

The Army High Performance Computing Research Center

Charbel Farhat
Director
Stanford University

AHPCRC: OUR MISSION

- <u>Anticipate</u>, <u>shape</u>, and <u>develop</u> the <u>needs</u>, <u>form</u>, and <u>underpinnings</u>
 of the <u>next-generation</u> Computational Science and Engineering (CSE)
 - advanced computational methods and numerical algorithms
 - emerging computing systems
- Foster better and faster scientific discovery of relevance to the Army
 - reduce design-cycle time, support tests, and improve system performance

AHPCRC: OUR CHALLENGES

TYRANNY OF SCALES

- The ultimate roadblock for many applications including
 - computational nano-science and materials
 - molecular modeling of drugs and biological systems
 - failure analysis
- Most physical phenomena of interest today operate across large ranges of scale
 - spatial scales:
 - o 8 orders of magnitude (crack propagation)
 - o 10 orders of magnitude (protein folding)
 - temporal scales:
 - o 7 orders of magnitude (aerothermal heating)
 - o 12 orders of magnitude (protein folding)

Microscale

Molecular/ Atomistic

TYRANNY OF SCALES

- New approaches for
 - coupling atomistic and continuum models
 - averaging and homogenization
 - turbulence modeling

- non-polynomial enrichment functions rather than ansatz functions for representing operators that vary rapidly on microscopic scales
- adaptive multi-resolution methods
- Revolutionary numerical algorithms
 - asynchronous approaches
 - fast low rank approximation solvers

TYRANNY OF SCALES - EXAMPLE

Aerothermal heating of an AHW-like system

Iterations

TYRANNY OF SCALES - EXAMPLE

Two very different scales

$$\tau_{\rm S} = \frac{\rho c_{\rm p} L^2}{k} \sim 10^5$$

$$\tau_{\rm F} = \frac{L}{U_{\infty}} \sim 10^{-2} \, \rm sec$$

Innovative asynchronous thinking

Equivalent transmission conditions

$$\kappa_{Sr}$$
 $\theta_{S} n + h \theta_{S} = \kappa_{F} r \theta_{F} n + h \theta_{F}$

$$\theta_{S} = \theta_{F}$$

h is determined from a stability analysis

TYRANNY OF SCALES - EXAMPLE

Acceleration of convergence

COMPLEXITY OF MULTI-PHYSICS

- Problems of interest to the Army
 - multi-phase
 - multi-discipline
 - highly nonlinear
 - evolving domains and interfaces

- Call for a new generation of computational methods
 - higher-order embedded boundary methods
 - universal mesh concepts
 - advanced partitioned analysis procedures
 - advanced mathematical frameworks for stability, accuracy, and convergence analyses

MODEL ORDER REDUCTION

- Model reduction will soon become an indispensable tool for
 - computational-based design and optimization
 - statistical analysis
 - embedded computing
 - real-time optimal control
- The ultimate form of HPC
 - bridges "big iron" and mobile computing

MODEL ORDER REDUCTION

- Foster better and faster scientific discovery of relevance to the Army
- Current generation of most sophisticated sensors
 - measures what has already (albeit just) happened
- Next-Gen sensors will
 - measure what *is about to* happen

 incorporate a real-time predictive capability called a <u>ROM</u>

 Next-Gen CSE, hardware and software

Army Ships Next-Gen Blast Sensors

Jul 27, 2012

One thousand two-pound pa starting next r and traumatic

Called the So onto a soldier that communi the blast affec piece of the Ir

MODEL ORDER REDUCTION

Army leadership!

EMERGING HPC TECHNOLOGIES

Generality-Performance-Productivity trade

EMERGING HPC TECHNOLOGIES

- Basic research challenges
 - abstractions for classes of computations via Domain Specific Languages (DSLs)
 - compilation technology for high-level DSLs
 - exascale runtime systems
 - new algorithms for linear solvers

EMERGING HPC TECHNOLOGIES

- Big data analytics
 - DSLs for central problems in data analysis (such as analysis of large graphs)
 - o focus on high-level aggregate graph operations (e.g., depth or breadth-first search)
 - o transformation compositions of such high-level operations into efficient computations

RESEARCH PROJECTS

<u>Title</u>	Performers	Core	Thematic
HPC-enabled parametric studies of under body	Stanford Berkeley	70%	30%
blasts: From high-fidelity	UTEP		
to reduced-order models	and NMSU		
Computational fluid dynamics for blood transfusion on the battlefield and inhalation of toxic agents in the lungs	Stanford	50%	50%
2D nano-electromechanical devices	Stanford	40%	60%
High-performance data analytics	Stanford	100%	0%

RESEARCH PROJECTS

Title LisztFE: Finite element codes for exascale computers	<u>Performers</u> Stanford	<u>Core</u> 100%	Thematic 0%
Scalable, shared and distributed memory algorithms for computational solids, fluids and geometry	Stanford	100%	0%
Towards enabling battlefield decision-making and planning through information processin in the DoD cloud	UTEP	100%	0%
Toward real-time computing for applications in the field	NMSU	100%	0%

EDUCATION AND OUTREACH

- AHPCRC Summer Institute
 - five years of success!

PROGRAM OBJECTIVES

- Train the next generation of scientists and engineers in CBES
- Provide students with early research experience to encourage them to pursue advanced degrees
- Provide students with Army relevant experience to encourage them to pursue careers in defense-related science and engineering

ARL INTERNSHIPS

- AHPCRC Summer Institute graduates regularly intern at ARL
 - 21 undergraduates since summer 2010
- AHPCRC graduates hired at ARL
 - David Powell (Ph. D.) hired at WMRD

- AHPCRC is currently promoting
 - long-term visits by graduate students
 - o Matthew Kury
 - o Alejandro Queiruga
 - post-doc hires
 - additional and longer faculty visits

INTERNATIONAL WORKSHOPS

 Workshop on Computational Methods for Problems With Evolving Domains and Discontinuities (December 3—5, 2013, Stanford)

25 leaders in the field from 7 different countries

STANFORD CURRICULUM

CME (Computational Mathematics and Engineering) 345

CME345: Model Reduction

Schedule: Spring 14, M-W-F (2 of 3) 9:30 am – 10:45 pm

Venue : B160-323

: 3

Units

Course Description

Model reduction is an indispensable tool for computational-based design and optimization, statistical analysis, embedded computing, and real-time optimal control. It is also essential for scenarios where real-time simulation responses are desired. This course presents the basic mathematical theory for projection-based model reduction. It is intended primarily for graduate students interested in computational sciences and engineering. The course material described below is complemented by a balanced set of theoretical, algorithmic, and Matlab computer programming homework assignments.

AHPCRC

