with vector J and another with vector N. Under the condition J, N > j adopted here
and within our approximation of J helicity, these two planes coincide and need not
be distinguished.

5. Nuclear symmetry of rotronic states

If two nuclei are identical, an additional exact quantum number appears that is
related to the symmetry of the total wavefunction with respect to transposition of
the two nuclei. The eigenvalues, T, of the transposition operator 7 are + 1 (symmetric
states denoted by s) and —1 (antisymmetric states denoted by a). Because of the
different statistics of nuclei (bosons or fermions), 7" is related to the total spin
of the two nuclei I, each possessing nuclear spin I, = I;. For instance, for
*He,(I, = I; = 0), I = 0, and only s states are allowed; for '"H,(I, = I, =1/2),[ =0
for s states (para-hydrogen) and I = 1 for a states (ortho-hydrogen). The assignment
of nuclear spin states to the different transposition states is important for determination
of the correct statistical weight of a given rotronic state.

If the transposition of nuclei is supplemented with the inversion of electrons
through the point C that bisects the distance between the two nuclei, the whole
operation amounts to the spatial inversion of the entire molecular system

P=Tw, (18)

where W stands for the operation of inversion of the spatial coordinates of electrons
through point C. Because P and T are exact symmetry operations, so is W, although
the “electron inversion point’ C is not fixed in space. The quantum number w assumes
values +1 (gerade states denoted by g) and — 1 (ungerade states denoted by u).

If the two nuclei are not identical but their charges are equal, w ceases to be
an cxact quantum number, but it is a good quantum number in the adiabatic
approximation. For instance, for H, and D,, g and u states are completely
independent, and therefore non-rotating H, and D, molecules do not possess a
permanent dipole moment. For HD, the adiabatic electronic wavefunction possesses
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definite parity with respect to the w operation, which implies of course the absence
of a permanent dipole moment. Adiabatic g and u states, however, can be mixed by
the radial motion of nuclei (e.g., by vibrations of a stable molecule), and this mixing
gives rise to a permanent dipole moment of the non-rotating molecule. Because the
internuclear distance is fixed in the rotronic representation, g and u are good quantum
numbers not only for identical nuclei but also for diatomic molecules made up of
different isotopes of the same element.
Combining equation (18) with equations (15) and (16) we get:

exp (iJn) o, = exp (iNm) ¢, = Tw. (19)

For a given rotronic state (N or J is fixed, and w is g or u) and a given transposition
symmetry (7 is a or s), equation (19) shows which reflection symmetry (o, or )
is allowed. If T, w, and o/, (g,,) are given, equation (19) determines the allowed values
of the angular momentum quantum number N (J).

6. J-helicity quantum numbers and rotronic energies for different Hund’s cases

J-helicity quantum numbers for different Hund’s coupling cases are established
from the standard assignment [2, 3, 13] by correspondence between electronic
quantum numbers and rotronic quantum numbers (see table 2 which shows that
cases e and ¢’ are degenerate, and that both can be united under the coupling case e).

A correlation between different Hund’s cases is based on the rotronic Hamiltonian
H(r), which reads

H(r) = H,(r) + R*E2/2mr?, (20)

where ﬁ:,(r) is the electronic Hamiltonian for the non-rotating diatom, and ﬁzﬁz,»’Zmrz
is the Hamiltonian for the rigid rotor. According to equations (4) through (7),
we have

Be JjeN L@ =08 _ 1)

The rotronic energy levels E,  (r) for pure Hund’s coupling cases are the
expectation values of H(r) calculated with wavefunctions ¥, ,(F; r), where the set g
comprises good quantum numbers appropriate to one of the coupling cases. We

Table 2. Good electronic quantum numbers and the nomenclature of electronic
states for different Hund’s coupling cases at a fixed total angular momentum
quantum number J.

Hund's Good and (exact) Nomenclature of

coupling case quantum numbers® electronic states
a A, 8, Z; [oy, (W)] S+ LY o (A A0 .
b A, S, 5;; [0 (W)] 25414 (A # 0); 2541254 (4 =0)
¢ 2 [y, (W)] 02,(2 % 0); 07 (2 =0).
d L, Ly, 8,8 [, (W] not established
e Js drs [0, (W)] not established
e .Jis Jf..i‘; I_O-elr (W}J

“1In case ¢ if the diatom is composed of only one (high-Z) atom responsible
for spin—orbit interaction, then j is a good quantum number.
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represent E, ,(r) in the form

E, (1) = U (r) + (J + 1/2)%h%/2mr* + AET (r). (22)

g .4

where U\ (r) is the adiabatic electronic energy, (J + 1/2)%42/2mr? is the semiclassical

energy of a rigid rotor possessing the angular momentum J, and AE},(r) is the

-

first-order rotronic correction that arises from the Coriolis interaction V.

The adiabatic electronic energies depend on A for case b, A, and X (or A4,
Q=|A+ % and I') for case a and on @ for case ¢. No general formula for this
dependence can be given unless a specific form of the electronic Hamiltonian is
assumed. For illustration purposes we assume here that a diatom consists of an atom
in a closed electronic shell ('Sy) and an atom in the electronic state 25*'L;( p), where
p is the parity of the atomic state (p = + 1 for even states, **"'L;; p= —1 for odd
states, 2*1L9). To be specific, we take the case for which the atom in the *P state
arises from a single valence p electron so that the parity is p = —I.

The clectronic Hamiltonian of a system of two atoms in the basis of the functions
belonging to these states can be written as

H,(r) = V(r) + A(r)L-S. (23)
The Coriolis interaction has the form
Vi = —@(L, + S))h, (24)

where ¢ = (J + 1/2)/mr? is the angular velocity of the overall rotation, and EJ, 3_,
are the operators of the projections of the respective components of L and S onto J.

Because the rotational energy in the J-helicity representation is the same for all
coupling cases, we can discard the rotational energy when comparing rotronic
energies for different coupling cases. In this way we arrive at table 3, which gives the
electronic, spin—orbit, and Coriolis contributions to the rotronic energy levels for the
five Hund’s coupling cases.

The following comments on table 3 are in order. For Hund’s cases a and b, the
reflection symmetry quantum number o}, enters into the rotronic energy explicitly
through the adiabatic electronic energies for states with 4 = 0 (Z* and X~ states).
For a homonuclear diatom for which the quantum number w exists, the reflection
symmetry quantum number enters into these equations also implicitly through the
constraint imposed by equation (19).

For the Hund’s case ¢, the reflection symmetry a,, enters into the rotronic energy
explicitly through the adiabatic electronic energies for states with 2 =0 (0" and 0~
states) and through the Coriolis correction. Again, for a homonuclear diatom the

Table 3. Electronic, spin—orbit, and Coriolis contributions to the rotronic
energy levels for the five different Hund's coupling cases.

Hund’s
coupling case ¥y v, V.o,
a V/I.r‘m.w{r) AL
b Vaaun(r) —@S;h
¢ Vo.oam(r) bg.11200a () + 1/2)h/2
d Vise,w(r) AL,S, —@(L, + S)h

e Vigru(7) —@ish
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quantum number o,, enters into the rotronic energy also implicitly through the
constraint imposed by equation (19).

For Hund’s case d, the reflection symmetry quantum number o, does not appear
in table 3 because for this case (a Rydberg electron outside a core of a stable diatomic
molecule [12] or almost free atoms [5]), the reflection is not an independent
operation but is related to the inversion of the atomic wavefunctions. In the limit of
large r, ¥, 5.1, (r) becomes the energy of free atoms with the spin—orbit interaction
neglected, E('Sy) + E(*S*'L(p)).

For Hund's case e, the spin—orbit contribution in the limit of large r becomes
identical to the spin—orbit interaction in a free atom, and in this limit the electronic
contribution ¥;; ,(r) becomes the fine-structure energy levels of the free atoms
E(*Sy) + E(*®*1L;(p)). Again, similar to Hund’s case d, o, does not appear explicitly
in table 3.

Finally, we note that in a general case o, and ¢, are expressed via p = p,p; as

p = exp (iL;m) o = exp (ij;) G- (25)

7. Correlation diagrams of rotronic energies between different Hund’s cases

A correlation diagram for different Hund’s coupling cases is a plot that connects
rotronic energy levels in a prescribed sequence under conditions imposed by the
non-crossing rule [3, 14]. For a given J, only one symmetry quantum number, the
reflection symmetry, is exact for a heteronuclear diatom; for a homonuclear diatom,
w is also exact. Therefore, the correlation diagram is readily constructed provided a
particular path is chosen in the «f plane (figure 1). For instance, a path shown in
figure 1 implies the sequence d > b — a — ¢ — e. As an example, we consider a
correlation diagram along this path for rotronic states that originate from 'S, + *P?
atomic states.

First we discuss a simplified case in which the electronic spin is ignored. In this
case, all the possible Hund’s cases are cither d or b. The three degenerate energy
levels of a P state of a free atom are split into three equidistant components that
correspond to quantum numbers —1, 0, + 1 when an observer moves from the SF
frame to the BF frame (in the BF frame a free atom looks like it is precessing with
a frequency equal in magnitude but opposite in sign to the angular frequency of
rotation of the frame). The energy levels are ordered in decreasing order of L,
according to equation (24). The interatomic electrostatic interaction displaces slightly
the positions of these leveis; this situation is Hund’s case d. The reflection symmetry
o., of a state specified by L, is (—1)' * 1.

In case b we first plot the positions of the electronic energy levels (£* and II
states originate from a spinless P state that comes from a single valence p electron;
reflection symmetry of the X state is + 1, and that of IT state is +1 and — 1). Direct
application of the non-crossing rule yields graphs presented in figure 3. The splitting
between the two lowest energy levels vanishes in pure Hund's case b; this splitting
indicates the deviation from the pure Hund’s case b and represents A doubling.
According to the nomenclature indicated previously, we designate these levels A’
and A",

Next we include spin—orbit interaction. For Hund'’s case d, we begin with a sixfold
degenerate atomic energy level (three for the spatial degeneracy and two for spin),
which in the rotating frame is split into four levels because of Coriolis interaction.
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Free-
atom case d case b
. Limit _

Figure 3. Correlation diagram between Hund’s cases d and b for a diatom whose separated
atoms approach the free-atom states 'S, + *P° in which the *P° state arises from a
single valence p electron. Electronic spin is ignored. Heavy lines correspond to electronic
energy levels.

The upper and lower levels correspond to the negative and positive sums of I and
S in the J-helicity representation. The two middle levels are doubly degenerate, and
they correspond to different combinations of L; and §,. Actually, this degeneracy is
removed by a very weak interatomic electrostatic interaction.

The rotronic energy levels for case b can be calculated from two electronic energy
levels (one for a spinless X state and the other for a spinless IT state) by adding the
spin—Coriolis interaction energy — @S, (see equation (24)). Interpolation between
case d and case b limits under the condition of the non-crossing rule yiclds the energy
level pattern shown in figure 4. Actually, this pattern can be constructed from the
diagram that completely neglects the existence of the electronic spin, followed by the
up-and-down shift of the pattern. This correlation diagram again shows 4 doubling,
and the assignment of the /1 components to A’ and A” states.

Passing from case b to case a means turning on the spin—orbit interaction so that
it exceeds the rotational coupling. If X were a good quantum number for both
electronic states, the rotronic energy levels would consist of three levels, *X},, *I15),,
and *I1,,,. Two degenerate components of the 2%}, state, with X equal to 1/2 and
—1/2, however, are coupled by the Coriolis interaction, which mixes this component
to produce two S states. Analogous couplings between degenerate components of
all non-X states vanish because of the special property of the rotronic wavefunctions
for Hund’s case a. This result is just another way to express that 2T states always
belong to Hund’s case b (when spin-spin interaction is assumed to be negligible).
The pattern of the rotronic energy levels for the Hund’s case a is shown in the middle
of figure 4.

Case ¢ can be obtained from case a by decreasing the interatomic interaction
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Figure 4. Correlation diagram between Hund’s cases d, b, a, ¢, and ¢ for a diatom whose
separated atoms approach the free-atom states 'S, + P} in which the 2P{ state arises
from a single valence p clectron. Heavy lines correspond to electronic energy levels that
include spin—orbit interaction as appropriate.

to the extent that V,, « V,,. We see that Coriolis interaction splits the energy levels
of £ = 1/2 but not those of 2 > 1/2. In going from case ¢ to case a the splitting of
the 2 = 1/2 doublet only disappears if 2 = 1/2 correlates with a X" state. Finally,
case e corresponds to the rotronic energy levels shown in the extreme right portion
of figure 4. We collect in the Appendix the transformations of the electronic
wavefunctions between all different Hund’s coupling cases. These transformations
simplify the construction of the correlation diagrams.

An interesting result that follows from figure 4 is the crossing of rotronic energy
levels of different reflection symmetry along the correlation pattern. For instance, in
the intermediate d — b case (left portion of figure 4), two lower levels correspond to
e and f states, whereas the ordering is reversed in the intermediate ¢ — e case. The
spectroscopic manifestation of this crossing is the reversal of the regular parity pattern
in a sequence of the A-doubled rotational levels of a diatomic molecule (e.g.,
+—,~4+,+—,.... +—, +—, —+,...), where the increase in J resuits in a change
of the coupling case. Another interesting feature can also be read from figure 4: the
different qualitative behaviour of the /-doublet splitting as a function of the total
angular momentum. The finite splitting in cases d, e, and ¢ (2 = 1/2) implies that
the splitting is proportional to the angular velocity ¢, that is, to J. The splitting that
vanishes in the limits of pure Hund’s cases b, a, ¢ indicates that the dependence of
this splitting on J is of higher order.

The construction of the correlation diagram between different Hund’s cases along
a specific contour in the off plane for this choice of atomic states is now complete.
In a similar manner, correlation diagrams are readily constructed for other atomic
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states. The same approach can be used for classification of rovibronic states of linear
polyatomic molecules if the vibrational angular momentum is taken into account

[12].

We thank J. K. G. Watson and J. M. Brown for helpful comments on this
manuscript. This work was supported by US National Science Foundation.

Appendix
Asymptotic properties of vector addition

The semiclassical description of different Hund’s coupling cases is based essentially
on the following asymptotic behaviour of the Clebsch-Gordan coefficients for
addition of two vectors, say R and j, to form the third J under the condition j « R, J
[15, 16]:

(Rr Rza_i! J‘.Z|J! JZ! R!J‘] = 5}',:—R/_._jz d_{z.J—R(e}: (A 1)

where d is the Wigner d function [13], and © is the angle subtended by the vector
J and the Z axis, cos @ = J,/(J + 1/2).

Two obvious choices of representations for a diatom system bring equation (A 1)
to a simpler form. The J-helicity representation assumes J, = J, ie, @ = 0. In this
case the Wigner rotation matrices become unit matrices:

d/, ;- r(0) =5;, ;& (A2)

The r-helicity representation assumes J, =0, ie, @ = n/2. In this case the d
functions become the numerical elements of the so-called A matrix:

d,fA,J—R(n."Q) = A,‘L.J—R- (A3)

The elements of the A matrix exhibit many useful symmetry properties and are
tabulated for 1/2 < j < 5 in [15] and numerically for 1/2 <j < 13 in [17].
Consider the application of the asymptotic property (A 1) to simplify the Hund'’s
coupling cases. The free-atom limit of a rotronic wavefunction ¥} . ; in the J-helicity
representation reads
Piri= 2 (RRzjijz|J,Jz, R ) ¥R, WS,

dudz?

(A4)
Jz Rz

where Y3, is the wavefunction of the orbital relative motion of two atoms, and

¥, is the electronic wavefunction. Using the asymptotic properties of the Clebsch—

Gordan coeflicients, equations (A 1) and equations (A 2), we get

l‘u.rrt.R..;' = Y% l}’}'-'_'., —R- (AS)

The position of the second subscript in ¥ identifies the difference j, = J — R with
the projection of j onto J (see section 3 and figure 2). Equation (A 5) can be rewritten
in a form that contains the J-helicity quantum numbers

Wi = Y5505 ¥ (A6)

J=jrd=jy
The semiclassical [actorization, equations (A 5) or (A6), of the (non-separable)

rotronic wavefunction, equation (A 4), into the nuclear and electronic parts allows
passage [rom the addition of vectors to the addition of scalars (see section 3).
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Because the rotronic function is factored into a nuclear and an electronic part,
treating the dynamics of these two subsystems on two different levels of approximation
poses no difficulty: the overall rotation is classical, and electronic motion is quantal.
Morcover, all the transformations pertinent to different coupling cases are applied
to the electronic wavefunctions only.

Different Hund’s coupling cases exhibit no unique relation between electronic
wavelunctions because all the interactions are different. Within the basis set belonging
to one electronic state (fixed values of S, L), however, a unique relation exists between
the set of wavefunctions ¥, , for a given pure Hund’s case specified by the good
quantum numbers ¢ and the same set ¥, ., , expressed in terms of the quantum
numbers of a different Hund’s case (we call this the g-to-g’ transformation). Showing
that the following relations hold is easy:

(i) d-to-b transformation:

L, Ly, S, 85y = Y, AL aIL, 4, S, S, (A7)
A

(ii) b-to-a transformation:
IL, 4, 8, 8;) = X A, 5IL, 4,8, Z), (A8)
=
(iii) a-to-c transformation:
IL, 4,8, Z) =L, S, @I, (A9)

where Q = |4 + X| and I' = AZ, and
(iv) c-to-e transformation:

17 Q> = L Al,aljs>- (A 10)

The chain of transformations (A7) to (A 10) is complete if it is supplemented with
the vector addition relations between L, S and j:

|J;st> = Z (1‘} LJ\ S? S..F

LSy

Jsdos Ly S)Ly Ly, S, Sy (A11)
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