Individual phospholipid vesicles, 1 to 5 micrometers in diameter, containing a single reagent or a complete reaction system, were immobilized with an infrared laser optical trap or by adhesion to modified borosilicate glass surfaces. Chemical transformations were initiated either by electroporation or by electrofusion, in each case through application of a short (10-microsecond), intense (20 to 50 kilovolts per centimeter) electric pulse delivered across ultramicroelectrodes. Product formation was monitored by far-field laser fluorescence microscopy. The ultrasmall characteristic of this reaction volume led to rapid diffusional mixing that permits the study of fast chemical kinetics. This technique is also well suited for the study of reaction dynamics of biological molecules within lipid-enclosed nanoenvironments that mimic cell membranes.

Living systems usually carry out biochemical transformations within cellular compartments defined by a phospholipid bilayer boundary. At such small dimensions (zeptoliters 10^{-21} liters) to femtoliters 10^{-15} liters), the surface-to-volume ratio is very high and the contained molecules experience collisions with the phospholipid surface at high frequencies. A hard-sphere approximation and a simulation of Brownian motion indicate that, in a 170-nm-diameter vesicle, a single enzyme and a single substrate collide at a frequency of 200 MHz, which might be compared with the substrate-wall collisional frequency of 300 kHz (1). Thus, the biochemical reactivity of the contained molecules can be dominated by surface interactions, and such interactions can profoundly influence enzyme kinetics (2). A tool to study confined chemical reactions under biologically relevant conditions would offer valuable insights into in vivo reaction conditions.

Various approaches exist for carrying out chemical reactions in aqueous solutions at small dimensions (3–7). Most open volume methods involve micromachining techniques (4) by which nanoliter to femtoliter wells can be created in silicon-based substrates (5). For self-enclosed volume elements, microdroplets in an immiscible solvent have been used (6). However, these techniques do not create the biologically relevant nanoenvironment that can be achieved in lipid vesicles.

From the perspective of chemical kinetics (7, 8), this method also offers the ability to achieve rapid diffusional mixing (microsecond to millisecond time range), and it opens the opportunity to study fast chemical reaction kinetics that are inaccessible to traditional bulk turbulence mixing techniques. The diffusive mixing time of dye molecules is about 8 ms for a 2-μm vesicle and 20 μs for a 0.1-μm vesicle. The small volume element contained within individual vesicles also matches the probe volume dimension of many optical single-molecule detection and manipulation schemes (9).

Using a recently developed rototrope inhibition technique, we prepared unilamellar vesicles between 50 nm and 50 μm in diameter from a wide range of different phospholipids (10). The vesicles can encapsulate one or more reagent molecules of choice. Purified vesicle preparations are transferred to a bare or poly-L-lysine–coated borosilicate cover slip mounted on the stage of an inverted fluorescence microscope. Attoliter to zeptoliter vesicles can be precisely positioned and manipulated in solution by optical trapping (11).

Figure 2 illustrates the hydrolysis of fluorescein diphosphate catalyzed by alkaline phosphatase. Fluorescein diasterein product inside an optically trapped 3-μm vesicle was monitored with a single-photon counting silicon avalanche diode detector.

Fig. 1. Schematic of the experimental setup. Two carbon-fiber electrodes (5 μm in diameter) controlled by micromanipulators (MM) were used for electroporation and electrofusion. Three colinear laser beams were sent into a ×100, 1.3 numerical aperture microscope objective (MO). The 488-nm output of an argon ion laser (blue arrows) causes excitation of carboxyfluorescein-6G, Ca2+-chelated fluo-3, and fluorescein. The 633-nm output of a HeNe laser (orange arrows) causes excitation of TOTO-3–intercalated DNA. The 992-nm output of a MOPA diode laser (black arrows) is used for optical trapping of vesicles. The resulting dye fluorescence (green and red arrows) is collected, separated by a dichroic beamsplitter (DC) into two different color channels, passed through a bandpass filter (F1 or F2), and then detected by one of two CCD cameras. This setup is also modified to operate in a confocal mode with a single-photon counting silicon avalanche diode detector. MI, mirror; PB, polychroic beamsplitter; SD, spinning disk.

1Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
2Department of Chemistry, Göteborg University, Göteborg, SE-41296, Sweden.
3Department of Chemistry, Pomona College, Claremont, CA 91711, USA.

*To whom correspondence should be addressed.
monitored by confocal fluorescence microscopy (9) at 60-s intervals. The time zero of the reaction for each interval is set by bleaching any products present. A nondestructive alternative to photobleaching is to monitor the product buildup over time. The small dynamic range of our detection scheme, however, prevented the use of this approach. Fewer than 100 product chromophores were produced between the time of bleaching and detection. With further optimization, formation of single product chromophores could be followed in real time—for example, by using fluorescence detection.

Because of the small volume element in a vesicle, the initial number of substrate molecules is limited and typically becomes largely depleted during the time required to prepare the vesicle. One way to overcome this drawback is to use the lipid bilayer as a partition between the reactants. The reaction can then be initiated by breaking down the bilayer through electric field–mediated membrane pore formation or membrane fusion.

Pore formation in lipid bilayers typically occurs within 50 μs (12, 13) and is controlled by the applied electric field strength and pulse duration; resealing of the membrane occurs in micro-seconds and sometimes longer (12, 14). To electrotransport reagents into individual reagent-encapsulated vesicles and to perform electrofusion on single vesicle partners, we developed a miniaturized version of electroporation and electrofusion for individual vesicles. From whole-vesicle patch clamp measurements, we found that pore formation after electroporation was rapid. The inward current was observed to reach its half-maximal value after 276 ± 31 μs. The shape of the curve (Fig. 3) shows striking similarities to studies on irreversible electrical breakdown of unilamellar planar lipid films (15). In addition, when phosphatidylcholine (PC) vesicles containing 50 μM fluorescein and 150 mM NaCl (pH 7.2) surrounded by a citrate buffer (pH 4.3) were electroporated, we found a similar temporal dependence for quenching of fluorescence from intravesicular fluorescein (Fig. 3). During the pore-opening time, H⁺ ions diffuse into the liposome and protonate the fluorescein dianions, causing fluorescence quenching. Control experiments, in which the pH was adjusted to 8 both inside and outside the vesicle, did not result in any decreased fluorescence during electroporation (Fig. 3, insets). To drive the selective influx of molecules into the vesicles, we exploit both concentration gradients and size differences between the molecules inside and outside the vesicle. Much faster pore-opening kinetics has been achieved in some lipid systems, which could enable reactions to be studied on low-microsecond time scales (12–14). In addition, vesicles with dimensions of tens of nanometers can be prepared, which also opens the possibility of low-microsecond diffusive mixing times.

Electroporation is useful in initiating reactions with sharp time distributions, but it lacks the capability to control precisely the amount of reagents delivered. In contrast, electrofusion between two select vesicles can be used to mix precise amounts of reagents. Optical traps (11) were used to align two selected vesicles for fusion. Fusion, induced by the reversible dielectric breakdown of the bilayer membrane (15–18), is achieved by application of a short, intense, and highly directed electric field generated across a pair of carbon-fiber ultramicroelectrodes (1- to 5-μm tip diameter). Pulses with a duration of 10 to 30 μs and an electric field strength of 20 to 50 kV/cm provided a near unity fusion yield. Figure 4A is a frequency histogram showing the number of pulses required to achieve fusion in 28 separate trials. About 14% of the fusions occurred after only one pulse and >70% of fusions occurred within five pulses (19).

The initial stages of electrofusion are similar to electroporation. Fusion pores are being generated in the process. To determine whether leakage limits the utility of this
two-color mixing in fluorescence, we simultaneously excited the contents of the fused vesicle with two different wavelengths. The emitted photons were collected and separated into their respective color channels and then detected by two charge-coupled device (CCD) cameras (see Fig. 1). Figure 5 shows the fusion between a vesicle containing carboxyxyrhodamine-6G (green fluorescence) and one containing TOTO-3-intercalated 15-mer DNA (red fluorescence) to yield a fused vesicle that appears orange.

Figure 5, E to H, shows a chemical reaction carried out inside these ultrasmall containers, one of which holds fluo-3 (10 μM) and the other Ca²⁺ (10 μM). Before fusion (Fig. 5G), no fluorescence was detected from the Ca²⁺-containing vesicle, but a small background fluorescence was observed in the vesicle with fluo-3. Binding of Ca²⁺ by fluo-3 increases the fluorescence quantum yield of this chelator by about 40-fold (20). This fluorescence enhancement was indeed observed, as demonstrated in Fig. 5H, which represents the image taken after the contents of the two vesicles were mixed and the chelating reaction was initiated. Although we focused on fluorogenic reactions and fluorescence quenching in our experiments, other optical techniques might also be used, including measurement of polarization, lifetime, and fluorescence energy transfer.

The technique we have described offers the special opportunity to probe the dynamics of chemical reactions in spatially confined biomimetic nanoenvironments. By systematically varying the membrane lipid, protein, and glycoprotein composition of a vesicle, the in vivo activity of multiple or single biological molecules might be inferred. In combination with single-molecule detection (9) and manipulation methodologies (11), single-molecule reactions can be studied within the lipid bilayer boundary of a vesicle. Because only one reaction is studied at a time, synchronization of the reactions is not necessary. Therefore, the observable chemical kinetics is limited only by the excited-state lifetime of the chromophore. The small volume characteristics of this technique should also find use as a general chemical or biochemical delivery system whose spatial and temporal locations can be precisely controlled.

References and Notes
1. We used a Brownian dynamics simulation program, in which we treated a single enzyme and a single substrate as hard spheres. The radius of each molecule was estimated from the Stokes–Einstein law as described [D. L. Ermak, J. Chem. Phys. 62, 4189 (1975)]. The diffusion constants for the molecules were modeled by changing the time steps taken by the molecules and the constant velocities given to them. The trajectories were followed and the diffusion constants were calculated as described [P. Tung, F. Lantelme, H. L. Friedman, J. Chem. Phys. 66, 3039 (1977)]. We used D(enzyme) = 7 × 10⁻¹¹ m² s⁻¹ and D(substrate) = 4.4 × 10⁻¹² m² s⁻¹. This model was later used to obtain an estimate of the number of collisions between enzyme and substrate and also between the different molecules and the phospholipid wall, which was treated as a hard wall. Substrate-wall collisions scale as 1/r and substrate-enzyme collisions scale as r⁻¹/₂, where r is the vesicle radius.
Nonequilibrium Self-Assembly of Long Chains of Polar Molecules in Superfluid Helium

K. Nauta and R. E. Miller*

It is shown that in the low-temperature (0.37 kelvin) environment of superfluid helium droplets, long-range dipole-dipole forces acting between two polar molecules can result in the self-assembly of noncovalently bonded linear chains. At this temperature the effective range of these forces is on the nanometer scale, making them important in the growth of nanoscale structures. In particular, the self-assembly of exclusively linear hydrogen cyanide chains is observed, even when the folded structures are energetically favored. This suggests a design strategy for the growth of new nanoscale oligomers composed of monomers with defined dipole (or higher order) moment directions.

It is well known that as two point dipoles approach from long range they prefer to orient in a head-to-tail configuration (1). An analogous and perhaps more familiar case is that of two approaching magnets that orient such that their north poles point in the same direction. These simple ideas would lead one to predict that highly polar monomer units might assemble head-to-tail to form linear polymer chains. However, at room temperature the average rotational energy is large relative to the dipole-dipole interactions, such that the 1/R^2 interaction (R being the distance between the dipoles) motionally averages (integrated over all angles) to 1/R^4 (2), greatly reducing its range. As a result, dipole-dipole forces generally play only a minor role in determining the local “structure” of simple liquids (2). Chainlike structures are seen in some polar solids, such as crystalline HCN (3). However, the lateral dispersion interactions between chains (the crystal force field) are important in stabilizing such structures, and it is not obvious that they will be stable in the gas phase, where more compact structures better optimize the weak interactions between the molecules. We might therefore expect that the strong dipole-dipole interactions will dominate only for short chains and that the energy penalty for keeping the system linear will increase with chain length to the point where the system eventually folds. Ab initio calculations have been performed for isolated HCN complexes that confirm this general trend (4–6).

In this study we show that polar monomers can self-assemble exclusively into extended linear chains in superfluid liquid helium droplets. These droplets represent a spectroscopic matrix (7) with many interesting properties, including a low-temperature (0.37 K) (8) and a weakly interacting and homogeneous environment that results in small vibrational frequency shifts and high spectral resolution (sufficient to show rotational structure) for solvated molecules (8–11). Hydrogen cyanide was chosen for this study because of its large dipole moment (3 D) and the existence of previous gas-phase studies of its complexes (12–15).

In our experimental apparatus (Fig. 1), the helium droplet source consists of a 5-μm-diameter nozzle operated at about 20 K, through which ultrapure helium is expanded from a pressure of 50 bar. Under these conditions helium droplets with a mean diameter of about 7 nm (4000 atoms) are formed. These droplets then pass through a pick-up cell maintained at an HCN pressure between 10^{-6} and 10^{-5} mbar. In this region, HCN molecules are captured individually by the helium droplets and cooled to 0.37 K (8, 10). The seeded droplets then pass through the laser excitation region and are detected by either the bolometer (16) or mass spectrometer. Vibrational excitation and relaxation of the molecules in the helium droplet result in the evaporation of several hundred helium atoms, reducing the total flux to the detectors.

The electrodes shown in Fig. 1 were used to apply a large electric field to the laser excitation region. The resulting pendular-state spectroscopy (17) was an essential part of assigning the spectra of the polar chains.

In a gas-phase free jet expansion the most stable isomer of a complex tends to form, and therefore the experimentally determined geometry is often the same as the ab initio global minimum structure. Only when there are a number of isomers with similar energies does one expect to observe the formation of more than one of them (18, 19). This can be explained by noting that the clusters are formed in the high-density, relatively hot region of the expansion where there is still sufficient energy to surmount any barriers on the potential energy surface to reach the global minimum. Subsequent two-body collisions with the carrier gas then cool the complex to the very low temperatures typical of free jet expansions (~1 K), thereby trapping the system in the global minimum. The HCN trimer