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Abstract

Sensing the relative position between a robot and objects in its environment is a core re-
quirement for many robot tasks and is an area of active research. This dissertation de-
scribes the development of a new, robust, relative-position sensing strategy suitable for
unstructured and unprepared environments. Underwater manipulation, the use of under-
water vehicles to perform object manipulation tasks in the ocean, is the particular applica-
tion that motivated this research. Although many relative position sensing systems have
already been developed, achieving the level of robustness that is required for operation in
the underwater environment is very challenging.

The new sensing strategy is based on fusing bearing measurements from computer vi-
sion and inertial rate sensor measurements. These measurements are fused to compute the
relative position between a moving observer and a stationary object. Inertial rate sensors
are composed of accelerometers and rate gyros.

The requirements on the vision system have been chosen to be as simple as possible:
tracking a single feature on the object of interest with a single camera. This is equivalent to
a bearing measurement. Simplifying the vision system has the potential to create a more
robust sensing system. The relative position between a moving observer and a stationary
object is observable if these bearing measurements, acquired at different observer posi-
tions, are combined with the inertial rate sensor measurements, which describe the motion
of the observer.

The main contribution of this research is the development of a new, recursive estima-
tion algorithm which enables the sensing strategy by providing a solution to the inherent
sensor fusion problem. Fusing measurements from a single bearing sensor with inertial
rate sensor measurements is a nonlinear estimation problem that is difficult to solve with
standard recursive estimation techniques, like the Extended Kalman Filter (EKF). A new,
successful estimator design—based on the Kalman Filtering approach but adapted to the
unique requirements of this sensing strategy—was developed. The new design avoids the
linearization of the nonlinear system equations. This has been accomplished by develop-
ing a special system representation with a linear sensor model and by incorporating the
Unscented Transform to propagate the nonlinear state dynamics.
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The dissertation describes how the sensing strategy can be implemented to determine
the relative position between a moving observer and a stationary object. A demonstration
task is developed that illustrates how a real-time implementation of this sensing strat-
egy can be incorporated into the closed-loop control of an autonomous robot to perform
an object manipulation task. The performance of the sensing strategy is evaluated with
this hardware experiment and extensive computer simulations. Centimeter-level position
sensing for a typical underwater vehicle scenario has been achieved.
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Chapter 1

Introduction

This dissertation shows that the fusion of monocular vision measurements of a single feature
with inertial rate sensor measurements forms a feasible sensing strategy for determining the rela-
tive position between a moving observer and a stationary object (see Figure 1.1). Robust relative
position sensing is a core requirement as well as a significant challenge for many types of
robots, especially those operating in real terrain. This research is motivated by the sensing
requirements of underwater vehicles, which operate with the additional challenges pre-
sented by the underwater environment. Vision-based solutions are typically proposed to
solve this problem. This dissertation explores a new sensing strategy with the potential for
increased robustness by combining a very simple vision system and inertial rate sensors
to solve the problem.

The main contribution of this work is the design of a new nonlinear, recursive estima-
tor that has been adapted to the unique requirements of this sensing strategy. In particular,
the types of nonlinearity and the dynamic observability associated with the sensing strat-
egy lead to poor estimator performance for standard solutions. A new solution, based on
a modified Kalman Filter approach, a specific representation of the system equations, and
the application of the Unscented Transform, has been designed, implemented and evalu-
ated.

1.1 Motivation and Background

Sensing the relative position between a robot and objects in its environment is a core re-
quirement for many robot tasks. These include obstacle avoidance, robot localization, ob-
ject mapping and object manipulation. Relative position sensing is an important capability
for robots that operate in factories, in the home, on construction sites, in space, in haz-
ardous environments and in the ocean. Many different relative position sensing systems
have been developed to enable these applications.

1
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Figure 1.1: Moving Observer with a Camera Tracking a Stationary Object

The observer is composed of a single camera and an inertial rate sensor package
(which is not shown). The two sensors are rigidly attached to each other. Each
observer location denotes a different point in time. The observer moves subject
to the constraint that the stationary object (denoted by 3) remains in view of
the camera. This motion is an integral part of the sensing strategy.

Underwater manipulation, the use of underwater vehicles to perform object manipu-
lation tasks in the ocean, is the particular application that motivated this research. This
powerful capability extends our ability to affect the ocean environment at depths that are
unsafe for human divers. Underwater manipulation is used extensively for science-based
exploration, like collecting samples from the seafloor, placing sensors, and maintaining
equipment that has been deployed to build ocean observatories. In addition, there are
many industrial and military applications for underwater manipulation (e.g., construction
and maintenance of oil drilling equipment and telecommunication cables, and mine coun-
termeasures).

Various types of underwater vehicles are in use for ocean exploration. Manned sub-
mersibles offer marine scientists a direct presence in the subsea environment, but their
availability is limited by the cost of carrying humans safely into the high-pressure envi-
ronment of the deep ocean. Remotely-operated vehicles (ROVs) provide an alternative
for manned exploration. These vehicles are connected to a support vessel on the surface
with a tether that provides high-bandwidth, two-way communication as well as power
for extended operations. Very skilled pilots operate these vehicles using a teleoperation
approach—commanding the vehicle thrusters and actuators from the surface based on
live video signals from on-board cameras. While ROVs are in wide-spread use, their cost
(about $10,000 per day, to cover the underwater vehicle as well as the support vessel and
crew) is still a major limitation on scientific progress.
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Untethered and unmanned vehicles, called Autonomous Underwater Vehicles (AUVs),
have been developed more recently to reduce cost and to enable missions for which tethers
and support vessels are not feasible. Without a tether, AUVs cannot be teleoperated by
human pilots. Therefore, all aspects of AUV control, including task planning, navigation,
sensing and low-level control of thrusters and actuators have to be autonomous. If human
pilots are involved in AUV control, they do so at the supervisory level, via low-bandwidth
acoustic modems, to monitor progress, to update mission goals, or to provide high-level
interpretation of sensor data.

Developing robust autonomous sensing and control capabilities for AUVs has been ex-
tremely difficult, and as a result, the tasks that current AUVs perform are typically limited
to navigation and obstacle avoidance. These capabilities define the survey-class of AUVs,
which are used primarily to collect sensor profiles along predefined trajectories.

Currently, most underwater manipulation requires human involvement in the low-
level control of the robot. Teleoperation of tethered vehicles is the state-of-the-art in under-
water manipulation. However, even though ROV pilots can accomplish many impressive
tasks, their work is difficult and very time-consuming. Much of this difficulty results from
the large number of degrees-of-freedom (DOFs) that have to be controlled and the relatively
limited sensor information that human pilots can absorb. The degrees-of-freedom include
the 6-DOF motion (translation and rotation) of floating underwater vehicles as well as the
manipulator joints (sometimes up to seven). Humans are very adept at interpreting video
signals from on-board cameras as well as any available position measurements (like depth,
altitude, and heading), but have greater difficulty with other useful sensor measurements,
like joint angle measurements from manipulators and rate measurements.

Future missions could benefit from greater reliance on computer-based control of un-
derwater manipulation tasks. While human pilots surpass computers in their ability to
interpret tasks and to reason about the environment, computers have a clear advantage
in controlling large numbers of coupled degrees of freedom and in assimilating disparate
sources of sensor information. Computer control of underwater manipulation can lead
to two useful capabilities: pilot-aids for tethered vehicles and autonomous underwater
manipulation for untethered vehicles. Pilot-aides reduce the workload of human pilots—
freeing them to focus on higher-level tasks—and potentially improve the efficiency and
success rate of the current underwater manipulation capability. Autonomous underwa-
ter manipulation is a new capability for AUVs that could be applied when human pilots
cannot participate directly in the low-level control of underwater vehicles.

Many useful applications of computer control for underwater manipulation could be
developed, depending on mission requirements and vehicle capabilities. These applica-
tions include grasping, manipulation, and precise placement of objects. To execute all of
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these manipulation tasks, the underwater vehicle has to control the position of its manipu-
lation tool relative to the object of interest. A robust and precise relative position sensor is
required to enable this type of control. This dissertation presents a relative position sens-
ing strategy suitable for floating underwater vehicles and describes an experiment that
shows how this new sensing strategy could be used to implement a simple autonomous
manipulation task.

1.2 Relative Position Sensing for Underwater Vehicles

There are two main sensor modalities that can be used to determine relative position in
the underwater environment. Sonar is well suited for navigation and obstacle avoidance.
It measures the range to natural objects as well as active beacons. The main advantage of
sonar is its low attenuation in water, which permits long-range measurements.

Vision-based sensing is better suited for precise, short-range measurements, like those
required for manipulation tasks. Consequently, this research has focused on a vision-based
relative-position sensing system. Although the bearing resolution of sonar systems is im-
proving rapidly, vision tends to have greater resolution than sonar, both in time and bear-
ing angle. Although light attenuates more quickly than sonar in water, range measure-
ments of several meters are possible with vision.

Vision-based sensing has been used very effectively for the control of robots in natu-
ral terrain (underwater, in space and on land). This is true for human-operated robots,
for which camera images provide the principal source of operator information, and for
autonomous robots, whose ability to extract useful information from images is gradually
increasing. Vision is an effective sensor because it provides several types of information,
like bearing, color and texture, and because it can be used for many tasks, like object mod-
eling and identification, obstacle avoidance, user interfaces, and relative position sensing.

Vision is the primary source of sensor information for ROVs and manned submersibles,
which are controlled by human pilots. These pilots visually track objects in the environ-
ment (e.g., sea floor, animals, equipment) either electronically through camera views or
directly through port holes. The capabilities of these human-robot teams demonstrate that
vision as a sensor provides sufficient information to perform very sophisticated tasks in
the unstructured underwater environment.

However, replicating the impressive capabilities of the human vision system using
computer-based vision-sensing techniques has been challenging. Nevertheless, new ca-
pabilities based on vision-based relative position sensing have been introduced on ROVs
to assist human pilots. In 1995, Marks [35] introduced a computer-vision system to de-
termine the position of an underwater vehicle along a planar surface (e.g., the sea floor
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or a canyon wall) using a monocular vision system. The system performs texture-based
correlations of subsequent camera images to determine two-dimensional position offsets
relative to a reference image. Range was determined with a sonar proximity sensor. This
capability was used to build an autonomous station-keeping capability, which has been
successfully demonstrated in numerous ocean trials [33]. Others have developed similar
capabilities [17, 34, 38].

Rife and Rock [45] have successfully demonstrated an underwater stereo-vision system
for determining the relative position between an underwater vehicle and a jelly fish. This
sensor was used to construct an automatic control capability for autonomous tracking of
a jelly fish with an underwater vehicle. These pilot-aides demonstrate the effectiveness of
computer vision as a sensor for automatic control of underwater vehicles.

The main drawback of vision is that a single camera image does not provide a com-
plete measurement of relative position to an unknown object in the environment. It pro-
vides only the bearing to features that have been identified in the field-of-view. Range
information is lost. Relative position, which includes bearing and range to an object, must
be determined by combining bearing information from multiple images using some form
of triangulation. Alternatively, bearing information from vision can be combined with
another source of range information to determine relative position.

Many techniques have been used in the laboratory and on operational robots to re-
construct relative position from camera measurements, including: stereo vision, in which
two cameras with a fixed baseline observe the same feature; photogrammetry, in which a
single camera observes multiple known features on the object; structured light, in which a
light source and a camera each contribute a bearing to the feature; structure-from-motion,
in which a camera subject to unknown motion observes multiple features from several lo-
cations; and motion-based tracking, in which a camera subject to known motion tracks a
single feature in time.

While several important vision-based sensing capabilities have been demonstrated on
operational underwater vehicles, the underwater environment still presents many signif-
icant challenges to successful implementation of computer vision. Among them are the
unstructured scenery with a scarcity of strong visual features; non-uniform lighting; im-
age noise; failures due to occlusions, visibility constraints, data association errors and de-
tection errors; and the difficulty of maintaining accurate calibrations. All of these factors
contribute to the overall robustness issues of vision-only systems.

Fusion of dissimilar sensor measurements provides an effective way to mitigate the ro-
bustness issues of vision-only systems. While vision measurements are required to provide
relative position information, other sensors, like inertial rate sensors, Doppler velocimetry
loggers (DVL, a velocity sensor), sonar-based sensors (altitude and other range measure-
ments), depth and heading sensors (compass), can provide additional information about
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the position, orientation and motion of the vehicle. Combining vision measurements with
measurements from other sensors typically results in improved performance and robust-
ness of the sensing system.

1.3 Fusing Vision and Inertial Rate Sensors

This dissertation considers a sensing strategy based on fusing only vision and inertial rate
sensor measurements. Inertial rate sensors are composed of accelerometers, which mea-
sure specific force (linear acceleration plus the apparent acceleration due to gravity) and
rate gyros, which measure angular velocity. Inertial rate sensors are a good complement
to vision because they are very robust, requiring no external measurements; they provide
motion information, which is difficult to extract from vision; and they provide information
for all six degrees-of-freedom using a single sensor package.

More complex systems that fuse even more sensors could be constructed. Additional
information provided by more sensor measurements has the potential to improve the per-
formance of the system. However, the use of additional sensor measurements also in-
troduces additional failure modes and calibration parameters (intrinsic parameters of the
transducer, like scale factors, as well as extrinsic parameters, like the position and orienta-
tion of the sensor relative to the other sensors). Consequently, system complexity generates
significant costs to usability and robustness. Adding only inertial rate sensors to a vision
system effectively addresses typical robustness issues of vision-only systems with a sensor
that is inherently very robust.

A recursive state estimator is required to handle the fusion of the relative position in-
formation from vision with the rate information from the inertial sensors. In this sensor
fusion algorithm, the measurements from the accelerometers have to be integrated twice
to compute velocity and position and the measurements from the rate gyros have to be
integrated to compute orientation. Unfortunately, inertial rate sensors are subject to time-
varying biases and measurement noise. These errors result in growing drift errors in the
integrated camera motion. Therefore, an estimator has to be designed to identify the drift
errors, as well as the bias and noise errors which caused the drift. This is especially impor-
tant for low-cost inertial rate sensors, which are subject to significant drift errors.

1.4 A New Relative Position Sensing Strategy

The relative position sensing strategy that is enabled by this research fuses measurements
from inertial rate sensors with measurements from the simplest possible vision system:
using a single camera to measure the bearing to a single visual feature on the object of



1.4. A New Relative Position Sensing Strategy 7

PSfrag replacements

r

ω

a
v

Figure 1.2: Simple Planar Example

interest. The choice of a very simple vision system was made to improve the potential
robustness of the overall positioning system. By reducing the complexity of the vision
system, the sensing system is susceptible to fewer vision outages.

This sensing strategy provides the relative position between a moving observer1 and a
stationary object, as shown in Figure 1.1. The motion of the observer between successive
images generates a baseline for range computations by triangulation. The translation and
rotation along this baseline is registered by the inertial rate sensors.

1.4.1 An Illustrative Example

To illustrate the concept of deriving relative position from a bearing measurement and in-
ertial rate measurements, consider the simplified, planar example in Figure 1.2 in which
the observer is moving in a circle centered at the object location. The observer could
achieve this motion by pointing the optical axis of the camera directly towards the ob-
ject while maintaining a constant velocity (v) perpendicular to and a constant acceleration
(a) in the direction of the optical axis. At steady state, this would result in a constant ro-
tation rate (ω) of the observer. In this case, a = ω2r and the range to the object (r) can
be computed by dividing the centripetal acceleration by the square of the rotational veloc-
ity. Together, range and bearing describe a relative position. This example emphasizes the
need for observer motion to generate observability of the object range.

In reality, the inertial rate sensors provide noisy and biased measurements, the observer
motion cannot be controlled exactly (or at all), the observer motion is in three dimensions,
and the accelerometer measurement contains a large, orientation-dependent contribution
from gravity. Therefore, this simple approach does not provide a useful implementation

1In this dissertation, the term observer refers to the sensor platform that carries the camera and the inertial
rate sensors, and not the estimation algorithm.
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(a) (b) (c)

Figure 1.3: Example Observer Motions

of the sensing strategy. Consequently, this dissertation focuses on a more general sensor
fusion approach that accommodates all of these challenges.

1.4.2 Observer Motion

The success of this sensing strategy depends on the motion of the observer. Motion gener-
ates the information required to determine relative position using an implicit triangulation
approach. The bearing measurements obtained at multiple points of view combine with
observer motion measurements to produce the relative position estimate. However, only
the component of motion transverse to the line-of-sight produces new information about
object range.

In addition to observability, the observer motion might also have to satisfy specific task
requirements. For instance, if the sensing strategy is used to enable a manipulation task,
the observer has a desired terminal position near the object and its motion has to satisfy
that requirement.

Observability and task requirements can be competing objectives for the observer mo-
tion. Figure 1.3 displays three different observer motions. The observer is depicted with
progressively lighter colors as it moves along the path. The object is shown as a black
dot. The motion in (a) is optimized for observability because its circular path provides the
maximum amount of motion transverse to the line-of-sight, which is critical for successful
triangulation. However, the observer does not approach the object. The motion in (b) is
the shortest path from the initial observer position to the goal position near the object. This
type of motion might be optimal for moving the observer along the shortest path into po-
sition to manipulate the object, but does not generate any observability of the object range.
The motion in (c) represents a compromise between the two objectives. At the beginning
of the path, the observer moves primarily in a transverse motion to obtain a good estimate
of object range. Towards the end of the path, the observer moves primarily towards the



1.4. A New Relative Position Sensing Strategy 9

Control

Estimator

Trajectory

State
Dynamics

Disturbances
Inertial
Rate

Sensors

Camera

PSfrag replacements

xdes

x̂

u∆x

z

x

Figure 1.4: Overview of the Sensing Strategy with the Estimator, Trajectory, Controller,
Observer Dynamics, and Sensors

object. Observability along the final portion of the path is reduced to allow the observer to
reach its goal position.

A desired trajectory and a trajectory following controller are used in the sensing strat-
egy to handle observer motion. While the sensing strategy could be used in applications
for which the observer motion is uncontrolled, the trajectory approach, which is assumed
throughout this dissertation, ensures sufficient observability and the ability to accomplish
task-specific requirements. For the experiments presented in this dissertation, a simple
trajectory has been designed. The design of optimal trajectories and the online generation
of trajectories is an active area of research (see [14], which describes trajectory design for
monocular vision-based target motion estimation).

1.4.3 Implementation of the Sensing Strategy

This approach to relative position sensing is called a sensing strategy because it requires a
system-wide implementation. The observer motion, the observer actuator commands and
dynamics, as well as the sensor measurements, are necessary for determining the relative
position.

The implementation of this sensing strategy is shown in Figure 1.4. The block dia-
gram includes the sensors, the estimator that is used to fuse the bearing and inertial rate
sensor measurements, a trajectory that specifies desired relative position as a function of
time, a relative position controller to execute that trajectory, and the state dynamics of the
observer.

In Figure 1.4, the state of the system is represented by x and the state estimate is x̂.
The trajectory specifies the desired state xdes as a function of time. The difference between
the desired state and the state estimate is used by the controller to compute the actuator
commands u for the observer. The vector z contains the sensor measurements.
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1.4.4 Estimation Problem

The main contribution of this research is the design of a new recursive state estimator,
which is required for fusing vision and inertial rate sensor measurements to determine
relative position. This estimation problem includes two important nonlinearities: the pro-
jection nonlinearity in the camera sensor model and the geometric nonlinearity from the
rotational motion of the observer. Therefore, a nonlinear estimator has to be designed.
However, standard nonlinear estimation tools, like the Extended Kalman Filter (EKF), fail
to provide an adequate solution.

The EKF uses linearization to approximate the nonlinear system equations. This ap-
proximation is based on the assumption that the estimate uncertainty is small. While the
EKF provides good solutions for a broad range of nonlinear estimation problems, it fails
for some problems because the estimate uncertainty cannot be assumed to be small. In
this case, the linearization step introduces estimate and covariance errors that can cause
the estimate to be strongly biased and cause the algorithm to diverge.

This sensor fusion problem causes problems for the EKF because convergence, which
depends on observer motion, can be slow, which implies large estimate uncertainties. For
example, the initial estimate does not converge until sufficient observer motion has oc-
curred for the implicit triangulation to provide useful information about the object range.
During this time, the estimate uncertainty remains at the value of the initial estimate un-
certainty, which can be large. Consequently, the covariance of the EKF, which is sensitive
to the size of the uncertainties, can be corrupted and the state estimate can converge to a
false object range.

Therefore, a new estimator design that can produce accurate results for this sensor fu-
sion problem is required. The new design is based on a Kalman Filtering approach with
two key modifications. First, the nonlinear system equations are expressed with a specific
representation that has a linear sensor model. This obviates linearization for the measure-
ment update step of the Kalman Filter and leads to a more accurate solution. Second, the
Unscented Transform, a relatively new technique for handling nonlinear stochastic prob-
lems without linearization, is used to implement the time update step of the estimator.

This estimator design solves the sensor fusion problem and enables the real-time im-
plementation of the new sensing strategy.

1.5 Object Pick-Up Task

An object pick-up task has been defined to demonstrate the capabilities of the new sensing
strategy. In this demonstration, the sensing strategy is used to enable a simple manipula-
tion task. Although relative position sensing is a critical capability for many underwater
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Figure 1.5: Object Pick-Up Task

vehicle control applications—including station-keeping, tracking and observation—object
manipulation generates enhanced requirements on accuracy, robustness, and motion con-
straints. This demonstration task simulates the following application: a hover-capable,
floating underwater vehicle is used to retrieve an object from the seafloor. This could be
an instrument that has been deployed previously or a natural object of scientific value. The
state-of-the-art in underwater manipulation requires ROVs to perform this type of task—
this sensing strategy enables autonomous execution of the object pick-up task.

To perform a successful capture, the underwater vehicle has to determine its position
relative to the stationary object and move to a desired relative position with sufficient ac-
curacy to perform a successful grasp of the object. This scenario is illustrated in Figure 1.5.

The object pick-up task is implemented in the laboratory with a 7-DOF serial-link ma-
nipulator arm that is used to simulate the motion and manipulation capabilities of an un-
derwater vehicle. Figure 1.6 shows the K-1607 manipulator by Robotics Research Corpo-
ration in position to pick up a cup, placed at a position unknown to the robot. The ma-
nipulator endpoint has a gripper for grasping the cup as well as a camera and inertial rate
sensors. This cluster of sensors and the gripper on the endpoint simulate the underwater
vehicle. The links and joints of the manipulator as well as the forces they transmit simu-
late the combined action of the vehicle thrusters and any disturbance from the underwater
environment.

For the demonstration task to be realistic, the manipulator endpoint has to move ac-
cording to the dynamics of an underwater vehicle. This can be done with a model follow-
ing controller. This controller applies the assumed dynamics of an underwater vehicle to
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Figure 1.6: Manipulator Arm for Object Pick-Up Experiment

the vehicle disturbances and control commands to compute the desired vehicle motion.
It then commands manipulator joint velocities that result in equivalent manipulator end-
point motion.

Figure 1.7 shows how the control system for the manipulator experiment maps into
the State Dynamics block of Figure 1.4. xsim represents the state of the system due to the
input uobs if the system evolves according to the dynamics model for the observer. The
difference between xsim and the actual manipulator state x drives the Endpoint Pose Con-
troller, which generates the desired manipulator joint velocities umanip. These desired joint
velocities are passed to the manipulator and its control system, which generates the new
state x. The motion capabilities and control authority of the manipulator readily exceed
the requirements for simulating the motion of a hovering underwater vehicle.

The joint angle measurements from the manipulator are used to compute the actual
endpoint motion. This can be used as a truth measurement to evaluate the sensing strategy
and is an integral part of the model following controller.
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Figure 1.7: Simulated Observer Motion with the Manipulator Arm

1.6 Research Results

The design of a nonlinear estimator to solve the sensor fusion problem has enabled a new
relative position sensing strategy based on fusing monocular vision measurements of a sin-
gle feature and inertial rate sensor measurements. Simulations and hardware experiments
demonstrate that the sensing strategy is feasible and that it can be used by an autonomous
robot to implement a useful, closed-loop manipulation task.

The research addresses the difficulty in designing an estimator to solve the sensor fu-
sion problem. Standard nonlinear estimation tools like the EKF failed to provide an ad-
equate solution. By developing a modified Kalman Filter solution that does not use lin-
earizations of the nonlinear system equations, a solution that works well for this problem
has been attained. Simulations show that the estimator correctly computes the predicted
standard deviation of the estimate error, which is a useful indicator for the performance
of the estimator. The success of the hardware experiments confirms that the models and
assumptions used in the estimator design are reasonable.

The main limitation of this sensing strategy is that its performance depends strongly
on the size of disturbance forces, like ocean currents, and errors in the dynamics model of
the observer. As the disturbances and model errors increase, the precision of the relative
position estimate decreases. The significance of this conclusion depends on the applica-
tion. When the observer models are accurate and the external disturbances are low, as is
the case for the hardware experiment presented in this dissertation, then centimeter-level
accuracy is easy to achieve. If the dynamics models are poorly understood and external
disturbances are significant, as might be the case for a real underwater vehicle, then the
performance might not be sufficient to perform precise manipulation tasks.

This limitation is caused primarily by the minimal sensor information that is fused
to determine relative position. The goal of the research was to examine a sensing strategy
that fuses inertial rate sensor measurements with only the simplest possible vision require-
ments. As a result, the sensing strategy has to rely heavily on the predictions generated by
the dynamics model. The analysis of performance that was enabled by the new estimator
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design indicates that these sensors are sufficient to determine precise relative position, but
only if disturbances are low and model errors are small. Although the potential exists for
improving the estimator design to boost performance—both by applying different (and
possibly more complex) algorithms and by increasing the accuracy of the models—the
estimator is not the dominant cause for this limitation.

The recommended solution to this problem is to consider a modified sensing strategy
which incorporates additional sensor measurements. A variety of options exist and are
discussed in Chapter 7.

1.7 Related Research

This section introduces areas of research that are related to the research presented in this
dissertation. Section 1.7.1 focuses on the general topic of relative position sensing for field
robots. It reviews application areas and common sensors, discusses the relationship to
absolute position sensing, and introduces the related topic of simultaneous localization
and mapping. Other approaches for fusing vision and inertial rate sensors and approaches
for determining relative position with a single bearing sensor are presented. The work of
two groups that have also pursued a bearing plus inertial approach is described.

Section 1.7.2 covers related work in the area of autonomous manipulation. It describes
the topics that comprise the broad area of autonomous manipulation and explains that a
real-time relative position sensor is necessary to extend autonomous manipulation capa-
bilities developed for land-based robots to underwater robots. It also reviews previous
work in enabling autonomous manipulation capabilities for underwater vehicles.

An expanded discussion of related work in the design of recursive estimators for non-
linear problems is presented in Chapter 3.

1.7.1 Relative Position Sensing For Field Robots

The deployment of useful field robot capabilities is a very challenging problem, particu-
larly in the area of relative position sensing in unstructured and unprepared environments.
Consequently, the development of new sensing approaches for determining the relative
position between a robot and objects in its environment is an active area of research. The
purpose of relative position sensing includes obstacle avoidance, mapping (building a cat-
alog of objects and their positions), localization (determining the robot position relative to
mapped objects), and relative position control (controlling the position of the robot relative
to an object to enable observation, modeling and manipulation). Relative position sensing
has been identified as a challenge not only for underwater vehicles, but also for Mars
rovers, unmanned aerial vehicles, underground mining vehicles [47] and service robots.
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Many different types of sensors have been used to perform relative position sensing
for field robots. These include vision (in all of its many forms, including multi-camera
systems, motion-based systems, and structured light), laser scanners, radar, ultrasonic and
tactile sensors. Often, sensor fusion is used to incorporate additional information, like iner-
tial rate sensors and odometry. Redundant sensor information helps to develop robustness
against the inherent failure modes of relative position sensors in real environments.

Absolute Position Sensing

The widespread availability of the global positioning system (GPS) has enabled many new
field robot capabilities. GPS provides a low-cost, accurate measurement of robot position
in global coordinates. Differential measurements can be used to describe robot motion.
Although GPS is available to underwater vehicles while they are at the surface, the GPS

signals do not penetrate to any useful depth in the ocean. In some cases, long-baseline
(LBL) systems, which use sonar transponders, are available to provide absolute position
measurements for underwater vehicles.

Although these positioning systems are very useful for the control of field robots, they
do not replace the need for relative position sensing systems to perform obstacle avoid-
ance, mapping, localization and relative position control. First, GPS and LBL systems pro-
vide absolute position and not the position relative to an object of interest. Second, they
are not always available. GPS generally requires line-of-sight to several satellites and is
susceptible to multipath interference. LBL systems operate only over a limited area and
are very expensive to deploy.

Simultaneous Localization and Mapping

For some applications, the robot operates in an unknown environment and needs to map
objects of interest while maintaining an estimate of its position relative to the objects that
have already been mapped. This problem is straight forward if the robot can observe all
of the objects at the same time or if it has an external position reference. But without an
independent position measurement, the process of simultaneous localization and map-
ping (SLAM) generates a challenging estimation problem. Although the theoretical basis
for SLAM is well understood (e.g. [11]), managing computational complexity and data as-
sociation issues are areas of active research. Several applications of SLAM for field robots
have been presented [13, 43, 58].

Bearing-only SLAM [9, 10] is a subset of SLAM using sensors that provide only bear-
ing measurements and no range information. The bearing-only SLAM problem is closely
related to the structure-from-motion problem in computer vision.
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Fusing Multiple-Feature Vision and Inertial Rate Sensors

Although many vision-only techniques have been developed to determine relative posi-
tion, several researchers have recognized the value in fusing vision measurements and
inertial rate sensor measurements to improve the robustness, performance and computa-
tional cost of vision-only approaches. Usually, this work begins with a complete vision so-
lution (i.e., the system has sufficient observability without the inertial rate sensors), which
typically involves tracking more than one feature. Rate gyro measurements are then fused
to simplify the problem of separating the contribution to image-plane feature motion due
to camera translation and camera rotation. Sometimes, accelerometer measurements are
fused to smooth the computation of camera velocity. Bhanu, Das, Roberts and Duncan [2]
have used this approach to develop an obstacle avoidance system for low-flying rotor-
craft. You, Neumann and Azuma [60] have developed an augmented reality system based
on fusing vision and rate gyro measurements. Strelow and Singh [54] fuse measurements
from multiple image features and inertial rate sensors to determine observer motion.

Although these systems perform better than vision-only approaches, they still incor-
porate the complexity of a complete vision solution. In contrast, this dissertation presents
a system that requires only a very simple vision system (i.e., monocular vision measure-
ments of a single feature) by fusing inertial rate sensors. The ability to reduce the vision
requirements improves the potential robustness of the overall sensing system.

Target Motion Analysis

Target motion analysis (TMA) is a widely deployed capability that uses only a single bear-
ing sensor together with observer motion to determine the relative position and velocity
between an observer and a maneuvering target. TMA is generally used with passive sonar
and passive radar measurements, which provide bearing to the target, but not its range.
An extension to vision-based TMA is presented in [14]. The main difference between TMA

and the sensing strategy described in this dissertation is that the observer motion is as-
sumed to be known in TMA. This can be achieved with the use of an absolute positioning
system like GPS or an LBL system. Much of the research in TMA is currently focused on the
design of optimal trajectories that minimize the required observer motion while achieving
sufficiently accurate target motion estimates.

Fusing Bearing and Inertial Rate Sensors

Two groups have recently discussed the problem of fusing measurements from inertial
rate sensors and only one bearing sensor to determine relative position. They are Kaminer,
Kang, Yakimenko and Pascoal [30] (airplane tracking a ship) and Gurfil and Kasdin [18]
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(missile intercepting a target). Both groups have made significant simplifying assump-
tions for this problem. They have assumed that the inertial rate sensor biases are not
time-varying and that they have been perfectly calibrated. They assume that an indepen-
dent, accurate measurement of observer orientation is available, which reduces the size of
the problem and enables perfect gravity compensation in the accelerometer measurement.
Both groups have presented only simulation work for which these assumptions can be
satisfied easily.

However, even though both groups have worked with simplified systems, they have
also recognized the difficulty of the estimation problem and have focused their research
on developing new estimator designs that provide accurate solutions for this sensor fu-
sion problem. The solution in Kaminer et. al. is based on exploiting the structure of
the simplified problem and casting it as a linear parametrically varying system. To pro-
vide additional observability and performance, they have also developed an extension to
a stereo system with two cameras as well as accelerometers. The solution by Gurfil and
Kasdin uses the two-step estimator, a design which is also based on the choice of system
representation with a linear sensor model.

However, the assumptions that were made to simplify the estimation problem in this
related work do not hold for the application of interest in this dissertation. In particu-
lar, the observer orientation is not known exactly and has to be estimated from sensor
measurements. Because the orientation estimate is uncertain, gravity compensation of the
accelerometer measurements is also uncertain and has to be accounted for in the estimator
design. This has a significant effect on the performance of the sensing strategy. Further-
more, the inertial rate sensor biases are time-varying, especially for low-cost inertial rate
sensors, so these biases have to be estimated on-line as part of the solution. Consequently,
the solution presented in this dissertation is capable of handling more complex and re-
alistic sensor fusion problems and represents an extension of the previous work. This
extension was required to enable a hardware demonstration of the sensing strategy.

1.7.2 Autonomous Manipulation

Autonomous manipulation is an active area of research with important applications for
factory automation, service robots, Mars rovers, robots that operate in hazardous envi-
ronments and underwater vehicles. Depending on the application, this capability re-
quires fundamental advances in relative position sensing, object modeling, reasoning, task
planning, motion planning, grasp planning and manipulator control. Many researchers
are working on one or more of these components. Some have described full end-to-end
demonstrations of autonomous manipulation of known objects (e.g., [50]) and unknown
and a priori unmodeled objects [39, 49, 52].
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Figure 1.8: OTTER: A Small Underwater Vehicle Operated in MBARI’s Test Tank

Computer vision is often used to determine the relative position between the robot
and the object—both for feedback control and task specification. Visual servoing of robot
manipulators [6, 19], both image-based and position-based, has been implemented suc-
cessfully for many autonomous manipulation tasks.

In principle, most of the research on autonomous manipulation can be extended to
autonomous underwater manipulation. However, because much of the autonomous ma-
nipulation research is focused on land-based robots, it tends to assume that the robot is
fixed in inertial coordinates during manipulation tasks. In this case, two useful assump-
tions are valid: first, the motion of the manipulator and the relative position sensor can be
measured easily and accurately, or they can be held stationary; second, a look-and-move
approach, in which the robot can carefully interpret sensor information about the object
before committing to motion, is feasible. This is not the case for autonomous manipulation
by floating underwater vehicles. These vehicles are not stationary during the manipulation
task and their motion is difficult to measure. Furthermore, the control of the manipulator
has to incorporate real-time sensing to adjust for the motion of the floating vehicle.

The relative position sensing strategy presented in this dissertation provides a real-
time estimate suitable for position control of a floating underwater vehicle relative to the
object of interest. This estimate can be used to extend autonomous manipulation capabil-
ities (such as online object modeling, motion planning, grasp planning, and manipulator
control) that have been developed for land-based robots to make them suitable for floating
underwater vehicles.

In 1996, Wang [57] introduced intervention-capable AUVs, a new class of AUVs that can
manipulate objects in their environment. Wang demonstrated that OTTER (see Figure 1.8),
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Figure 1.9: Autonomous Benthic Explorer of the Woods Hole Oceanographic Institu-
tion [59]

a small test-tank AUV, could autonomously search for, grasp, and retrieve an object. This
retrieval task requires a direct relative position measurement between the AUV and the
object, which Wang implemented with a vision-based stereo system. Vision-based manip-
ulator control for an underwater vehicle has also been demonstrated by Smith, Yu, Sarafis
and Lucas [51].

Yoerger et. al. [59] demonstrated the first sample retrieval task with an ocean-going AUV.
The Autonomous Benthic Explorer (ABE, see Figure 1.9) sampled volcanic glass by pushing
a boom into the sea floor. This task did not involve a specific object and was accomplished
with a navigation sensor. Although this was a very simple task, it demonstrates the utility
of intervention-capable AUVs.

The Semi-Autonomous Underwater Vehicle for Intervention Missions [61, 62] is an ac-
tive program to develop an ocean-going AUV with manipulation capabilities.

1.8 Contributions

This dissertation presents several contributions that support the development of the new
sensing strategy.

• Sensing Strategy
A new sensing strategy that fuses monocular vision measurements of a single feature
and inertial rate sensor measurements to determine the relative position between a
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moving observer and a stationary object has been enabled. The sensing strategy ad-
dresses potential robustness issues of vision-only approaches by fusing a vision sys-
tem with very simple requirements (one bearing measurement) with observer mo-
tion data from the inertial rate sensors.

• Estimator Design
Enabling this sensing strategy required the design of a new nonlinear, recursive state
estimator that has been adapted to address the unique requirements of the sensor fu-
sion problem. The estimator design is based on a modified Kalman Filter approach
that avoids the use of linearization by choosing a specific system representation that
has a linear sensor model and by incorporating the Unscented Transform to imple-
ment the time update for the nonlinear process model.

Simulation results have demonstrated that the new estimator design provides an ad-
equate solution to this sensor fusion problem. In particular, the estimator accurately
predicts the standard deviation of the estimation error. This is a key indicator that the
estimator design can handle the combination of nonlinear system equations and ele-
vated estimate uncertainties that is present in this estimation problem. Consequently,
the mean estimate errors tend to be small.

• Performance Analysis
An analysis has been developed to determine the performance limitations of this
sensing strategy. The analysis showed that the estimate accuracy depends strongly
on the size of disturbance forces and errors in the dynamics model. This is a conse-
quence of the limited observability afforded by the sensor measurements available
in this sensing strategy. Useful applications of this sensing strategy have been pre-
sented. However, when the accuracy of the relative position estimate is not sufficient
for a given application, additional sensor measurements need to be incorporated into
the sensing strategy to improve performance.

• Hardware Experiment
The first hardware demonstration of a manipulation task using the new sensing strat-
egy was performed. To enable this demonstration, a laboratory testbed that inte-
grates a real-time implementation of the estimator with monocular vision, low-cost
inertial rate sensors, a robotic manipulator, a trajectory generator, a controller and
truth sensors was constructed. The experiment demonstrates the effectiveness of the
sensing strategy in a system with real sensor measurements, model and calibration
errors, and time delays. It also demonstrates how the sensing strategy can be inte-
grated into a simple and useful closed-loop manipulation task.
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1.9 Reader’s Guide

The remainder of this dissertation is organized into six chapters:

Chapter 2—System Equations presents the system equations that define the sensing strat-
egy and describes the estimation problem that has to be solved to implement the sensing
strategy.

Chapter 3—Recursive Nonlinear Estimation introduces several estimator designs and
compares the performance of a subset of these based on a very simple example which cap-
tures the important features of the full sensor fusion problem. This comparison explains
the failure of the EKF and helps to suggest a new design strategy.

Chapter 4—Estimator Design presents the new estimator design for the full sensor fusion
problem.

Chapter 5—Experimental System describes the experimental system and the demonstra-
tion task that were used to perform the hardware experiments. It also defines an analogous
simulation system and presents the trajectory design for the demonstration task.

Chapter 6—Results presents the simulation and experimental results, along with their
interpretation.

Chapter 7—Conclusions provides conclusions and suggestions for future work.
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Chapter 2

System Equations

The introduction has described a new sensing strategy for determining the relative posi-
tion between between a moving observer and a stationary object. This sensing strategy is
based on fusing monocular vision measurements of a single feature (a bearing measure-
ment) and inertial rate sensor measurements. It is called a sensing strategy because it re-
quires a system-level implementation that depends not only on the sensor measurements,
but also on the dynamics and the motion of the observer.

This chapter provides the system equations that define a specific implementation of this
sensing strategy. This provides the context in which various aspects of the sensing strategy
can be discussed. First, the geometry and reference frames to describe the demonstration
task are presented. Next, suitable models are derived for the bearing and inertial rate
sensors, for the dynamics of the observer, for its actuators, and for the disturbances acting
on the observer. These components can be combined to generate a complete mathematical
description of the demonstration task and the associated estimation problem.

The choice of models to represent the parts of the sensing strategy are an important
factor in the design of the solution and its overall complexity. Models are required for
the camera, the inertial rate sensors, the observer dynamics, and the external disturbances
acting on the observer. These models were chosen to be as simple as possible while captur-
ing the significant aspects of the types of sensors that are expected on typical underwater
vehicles and the types of dynamics and disturbances that are expected in the underwater
environment.

For some applications, more sophisticated models might be appropriate. These would
require modifications to the estimation problem described in this chapter. However, the
focus in the dissertation is on the generic features of the sensing strategy and not on the
particular choice of models. Therefore, one of the goals for the estimator design presented
in Chapter 4 is to generate a flexible solution that can easily accommodate changes to the
particular system equations as they are defined in this chapter.

23
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Figure 2.1: Geometry and Reference Frames for the Demonstration Task

Sections 2.1 to 2.3 define the models. Section 2.4 collects all of these models to write
the complete system equations. Section 2.5 defines the estimation problem that has to be
solved to implement the sensing strategy.

2.1 Geometry and Reference Frames

This section presents the geometry and reference frames to support the development of
equations for the sensor fusion problem. Figure 2.1 shows the stationary object and the
moving observer. Frame N is the inertial frame and B is the body frame of the moving
observer. Frame B is fixed to the inertial rate sensors. The camera frame C is fixed with
respect to Frame B and aligned with it. Pcam is the constant offset of C expressed in B.
The z-axes of the body and camera frames are aligned with the optical axis of the camera.
A leading superscript (e.g., Bx) indicates that the vector is expressed in a specific frame.

The vector p indicates the position of the tracked feature on the stationary object. The
vector q is the position of the moving observer. The position of the feature relative to
the observer is r = p − q. The feature is stationary in the inertial frame, so ṗ = p̈ = 0.
Therefore, ṙ = −q̇ and r̈ = −q̈. Because of this assumption, a measurement of the observer
acceleration q̈ is directly useful for estimating the relative feature position r.

The vector λ represents the orientation of the body frame relative to the inertial frame
using the roll-pitch-yaw Euler angles (or X-Y-Z fixed angles in [7, Appendix B]). R is the ro-
tation matrix that transforms a vector expressed in inertial coordinates to the body frame.
The vector ω is the associated rotational velocity expressed in the body frame. The fol-
lowing equations present all of the relationships required in this dissertation to represent
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orientation and angular velocity.

λ =









φ

θ

ψ









=









roll

pitch

yaw









(2.1)

R = RBN (λ) (2.2)

=

[

cosψ cos θ sinψ cos θ − sin θ
− sinψ cosφ+cosψ sin θ sinφ cosψ cos φ+sinψ sin θ sinφ cos θ sinφ
sinψ sinφ+cosψ sin θ cosφ − cosψ sinφ+sinψ sin θ cosφ cos θ cosφ
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(2.3)
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dt
= −ω ×R (2.4)
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= E(λ)RTω (2.5)
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cosψ/ cos θ sinψ/ cos θ 0

− sinψ cosψ 0
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otherwise

(2.6)

Observer orientation is composed of attitude and heading. Attitude is the tilt away
from the gravity vector and is captured by the roll and pitch angles. Heading is the rotation
about the gravity vector and is captured by the yaw angle.

2.2 Sensor Models

2.2.1 Camera Model

The camera is represented by the standard perspective projection model shown in Fig-
ure 2.2. The x-, y-, and z-axes define the camera frame C and the coordinate system of the
camera. The z-axis corresponds to the camera’s optical axis. The image plane is shown at
z = f . It is assumed, without loss of generality, that the camera measurements are scaled

such that the effective focal length is 1. Therefore, an object located at S =
[

Sx Sy Sz
]T

in the camera frame appears as an image plane feature at sx = Sx/Sz and sy = Sy/Sz . The
resulting camera model in terms of Nr is

S =









Sx

Sy

Sz









= R Nr − Pcam (2.7)
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Figure 2.2: Perspective Projection Camera Model

zs =

[

sx

sy

]

+ ns =
1

Sz

[

Sx

Sy

]

+ ns (2.8)

where ns is zero-mean white Gaussian measurement noise.
A bearing is usually defined to be an angle, but for this work, it is useful to generalize

the concept to include the perspective geometry of the camera model. In this model, ob-
jects in the 3D world are projected onto a plane rather than a sphere or cylinder. A pixel
measurement on the image plane could be converted easily to an angle with the tangent
function. However, the equations are simpler without this conversion. Therefore, a pixel
measurement is considered to be a type of bearing measurement. Range usually means the
Euclidean distance between observer and object. However, a more useful quantity in the
context of the perspective geometry camera model is the distance along the optical axis,
which is the interpretation used throughout this work.

2.2.2 Other Bearing Sensors

This sensing strategy is presented in the context of monocular vision from a camera with
perspective projection. But it applies equally well to other bearing sensors including omni-
directional cameras, passive radar and passive sonar.
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2.2.3 Inertial Rate Sensor Models

The models for the inertial rate sensors are derived from those in [15]. The accelerometer
measures specific force in body coordinates, which includes the acceleration q̈ of the ob-

server and an apparent acceleration due to gravity
(

g =
[

0 0 −g
]T

)

. The accelerom-

eter measurement za also includes sensor biases ba and zero-mean white Gaussian sensor
noise na.

za = αR(λ) (−q̈ + g) + ba + na (2.9)

α ≈ I3×3 represents scale factor errors induced by the sensor. The estimator design in-
cludes two simplifying assumptions on the accelerometer model. First, it is assumed that
α = αI3×3. Second, it is assumed that the scale factor variation can be ignored for the
contribution due to real accelerations, which is much smaller than the contribution from
gravity (i.e., αq̈ ≈ q̈). This assumption has a small impact on overall accuracy and greatly
simplifies the estimator design. The modified accelerometer model is

za = R(λ) (−q̈ + αg) + ba + na (2.10)

The rate gyro measurement includes the rotational velocity ω of the observer, sensor
biases bω , and zero-mean white Gaussian sensor noise nω.

zω = ω + bω + nω (2.11)

Random walk models are used to capture the dynamics of the inertial rate sensor pa-
rameters. nba, nbω and nα are zero-mean white Gaussian driving terms. These trivial mod-
els are sufficiently accurate for the short-duration experiments described in Section 5.2.

d

dt
ba = nba (2.12)

d

dt
bω = nbω (2.13)

d

dt
α = nα (2.14)

2.3 Actuator and Disturbance Models

The actuator and disturbance models are required by the estimator to predict the motion
of the observer given the current state and control inputs. For an underwater vehicle,
the disturbances are caused primarily by drag on the vehicle from ocean currents. The
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control inputs drive thrusters on the vehicle which generate force and torque components
depending on how the thrusters are arranged.

The success of the sensing strategy depends strongly on the accuracy of these mod-
els and on the size of the disturbances. While the size of disturbances is determined by
the operational environment, the accuracy of models could be optimized. However, ac-
curately determining the dynamics of underwater vehicles is difficult and results in very
complicated models. Furthermore, even small changes to the vehicle can cause significant
deviations in the model.

This research has assumed very simple models that capture the first-order characteris-
tics of the disturbances and the vehicle dynamics. These models have enabled the design
of an estimator and the evaluation of the sensing strategy. Developing more sophisticated
models and assessing the trade-off between complexity and performance has been identi-
fied as future work in Chapter 7.

The observer command input is u =
[

uT1 uT2

]T
, where u1 is a vector of force inputs

and u2 is a vector of torque inputs. Both are expressed in observer body coordinates and
in units of m/s2 and rad/s2, respectively.

A linear drag model relates the control input u1 to observer velocity.

d

dt
q̇ = q̈ = R(λ)T u1 + γ (w − q̇) (2.15)

For the underwater vehicle application, w represents the water velocity and can be in-
terpreted as the source for a disturbance d1 = γw. The vector d1 represents unknown
external forces on the observer as well as errors in the actuator model. It is modeled by a
first-order Gauss-Markov process.

d

dt
d1 = − 1

τ1
d1 + nd1 (2.16)

where nd1 is zero-mean white Gaussian noise.
A 1/s2 model relates the control input u2 to angular velocity. A simpler model has

been assumed for the rotational motion of an underwater vehicle because angular velocity
is easily measured with the rate gyros. Therefore, the accuracy of the model for angular
velocity is not as important. In fact, Section 2.5 explains how to eliminate this model from
the estimator design.

d

dt
ω = u2 + d2 (2.17)
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The disturbances, again modeled by first-order dynamic equations, represent unknown
external torques on the observer and errors in the actuator model.

d

dt
d2 = − 1

τ2
d2 + nd2 (2.18)

The vector nd2 represents zero-mean white Gaussian noise.

2.4 Complete System Equations

The system equations, composed of a vector of states, the dynamics of those states, and
the sensor models that relate the states to the measurements, describe the sensor fusion
problem at the core of the sensing strategy. This section collects all of these parts and
highlights the nonlinearities in the sensor and process model.

The state of the system includes the relative position Nr, the velocity of the observer q̇,
the observer orientation λ and angular velocity ω, the disturbance forces d1 and torques
d2, the inertial rate sensor biases ba and bω and the scaling parameter α. The total state
vector X can be written as a combination of the estimator states x and some additional
states xω which describe the rotational motion.

X =

[

x

xω

]

x =































Nr

q̇

d1

ba

α

λ

bω































xω =

[

ω

d2

]

(2.19)

The dynamics of X have already been defined in Sections 2.2 and 2.3.

d

dt
X =

[

d
dtx
d
dtxω

]

=

[

f(x,u1,ω,nba,nd1,nbω, nα)

fω(xω,u2,nd2)

]

(2.20)

f =



























































d
dt
Nr = −q̇

d
dt q̇ = R(λ)T u1 + d1 − γq̇
d
dtd1 = − 1

τ1
d1 + nd1

d
dtba = nba
d
dtα = nα
d
dtλ = E(λ)R(λ)T ω

d
dtbω = nbω

(2.21)
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fω =

{

d
dtω = u2 + d2

d
dtd2 = − 1

τ2
d2 + nd2

(2.22)

The vector Z contains the camera and inertial rate sensor measurements.

Z =









zs

za

zω









=









hs(x,ns)

ha(x,u1,na)

hω(x,xω,nω)









(2.23)

hs(x,ns) =
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= R(λ) Nr − Pcam

zs =

[

sx

sy

]

+ ns = 1/Sz

[

Sx

Sy

]

+ ns

(2.24)

ha(x,u1,na) = −u1 +R(λ) (−d1 + γq̇ + αg) + ba + na (2.25)

hω(x,xω,nω) = ω + bω + nω (2.26)

2.5 Estimation Problem

Although the complete system equations presented in Section 2.4 already define an esti-
mation problem, this problem can be partitioned to permit a simpler estimator design. It
is possible to eliminate the xω states without significant loss in estimator performance.

It is possible to eliminate the torque disturbance d2 from the estimation problem be-
cause it does not contribute significantly to the performance of the estimator. For opera-
tional underwater vehicles, the model parameters for the actuator and disturbance models
defined in Section 2.3 are difficult to determine. Although the models can predict the mo-
tion of the observer, the accuracy of that prediction is at best moderate. The purpose of
these models in the estimator is to improve the convergence of the estimate by mitigating
the errors in the acceleration and angular velocity measurements. However, the presence
of the gravity component in the accelerometer measurement has the effect of enhancing
the accuracy of the angular velocity measurement and degrading the accuracy of the ac-
celeration measurement. Consequently, while the models that predict linear velocity are
important, those that predict angular velocity are not. Therefore, measuring the angular
velocity is sufficient and the estimate of d2 can be eliminated.

Eliminating d2 has two advantages. First, the length of the state vector is reduced.
Second, fewer model parameters have to be determined.

The estimation problem can be written more compactly by incorporating the inertial
rate sensor measurements directly into the process model. This is often done for aided
inertial navigation systems because it partitions the estimator design according to the rate



2.5. Estimation Problem 31

of sensor measurements. The process model can then be implemented at the faster rate
of the inertial rate sensor measurements and the sensor model can be implemented at the
rate of the aiding sensor, which is typically slower. This can provide an advantage in the
computational cost of the estimator.

The main advantage of incorporating the rate gyro measurement into the process model
of this estimator is that the explicit representation of ω can also be eliminated. As a result,
xω is not required in the state vector. However, incorporating the accelerometer measure-
ment does not result in eliminating any states. Therefore, the accelerometer measurement
remains in the sensor model.

Equation 2.19 defines the estimator state vector

x =































Nr

q̇

d1

ba

α

λ

bω































. (2.27)

The process model can depend explicitly on the rate gyro measurements by rewriting the
rate gyro sensor model in (2.11) as an expression for ω.

ω = zω − bω − nω (2.28)

This generates the following estimation problem.

d

dt
x = f(x,u1, zω,np) =



























































d
dt
Nr = −q̇

d
dt q̇ = R(λ)T u1 + d1 − γq̇
d
dtd1 = − 1

τ1
d1 + nd1

d
dtba = nba
d
dtα = nα
d
dtλ = E(λ)R(λ)T (zω − bω − nω)
d
dtbω = nbω

(2.29)

z =

[

zs

za

]

= h(x,u1,nz) (2.30)
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za = −u1 +R(λ) (−d1 + γq̇ + αg) + ba + na

(2.31)
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(2.32)

nz =

[

ns

na

]

(2.33)

The vectors np and nz collect all of the process and sensor noise terms.

2.6 Summary

This chapter provides an explicit definition of the sensing strategy by presenting the mod-
els that were used to represent the components of the sensing strategy. These generate the
system equations from which the estimation problem can be derived. The next chapter
evaluates various techniques that could be used to design an estimator for this sensor fu-
sion problem and suggests an appropriate design strategy. Chapter 4 presents the design
of a recursive, nonlinear estimator to solve this estimation problem.
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Recursive Nonlinear Estimation

Fusing measurements from a bearing sensor and inertial rate sensors to determine relative
position involves a recursive nonlinear estimation problem that is difficult to solve with
standard tools like the Extended Kalman Filter (EKF). Chapter 4 presents a new solution
for this estimation problem. This chapter lays the groundwork for this solution by com-
paring several potential approaches for solving this nonlinear estimation problem. This
comparison is based on a simple three-state example problem that captures the critical
features of the full sensor fusion problem. Applying the EKF to the three-state example
illustrates why this popular design method provides a poor solution to the sensor fusion
problem. After examining the performance of several other approaches, the chapter con-
cludes by identifying the design strategy used to create the full solution in Chapter 4.

Section 3.1 introduces the broad topic of optimal nonlinear estimation. Although ex-
tensive theory has been developed to handle these problems, practical solutions to all but
a few specific cases have been elusive. Therefore, most solutions to nonlinear estimation
problems involve approximations. Choosing appropriate approximations for the particu-
lar problem is a critical step in developing a successful solution for many of these prob-
lems.

The EKF has become a standard design tool for nonlinear estimators. It approximates
the estimation problem by linearizing the nonlinear system equations to generate a similar,
linear system to which the Kalman Filter equations can be applied. The Kalman Filter pro-
duces an optimal solution for linear Gaussian estimation problems. Section 3.2 describes
the Kalman Filter and its extension to nonlinear problems.

Section 3.3 introduces the three-state example, a very simple estimation problem that
captures those features of the full sensor fusion problem that cause problems for the EKF

estimator design. This example is used to compare several different estimator designs
using Monte Carlo simulations. The rest of the chapter introduces these estimator designs
and discusses their performance on the three-state example.

33
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Section 3.4 shows how the EKF is used to implement the estimator for the three-state
example and discusses the EKF results. Dynamic observability is defined as a property
of the system. This property is useful to explain how the EKF fails and to suggest an
alternative solution approach.

Changing the representation of the nonlinear system is a powerful tool for improving
the performance of the estimator. The particular representation of the state of the system
determines the types of nonlinearity and in what part of the estimator the nonlinearities
appear. Section 3.5 describes an estimator design based on the EKF, but with an alternative
system representation. The key feature of this representation is a linear sensor model.
This leads to a significant improvement in the estimator performance for the three-state
example.

While approximations are necessary to implement estimators for most nonlinear prob-
lems, there are different approximations that can be applied. For example, the EKF uses
linearization of the system equations. Two other techniques, Particle Filters and Sigma
Point Methods, approximate the probability density function for the estimate uncertainty
with a set of points sampled according to the density function. The advantage of these
techniques is that their accounting of uncertainty is more complete so they produce more
accurate solutions; that they are simple to derive; and that they can handle a broad range
of nonlinearities. Particle Filters (Section 3.6), which use a large set of points sampled
randomly from the density function, could be used to solve this problem, but are very
computationally expensive, especially for large estimation problems. Sigma Point Meth-
ods, on the other hand, use a small, deterministic sampling of the density function. They
generate good results at a computational cost that is similar to an equivalent EKF solution.

The Unscented Transform (UT) is a particular implementation of a Sigma Point method.
Section 3.7 describes the UT, presents an estimator design based on the UT, and discusses
its results for the three-state example.

The solution for the full sensor fusion problem, which is presented in Chapter 4, is
based on the techniques described in this chapter. The estimator is a Kalman Filter using
a representation of the system that results in a linear sensor model. The Kalman Filter
framework is modified by the application of the Unscented Transform to handle the non-
linearities in the process model. This solution avoids all linearization of the nonlinear
system equations. The Monte Carlo simulations in this chapter for the three-state example
problem demonstrate the benefits of this combined approach.
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3.1 Optimal Nonlinear Estimation

Although the optimal nonlinear estimation problem is well defined, its solution, which re-
lies on infinite-dimensional descriptions of probability density functions, can generally not
be solved exactly. To generate a solution, some part of the problem has to be approximated
and several techniques for suboptimal solutions have been proposed. Linear Gaussian
problems, which are finite dimensional, are an obvious exception. For these, the Kalman
Filter provides an exact, optimal solution.

The problem of solving the optimal nonlinear estimation problem has been widely dis-
cussed in the literature. Stengel [53, Section 4.6] and Gelb [16, Ch. 6] provide an overview
of the problem. Jazwinski [23, Ch. 9] and Maybeck [36, Ch. 12] analyze the problem in
greater detail. All of these provide further references into the literature.

3.2 Kalman Filter Solutions

The Kalman Filter has become an ubiquitous method for designing optimal state estima-
tors for dynamic systems. For linear problems with white Gaussian noise sources, the
Kalman Filter generates an optimal solution. For nonlinear problems, many modifications
to the Kalman Filter have been developed to generate good, sub-optimal solutions. In gen-
eral, no guarantees for optimality or even convergence can be stated for the solutions to
nonlinear problems. Nevertheless, countless nonlinear problems have been solved suc-
cessfully with this approach.

The Kalman Filter is popular because it is a flexible approach that can generate very
good solutions to complex problems. Once the system equations, the initial conditions,
and the noise sources have been described, it provides a method to write the solution.
Each design can then take advantage of a significant body of engineering solutions to tune
the result.

This section describes the Kalman Filter for linear, Gaussian problems and then presents
some of the extensions that have been developed to handle nonlinear problems. The most
popular of these extensions is the EKF.

3.2.1 Kalman Filter Equations

The Kalman Filter and the Extended Kalman Filter have been described in countless text-
books, including [16, 29, 53]. This section introduces the particular interpretation used in
this dissertation.
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Consider a linear, discrete-time system described by this state space representation:

xk+1 = Fkxk +Gkuk +Gp,knp,k (3.1)

zk = Hkxk + nz,k. (3.2)

xk is the system state of length n; zk are the measurements; np,k is Gaussian white process
noise; nz,k is Gaussian white measurement noise; and Fk, Gk, Gp,k, and Hk are the system
matrices at time t = k∆T . The deterministic driving terms have been omitted without loss
of generality.

Assume that the initial estimate error x̃0 = x0−x̂0, the process noise np,k and the sensor
noise nz,k are all zero-mean Gaussian random variables that satisfy
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(3.3)

Qi,j =

{

Q i = j

0 i 6= j
(3.4)

Ri,j =

{

R i = j

0 i 6= j
. (3.5)

The Kalman Filter solution for x̂k and its covariance P̂k can then be written in two
steps:

time update: x̄k+1 = Fkx̂k +Gkuk (3.6)

P̄k+1 = FkP̂kF
T
k +Gp,kQG

T
p,k (3.7)
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measurement update: x̂k = x̄k + Lk (z −Hkx̄k) (3.8)

P̂k = (I − LkHk) P̄k (3.9)

Lk = P̄kH
T
k

(

R+HkP̄kH
T
k

)−1
(3.10)

These are the two steps shown in Figure 3.1, which shows the prediction-correction frame-
work of the Kalman Filter. The estimate is propagated forward in time with the prediction
step, or time update, and then corrected with the current measurements in the measure-
ment update. The time update is based on the process model of the system equations and
the correction step is based on the sensor model.

Note that x̄k and P̄k are the predicted estimates based on measurements up to time step
k − 1 and x̂k and P̂k are the corrected estimates based on measurements up to time step k.
That is

x̄k = x̂k|k−1 (3.11)

P̄k = P̂k|k−1 (3.12)

x̂k = x̂k|k (3.13)

P̂k = P̂k|k. (3.14)

3.2.2 Extended Kalman Filter

Consider the following nonlinear, discrete-time system, with a nonlinear process model
and a nonlinear sensor model. This is a generalization of the linear system in (3.1) and (3.2).

xk+1 = f(xk,uk,np,k) (3.15)

zk = h(xk) + nz,k (3.16)

This problem can be solved using the Kalman Filter equations for linear systems by
constructing a linear system that approximates the nonlinear system near the current best
estimate. This is x̂k for the time update and x̄k for the measurement update. If f(.) and
h(.) are differentiable and np,k is zero mean, then a linearization based on the first-order
Taylor-series expansion can be computed:

f(xk,uk,np,k) ∼= f(x̂k,uk,0) + Fk(xk − x̂k) +Gp,knp,k (3.17)

h(xk) ∼= h(x̄k) +Hk(xk − x̄k) (3.18)

where: Fk =
∂f

∂x

∣

∣

∣

∣

x̂k,uk

(3.19)

Gp,k =
∂f

∂np

∣

∣

∣

∣

∣

x̂k,uk

(3.20)
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Hk =
∂h

∂x

∣

∣

∣

∣

x̄k

(3.21)

This linearization is used in (3.7), (3.9) and (3.10) together with the following equations to
build the EKF:

time update: x̄k+1 = f(x̂k,uk,0) (3.22)

measurement update: x̂k = x̄k + Lk (z − h(x̄k)) (3.23)

3.3 A Three-State Example

A simple, three-state example has been developed to compare the performance of vari-
ous estimator designs and to illustrate the advantages of the new design approach. The
example captures the generic features of the full sensor fusion problem that make it a
challenging estimation problem. These include the projection nonlinearity in the vision
measurement and the uncertain observer motion. This section describes the three-state
example and presents simulation results for three different estimator designs.

A simple example is necessary for comparing the Extended Kalman Filter to other ap-
proaches. The EKF fails to solve the full sensor fusion problem described in Chapter 2. The
algorithm frequently diverges and the estimates are strongly biased. This complicates the
analysis of the EKF performance. Much more insight about the performance of the EKF can
be gleamed from the example problem which has been tuned so that the problems of the
EKF are apparent but do not cause the estimator to fail. This permits comparisons with
alternative approaches based on the mean estimate error and standard deviation of the
estimate error.
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For this example, an accelerating observer is traveling at an uncertain velocity and uses
a noisy bearing measurement to localize itself. This problem is presented in Figure 3.2. The
observer is located at position p and altitude h, traveling with a velocity v = ṗ. It is subject
to a known acceleration a. Its only measurement is z = p/h, a bearing measurement of the
origin. Let xk be the state of the system at time t = kT .

xk =









pk

vk

hk









(3.24)

xk+1 =









1 T 0

0 1 0

0 0 1









xk +









1
2T

2

T

0









a (3.25)

zk = pk/hk + nz,k (3.26)

The system has no process noise. Process noise can mask the effects of errors and approx-
imations in an estimator implementation. An example without process noise provides
more useful comparisons between estimators.

This example was inspired by a similar problem—one with a range measurement in-
stead of a bearing measurement—presented in [31] to illustrate the performance of the
two-step estimator (see Section 3.5). Both variations generate a difficult estimation prob-
lem with dynamic observability. By incorporating a bearing measurement, the example
presented here is more relevant to the full estimation problem discussed in this disserta-
tion.

A Monte Carlo simulation compares the performance of three different estimators that
were designed for the three-state example. These estimators, labeled X EKF, Y EKF and
Y UT, are described in Sections 3.4, 3.5, and 3.7, respectively. This section provides all
of the simulation results, which are then used in the subsequent sections to motivate the
progression towards more sophisticated designs.

Each run of the simulation is based on different initial conditions and a different mea-
surement noise vector. An estimate x̂ is computed for each of the three estimator designs.
N runs are averaged to produce the Monte Carlo results. The mean estimate error µ(x̃), the
actual standard deviation of the estimate error σ(x̃), and the predicted standard deviation
σ̂(x̃) are given by:

µ(x̃k) =
1

N

N
∑

i=1

x̃ik (3.27)

σ(x̃k) =

√

√

√

√

1

N − 1

N
∑

i=1

(

x̃ik − µ(x̃k)
)2 (3.28)
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Table 3.1: Parameters for the Three-State Example

Parameter Value
T 0.1 s

a 0.1m/s2

x̂0







−1.0
0.1
1.0







x̄0







−1.0
0.08
0.8







P0







0.32 0 0
0 0.12 0
0 0 0.32







R 0.0012

N 500

σ̂(x̃k) =

√

√

√

√

1

N

N
∑

i=1

diag
(

P̂ ik

)

(3.29)

x̃ik = xik − x̂ik (3.30)

where the superscript i denotes different runs of the experiment. Note that the actual stan-
dard deviation is computed from the estimate error and the predicted standard deviation
is computed from the estimator covariance.

The initial conditions x0 were sampled from a uniform distribution such that x̄0 =

E
(

xi0
)

and P0 = E
(

(

xi0 − x̄0
) (

xi0 − x̄0
)T

)

. A uniform distribution was chosen because
sampling initial conditions from a Gaussian distribution, which extends to infinity, can
make the problem non-sensical. For example, the actual altitude h could turn out to be
negative. Sampling from a uniform distribution, which also satisfies P0, avoids these
problems. The measurement noise vector nz was sampled from a zero-mean Gaussian
distribution with covariance R. Table 3.1 shows the parameters for this simulation.

Figure 3.3 presents the results of the Monte Carlo simulations. The mean estimate
error µ(x̃) is shown in the left column and the standard deviation σ(x̃) is shown in the
right column. Each row corresponds to one state of the system. The markers on the traces
identify the particular estimation algorithm. For the plots of σ(x̃), solid lines indicate the
actual standard deviation and dashed lines indicate the predicted standard deviation.
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Figure 3.3: Mean (µ) and Standard Deviation (σ) of the Estimate Error for the Monte Carlo
Simulations of the Three-State Example
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3.4 X EKF: A Standard EKF Solution

The Extended Kalman Filter is the standard estimator design for nonlinear systems like
the three-state example. This section derives the EKF equations for the three-state example
and discusses the performance of the EKF in the Monte Carlo Simulations. These simula-
tions show that the EKF is not always an appropriate estimator design. The solution can
produce biased estimates, estimates with sub-optimal accuracy, or fail to converge at all.
This example illustrates how the linearization of the EKF can introduce significant sources
of error into the estimate and thereby motivates the search for a more suitable approach.

3.4.1 EKF Solution for the Three-State Example

The EKF applies the Kalman Filter equations to the linearized system equations of the non-
linear problem. The process model of the three-state example is linear and can be used
directly. However, the sensor model is nonlinear and has to be linearized to implement the
EKF. This results in

Fx =









1 T 0

0 1 0

0 0 1









(3.31)

Gx =









1
2T

2

T

0









(3.32)

Hx,k =
[

1/h̄k 0 −p̄k/h̄2
k

]

(3.33)

x̄k+1 = Fxx̂k +Gxa (3.34)

P̄x,k+1 = FxP̂x,kF
T
x (3.35)

x̂k = x̄k + Lk
(

zk − p̄k/h̄k
)

(3.36)

P̂x,k = (I − LkHx,k) P̄x,k (3.37)

Lk = P̄x,kH
T
x,k

(

R+Hx,kP̄x,kH
T
x,k

)−1
. (3.38)

The traces marked with a triangle in Figure 3.3 correspond to the X EKF solution. It
is clear from these traces that the straight-forward application of the EKF to this problem
produces unsatisfactory results. Ideally, both the mean estimate error and the standard
deviation will approach zero as time increases. The EKF fails to properly estimate the
observer state as it travels past the origin (the region of greatest observability). As observ-
ability decreases with increasing time, the altitude estimate remains biased and as a result,
the position and velocity bias continue to increase.
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3.4.2 Problems with the EKF

A comparison of the actual and predicted standard deviation for the EKF can be used to
explain the failure of this algorithm. The standard deviation computed from the estimator
covariance significantly underpredicts the actual standard deviation and its evolution in
time has a very different shape. The shape of the predicted standard deviation corresponds
to an exponential decrease in uncertainty even though the actual uncertainty drops much
more slowly and is almost constant in the initial part of the simulation.

The main problem of the EKF is that the covariance matrix fails to accurately describe
the uncertainty in the estimate. This leads to the underprediction of the actual standard
deviation of the estimate error seen in Figure 3.3. However, the main purpose for the
covariance matrix is computing the Kalman gain Lk, which is used to correct the estimate
with the latest sensor measurement. Errors in Lk lead to biases in the estimates.

The application of the Kalman Filter equations to the linearized system equations causes
the inaccuracy in the covariance matrix. This process fails to account for all of the uncer-
tainty in the estimation problem. Consider the linearization in (3.34) to compute Hk for
the three-state example. Although it depends on x̄k, which is uncertain, it is used in the
Kalman Filter equations as if it were a known constant. A large uncertainty in x̄k (e.g., due
to an unknown initial condition), can represent a large variation in Hk. The Kalman Filter
does not provide an inherent mechanism to capture the uncertainty due to this variation,
which is therefore ignored. This results in the observed underprediction of the covariance
matrix.

The sensor fusion problem suffers from a confluence of two effects, which combine to
generate poor EKF performance. First, Hk has a strong dependence on the uncertain state
vector, which promotes the inaccuracy of the covariance matrix. Second, the accuracy of
the covariance matrix is particularly important in this problem because it stores critical
information about previous measurements. Triangulation, which is based on combining
information from current and previous measurements, depends on the accuracy of the
covariance matrix. However, these factors are not present for all nonlinear estimation
problems. This explains why the EKF provides satisfactory solutions for many nonlinear
problems, but fails spectacularly for some, including this sensor fusion problem.

3.4.3 Dynamic Observability

Several researchers have reported poor EKF performance for systems that exploit dynamic
observability. This section describes dynamic observability and explains the failure of
the EKF in terms of dynamic observability. The term dynamic observability was used by
Carvalho, Del Moral, Monin and Salut [3] to describe a GPS positioning system that uses
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motion to satisfy observability requirements with fewer than three visible satellites. Kas-
din [31] has discussed problems with “reliance on the dynamics to make the system ob-
servable”.

A system exploits dynamic observability if it is observable, but does not satisfy static
observability. In this sense, static observability describes a system whose state can be com-
puted from sensor measurements at one time instance provided that all of the derivatives
of these measurements are also available. Dynamic observability occurs when the system
relies on variation in the system state or time-varying system equations to achieve observ-
ability.

The implicit triangulation that occurs in the three-state example illustrates the differ-
ence between static and dynamic observability. A single bearing measurement is never
sufficient to determine the position and altitude of the observer, even if derivatives of the
bearing were also available. To determine the observer state, two bearing measurements
taken at different locations are necessary.

Dynamic observability is a significant factor in the estimator design when the necessary
variation of the system state (e.g., the motion) is slow compared to the rate at which new
measurements are acquired. This implies that long intervals of subsequent measurements
do not generate observability of the complete state. The system provides measurements
that make the complete state observable only after a significant period of time. During this
time, some states are relatively uncertain, which can violate typical assumptions that the
estimate uncertainty is small.

Dynamic observability exacerbates the deficiencies of the EKF in two ways. First, the
uncertainty of the state estimates can be large for significant durations of the task. This
increases the cost of ignoring the estimate uncertainty due to linearization and exacerbates
the corruption of the covariance matrix. Second, the accuracy of the covariance matrix is
more critical because it captures important information from past measurements which
has to be combined with later measurements to generate observability (e.g., the implicit
triangulation for the three-state example).

3.4.4 Other Kalman Filter Extensions for Nonlinear Problems

Many other extensions for the Kalman Filter have been proposed to addresses some of the
problems with the EKF (see [16, 23, 36]). The iterated EKF is designed to improve the EKF by
linearizing h(.) about the corrected estimate x̂ instead of the predicted estimate x̄. Various
second-order extensions have been developed (e.g., the Gaussian second-order filter and
the truncated second-order filter). A fourth-order filter has also been presented. However,
while these extensions tend to provide better results than the EKF, their implementations
can add a lot of complexity to the algorithm. More importantly, these approaches do not
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directly address the inherent problem with the EKF, which is its failure to account for the
uncertainty of the linearization step.

3.5 Y EKF: An EKF with an Alternate System Representation

The choice of representation of the system equations is a powerful tool to minimize the
effect of errors from approximations in the optimal nonlinear estimation problem. For
example, Aidala and Hammel [1] were able to improve the performance of a bearings-
only tracking system by partitioning the representation into observable and unobservable
states. Choosing a representation that yields a linear sensor model is the cornerstone of
Kasdin’s two-step estimator [31].

The choice of representation can be used to shift nonlinearities from one part of the
problem to another and to affect the types of nonlinearities that are present. For example,
the three-state example can be rewritten to shift the nonlinearity from the sensor model to
the process model and to replace the ratio of states with a product of states. Even without
changing estimation algorithm, both of these modifications have a positive effect on the
quality of the solution.

Consider the vector y to represent the state of the three-state example:

yk =









α,k

βk

γk









=









pk/hk

vk

1/hk









(3.39)

This leads to a linear sensor model and a nonlinear process model

yk+1 = fy(yk) =









αk +
(

βk + 1
2aT

)

γkT

βk + aT

γk









(3.40)

zk = αk + nz,k (3.41)

which can be linearized to construct a different EKF for the same problem:

Fy,k =









1 γ̂kT
(

β̂k + 1
2aT

)

T

0 1 0

0 0 1









(3.42)

Hy =
[

1 0 0
]

(3.43)
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ȳk+1 =









α̂k +
(

β̂k + 1
2aT

)

γ̂kT

β̂k + aT

γ̂k









(3.44)

P̄y,k+1 = Fy,kP̂y,kF
T
y,k (3.45)

ŷk = ȳk + Lk (zk − ᾱk) (3.46)

P̂y,k = (I − LkHy) P̄y,k (3.47)

Lk = P̄y,kH
T
y

(

R+HyP̄y,kH
T
y

)−1
. (3.48)

Although the estimator operates on the y state vector, the output should, in general, be
in terms of the x vector. Therefore, an additional step is required to transform ŷk and P̂y,k
to x̂k and P̂x,k. This corresponds to the estimator output step in Figure 3.4. Let

x = g(y) =









α/γ

β

1/γ









. (3.49)

Using a linearization approach to transfer one random variable to the other results in

x̂k = g(ŷk) (3.50)

P̂x,k =
∂g

∂y
P̂y,k

∂g

∂y

T

. (3.51)

The results of applying this estimator to the three-state example are labeled Y EKF in
Figure 3.3. These plots show that the performance of this estimator is significantly better
than that of the EKF based on x. Both the mean and standard deviation of the estimate



3.6. Particle Filters 47

error are significantly smaller and decay much more quickly to values near zero. Further-
more, the predicted standard deviations are closer to the actual values, which explains the
improved performance. Similar results were presented in [21].

The improvement in performance that can be achieved simply by choosing a different
representation of the system equations is surprising. Shifting all of the nonlinearities to
the process model and eliminating the need for linearization in the measurement update
tends to reduce the adverse effects of the approximations used to construct the EKF. While
it is not clear why a linear sensor model improves performance, this has been observed
for a variety of problems and forms the core idea of the two-step estimator developed by
Kasdin [31].

However, the difference between the predicted and actual standard deviations is still
significant and can be attributed to the linearization that produces Fy,k. Again, Equa-
tion 3.45 assumes that Fy,k is constant even though it depends on the uncertain ŷk.

Kasdin and Weaver [32] have shown that the two-step estimator can overcome this
problem in special cases if it is possible to define a state vector that also yields linear dy-
namics. Achieving a linear sensor and process model for a nonlinear system was possible
by defining a much larger state vector with nonlinear state constraints.

The standard deviations for the Y EKF algorithm in Figure 3.3 show a spike just after
t = 1 s. This was generated because of the singularities in the function g(.) used in the
estimator output. For some of the runs, the estimate of γk was close to zero, which is
a possible estimator state even if it is a non-sensical condition for the problem. It was
therefore ignored.

3.6 Particle Filters

Particle Filters, or Sequential Monte Carlo Methods, are emerging nonlinear estimation
tools that utilize the rapidly increasing power of the computer to improve the performance
of nonlinear estimators [3, 12]. They turn optimal nonlinear estimation into a suboptimal,
finite-dimensional problem by approximating the representation of uncertainty instead
of approximating the nonlinearity of the system representation (as is done for the EKF).
The advantage of this approach is that the uncertainty, or the probability density function
associated with the estimate, can be approximated more effectively without developing
ever more complex solutions.

Particle Filters represent the stochastic nature of the system with a sampling of the
probability distribution, which generates many particles, each representing one point in
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the probability space. The weight of each particle, which is updated and corrected when-
ever new sensor measurements become available, represents the likelihood that this parti-
cle corresponds to the true system state. The deterministic dynamics are applied to each
particle to predict the distribution at a future time.

Particle Filters can deal effectively with probability distributions that are not Gaussian
nor unimodal. Furthermore, they can handle any nonlinear function and do not require
differentiability or continuity.

The advantage of Particle Filters is that in the limit of increasing numbers of particles,
they can solve arbitrary nonlinear estimation problems with arbitrary accuracy (at least in
theory—some practical problems are still being addressed in current research). Their key
disadvantage is that they still require significant computational power, especially for large
systems, which tends to preclude real-time implementations. However, they are a useful
benchmark against which other estimators can be evaluated (see Section 7.1.3).

3.7 Y UT: Incorporating the Unscented Transform

The Unscented Transform (UT) is a relatively new tool for managing nonlinear stochastic
problems [25, 26]. Like Particle Filters, the UT represents random variables with a set
of points, called sigma points, and propagates these through the deterministic nonlinear
transformations. The UT differs from Particle Filters in two key points. First, the UT uses
a much smaller number of sigma points (or particles) than Particle Filters, which makes
the UT a viable tool even for large real-time problems. These sigma points are chosen
deterministically using the prior mean and covariance. Second, after the UT creates a set
of sigma points and applies the nonlinear transformation to these points, it immediately
reconstructs a new mean and covariance and discards the points. Thus, the representation
of the random variable iteratively changes from mean and covariance to sigma points and
back. Although the UT requires several approximations, the method tends to be more
accurate than many of the other techniques that have been used to propagate random
variables through nonlinear transformations.

3.7.1 Illustrative Example

The difference between linearization and the Unscented Transform is illustrated by a sim-
ple example of a stochastic nonlinear transformation1. Both methods can be compared to

1This example is motivated by a similar example in [56].
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Figure 3.5: Example of a Stochastic Nonlinear Transformation

a Monte Carlo approach to determine their accuracy. Consider the nonlinear function

y =

[

y1

y2

]

= f(x) =

[

x2
1x2

x2

]

(3.52)

where x =
[

x1 x2

]T
. Suppose that x is a Gaussian random variable with a known

distribution.

x̄ = E(x) =

[

1

1

]

(3.53)

Px = E
(

x̃x̃T
)

=

[

0.36 0.05

0.05 0.25

]

(3.54)

x̃ = x − x̄ (3.55)

Each method can be used to compute ȳ and Py , the first two moments of the distribution
for y. Figure 3.5 shows graphically how the different methods work. The top row of plots
shows the domain (input) for each method and the bottom row shows the range (output).
Each of the three columns of plots represents one of the methods.

The mean and covariance of x and y are depicted with an x and an ellipse on the plots
in the first two columns. For linearization, the statistics of y are computed as follows:

ȳ = f(x̄) (3.56)
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Py =
∂f

∂x
Px
∂f

∂x

T

(3.57)

The linearization is encoded in ∂f
∂x .

The Unscented Transform first computes five sigma points for this two-dimensional
example. These are shown as circles on the plots. One sigma point is at the mean and
the other four capture the size of the covariance ellipse. Therefore, this is a deterministic
sampling of the distribution of x. These sigma points are then propagated to the output,
where they are used to compute the mean and covariance of the distribution of y. The
actual equations are shown in the next section.

The Monte Carlo approach involves a random sampling of the distribution of x to
create a cloud of points, or particles. Again, these points are propagated through the non-
linear function to create a new cloud from which the statistics of y can be computed. This
is the core principle of Particle Filters. The right column in Figure 3.5 shows the Monte
Carlo approach. For this example, 100, 000 points were actually sampled, although only
100 points are plotted. Because the accuracy of the Monte Carlo approach improves with
the number of points, a very large cloud has been used in order to compute the true distri-
bution of y. The mean and covariance of this distribution are depicted with a square and
the gray region in the bottom row of the plots.

This example shows the advantage of the Unscented Transform over the linearization
approach. The linearization develops a significant bias in the mean and underpredicts the
covariance relative to the Monte Carlo approach. For the Unscented Transform, any bias
in the mean is too small to see and although the covariance does not match the Monte
Carlo covariance exactly, it is very close. While the Monte Carlo approach is computa-
tionally very expensive, the Unscented Transform has a similar computational cost as the
linearization approach.

3.7.2 Applying the UT to the Three-State Example

The UT leads to further performance improvements for the three-state example. The new
representation for the three-state example in Section 3.5 yields a linear sensor model and
the nonlinear process model shown in (3.40). The UT provides an alternative method to
compute the time update in (3.44-3.45). The specific implementation was suggested in [56]
and is explained fully in Section 4.3.1.

Ŷk = ŷk + η
[

0l×1

√

P̂y,k −
√

P̂y,k

]

(3.58)

Ȳk+1 = fy
(

Ŷk
)

(3.59)
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ȳk+1 =
2l

∑

i=0

WiȲk+1,i (3.60)

P̄y,k+1 =
2l

∑

i=0

Wi
(

Ȳk+1,i − ȳk+1

) (

Ȳk+1,i − ȳk+1

)T
+

(

1 − η2/l + β
)

(

Ȳk+1,0 − ȳk+1

) (

Ȳk+1,0 − ȳk+1

)T (3.61)

l = 3 (3.62)

N = 2l + 1 = 7 (3.63)

η =
√

3 (3.64)

β = 2 (3.65)

Wi =







η2−l
η2 , i = 0
1

2η2 , i > 0
(3.66)

The number of states is l and the number of sigma points is N . The sigma points are
captured as columns in Ŷk, Ȳk+1 ∈ IRl×N . The function fy operates once on each column
Ŷk,i of Ŷk to create the columns Ȳk+1,i of Ȳk+1. η and β are design parameters. While the
UT seems like a complicated alternative to (3.44-3.45), it is easy to implement and similar
to the EKF in computational cost.

The results labeled Y UT in Figure 3.3 are created with an estimator that combines the
UT time update with the standard Kalman Filter measurement update for linear sensor
models in (3.46-3.48). The estimator output step, which computes the function g(.) as
shown in (3.49), can also be implemented with a UT to improve the estimator accuracy.

These results indicate a clear improvement of the Y UT over both of the EKF cases. The
mean and standard deviation of the estimate error are smaller. Furthermore, the disparity
between the predicted and actual standard deviation is reduced. Although the remaining
disparity is not zero—which is not surprising given that there are approximations in the
algorithm—the disparity is very small and the shape of the predicted and actual standard
deviation traces is very similar.

The disparity between the actual and predicted standard deviation can be used to mea-
sure the severity of the approximations of each of the methods. This implies that the
change to a representation with a linear sensor model is already very advantageous. The
UT further improves the accuracy of the implementation of the resulting nonlinearities in
the time update.

3.7.3 Unscented Kalman Filter

The UT can be used to build a complete optimal recursive estimator, called the Unscented
Kalman Filter (UKF) [56]. The UKF uses the UT to implement the transformations for both
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nonlinear process and sensor models. Like the Kalman Filter, it propagates the mean and
covariance of the random variables using a recursive prediction/correction scheme. The
UKF is an interesting alternative when generating a representation with a linear sensor
model is not possible or not convenient.

3.8 Other Nonlinear Estimation Techniques

Many strategies exist for developing useful estimators for nonlinear systems. The non-
linear estimation techniques described so far in this chapter have aimed at optimal esti-
mators for nonlinear systems. However, all of these techniques are suboptimal, require
approximations in the implementation, and therefore do not provide reliable guarantees
on performance, accuracy, or even convergence.

Estimators for nonlinear systems can also be designed in an ad hoc fashion, in which
arbitrary filter structures, with parameters, are proposed and then tuned according to vari-
ous criteria. The most important test is convergence, which can sometimes be proven using
a Lyapunov function. The motivation for choosing a particular filter structure is often the
ability to find a Lyapunov function that proves convergence.

A key advantage of these ad hoc methods is that they are potentially very simple and
can handle arbitrary nonlinearities in a robust manner—if a stability proof can be estab-
lished. The main drawbacks is that their solutions are often hard to generalize to other
problems, even closely related ones, that performance (optimality) is usually not consid-
ered, and that any unaccounted modeling errors can still cause the filter to fail to converge.

3.9 Summary

This chapter provides the necessary background in nonlinear estimation to support the
design of the full estimator in the next chapter. The field of nonlinear estimation has gen-
erated a diverse set of solutions. The EKF is the most popular approach because of its
flexibility. However, it performs poorly for some nonlinear problems, including this one,
because it fails to account for a significant source of uncertainty in the linearizations. In
that case, an approach that manages these approximations more carefully is required.

This chapter presents several alternatives to the EKF. It focuses on reformulating the
problem to obtain a representation with a linear sensor model and on using the Unscented
Transform to implement the nonlinear time update. Combining these two techniques with
the Kalman Filter framework results in an estimator that inherits many of the benefits of
the Kalman Filter while avoiding the problems of the EKF. This is the basis for the estimator
design in the next chapter.
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The conclusions in this chapter are supported by a simple three-state example that cap-
tures the key features of the full estimation problem. This example demonstrates the per-
formance improvements over the EKF due to reformulating the problem and implementing
the time update with the UT.
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Chapter 4

Estimator Design

This chapter provides a solution to the estimation problem that was described in Chapter 2.
The design is motivated by a combination of the techniques already discussed in Chapter 3.
The solution is based on the Kalman Filter framework applied to a new representation of
the system equations. This representation leads to a linear sensor model and forces all
of the nonlinearities into the process model. The Unscented Transform (UT) is used to
propagate the statistics of the estimate through these nonlinearities.

This design eliminates errors due to the linearization of system equations, which is a
key problem for the application of the Extended Kalman Filter (EKF) to this problem. The
linear sensor model obviates the need for linearization to implement the measurement
update of the Kalman Filter. The UT handles nonlinear problems without linearization.

Although linearization has been removed as a source of error, the design cannot elimi-
nate all error sources. The nature of optimal nonlinear estimation implies that any solution
is based on some approximations and will be subject to errors from those approximations
(see Section 3.1). Although the solution assumes that all uncertain quantities can be mod-
eled as zero-mean Gaussian random variables, this assumption is violated by the nonlinear
process model. The UT is itself based on an approximation, even if it is not as significant
as linearization.

The goal in the design is therefore to avoid the most serious sources of error while
producing a flexible, intuitive, real-time estimator. This is the motivation for the design
choices in this chapter.

Section 4.1 defines a new state vector, y, and the associated sensor and process models
that define the new system representation. Section 4.2 introduces the square-root imple-
mentation of the estimator. Section 4.3 shows how the UT is applied to the process model
to implement the time update (prediction step) of the Kalman Filter. Section 4.4 describes
the implementation of the measurement update (correction step).

55
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A further transformation is required to generate the output of the estimator. The rela-
tive position is not explicitly part of the state vector (y) of the new system representation.
The nonlinear transformation between the state vector and the relative position, also im-
plemented using the UT, is presented in Section 4.5.

4.1 System Representation

The first step of the solution is to rewrite the system equations in terms of a new set of
states. This new formulation has several objectives. It results in a linear sensor model,
which removes the need to linearize the system to implement the measurement update.
Furthermore, it transforms the nonlinearities in the system in an effort to reduce the errors
due to approximations.

The choice of representation for the system can have a significant impact on the esti-
mator performance. This is true for linear systems, where the choice of representation can
affect the numerical properties of the solution. For nonlinear problems, this choice can
have an even greater effect, because it determines the types of nonlinearities in the system
equations and where they appear. Therefore, it controls the errors from approximations of
the nonlinear equations and their effect on the overall solution.

Recall the nonlinear sensor model defined in Section 2.4.

z =

[

zs

za

]

= h(x,u1,nz) (4.1)

=















































S =









Sx

Sy

Sz









= R(λ) Nr − Pcam

zs =

[

sx

sy

]

+ ns = 1/Sz

[

Sx

Sy

]

+ ns

za = −u1 +R(λ) (−d1 + γq̇ + αg) + ba + na

(4.2)

The design requires that the sensor model be expressed as a linear relationship by defin-
ing a new state vector y:

z = Hy + nz (4.3)

x = g(y) (4.4)

such that H is a constant matrix and g(.) is a nonlinear mapping.
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This requirement does not fully constrain the new state vector y, so a number of addi-
tional design choices have to be made. These will be explained after the new state vector
is introduced.

y =









































sx

sy

ζ

v

a

ba

Z

ψ

bω









































(4.5)

The first three coordinates of y represent the relative position between the observer and
the object. sx and sy are the position of the feature in the image plane. These two, together
with the inverse feature range ζ , describe the relative position in the camera frame (S):

S =
1

ζ









sx

sy

1

















sx

sy

ζ









=
1

Sz









Sx

Sy

1









(4.6)

The representation of feature range Sz presents a design choice. Because feature range
does not appear in the sensor model, it is not constrained by the linearity requirement.
A useful representation for feature range is ζ = 1/Sz . This choice leads to low-order
polynomials as the dominant nonlinearity in the process model. Polynomials tend to result
in more accurate estimator time-updates than, for example, ratios, which are induced by
representing range with Sz.

The new state vector contains four vectors used to generate the linear accelerometer
sensor model. v and a are the velocities and disturbance forces expressed in observer
body coordinates, ba is the accelerometer bias term, and Z is a new vector parallel to the
direction of gravity. The sensor model is linear in those components:

za = −u1 + γv − a + gZ + ba + na (4.7)
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where

v =









vx

vy

vz









= Rq̇ (4.8)

a = Rd1 (4.9)

Z =









Zx

Zy

Zz









= R









0

0

α









(4.10)

α = ‖Z‖ (4.11)

The apparent acceleration due to gravity is captured by gZ. Z is the unit vector describ-
ing the inertial z-direction in the body frame modified by the accelerometer scale factor α.
Z captures the observer attitude, but not its heading. Therefore, y also contains ψ to rep-
resent heading, or rotation about Z. Together, Z and ψ define the observer orientation
(λ = f(Z, ψ)) . A similar representation for orientation is described in [42]. Finally, the
rate gyro bias bω is the last component of the new state vector y.

The new state vector induces new sensor and process models. Because of the way the
state vector was designed, the sensor model is now linear, with a constant H :

z = Hy +









0

0

−u1









+ nz (4.12)

H =









1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 0 γI3×3 −I3×3 I3×3 gI3×3 0 0









(4.13)

All of the nonlinearities now appear in the process model:

d

dt
y = f(y,u1, zω,np) (4.14)
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f =















































































































d
dtsx = −vxζ + sxvzζ + sxρyωx − (ρz + sxρx)ωy + ρyωz

d
dtsy = −vyζ + syvzζ + (ρz + syρy)ωx − ρxsyωy − ρxωz

d
dtζ = vzζ

2 + ζρyωx − ζρxωy

d
dtv = u1 + a − γv − ω × v

d
dta = − 1

τ a − ω × a + nd1

d
dtba = nba

d
dtZ = −ω × Z + 1

αZnα

d
dtψ = 1

α(Z2
y+Z2

z)

[

0 Zy Zz

]

ω

d
dtbω = nbω

(4.15)

where

ω =









ωx

ωy

ωz









= zω − bω − nω (4.16)
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= Pcamζ +









sx

sy

1









(4.17)

4.2 Square-Root Implementation

The Kalman Filter framework is implemented with a square-root algorithm in which a
square-root factor of the covariance is represented instead of the actual covariance. This
approach has two distinct advantages. First, the UT already operates on a square-root
factor of the covariance, so the square-root factor has to be computed anyways. How-
ever, the full covariance is not explicitly required by the algorithm. Therefore, storing and
operating on only the square-root factor is more efficient. Second, for the covariance to
be meaningful, it has to be nonnegative-definite. This is easy to satisfy for linear prob-
lems that are implemented with sufficient numerical precision. But modifications to the
Kalman Filter which accommodate nonlinear system equations do not generally guaran-
tee nonnegative-definiteness. However, squaring a square-root of the covariance always
generates a nonnegative-definite covariance. Therefore, the square-root approach gener-
ates more reliable results more efficiently.
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Figure 4.1: Square-Root Implementation of the Estimator

Figure 4.1 illustrates the three components of the estimator and defines their inputs
and outputs. All of the signals represent both a mean value (y or r) and the associated co-
variance factor (P 1/2 or P 1/2

r ). The overbar indicates predicted estimates (e.g., ȳk = ŷk|k−1)
and the hat indicates corrected estimates (e.g., ŷk = ŷk|k). The diagram shows that the
past command u1,k−1 and the current measurement from the camera (zs,k) and from the
accelerometers (za,k) are inputs to the measurement update. The current command (u1,k)
and the rate gyro measurement (zω,k) are inputs to the time update. The estimator output
block extracts the relative position estimate from the full estimator state.

The estimator stores and operates on the square-root factor of the covariance. A square-
root factor of a real-valued1, nonnegative-definite matrix P is any matrix A that satis-
fies [29, Chapter 12]

P = AAT .

Square-root factors are not unique, which is a property that is exploited in both the
time and measurement updates. Consider a unitary matrix Θ (i.e., ΘΘT = I). Then,
P = AAT = AΘΘTAT implies that AΘ is also a square-root factor of P . Sometimes, P 1/2

is reserved for symmetric square-root factors of P
(

such that P =
(

P 1/2
)2

)

, but in this

dissertation, P 1/2 denotes any square-root factor of P .

1The scope of this presentation is limited to real-valued matrices, although complex matrices can also be
handled by applying appropriate conjugates.
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Figure 4.2: Implementation of the Time Update

4.3 Time Update

The time update of the Kalman Filter applies the process model to the current estimate to
predict the state estimate at a future time. The nonlinearities of the process model are han-
dled with the Unscented Transform (UT). The continuous-time dynamics are implemented
with a Runge-Kutta integration.

The UT results in a more accurate solution because the nonlinear system equations can
be handled without linearization. Furthermore, the UT yields a simpler implementation
because it does not require the computation of any derivatives. Although the UT still re-
quires approximations whose effect cannot be bounded, it tends to produce better results
for this problem.

Figure 4.2 shows how the UT and the Runge-Kutta integration interact. The corrected
state estimates

(

ŷk and P̂ 1/2
k

)

are converted to sigma points Ŷk, which are then propagated
forward in time by the Runge-Kutta integration. The output of the integration is a new
set of sigma points Ȳk+1 which can be converted back to a mean ȳk+1 and a square-root
factor P̄ 1/2

k+1.
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4.3.1 Square-Root Unscented Transform

The implementation of the UT requires two parts: creating sigma points from a mean and
covariance and converting sigma points back to a mean and covariance. The square-root
version of the UT, which produces a square-root factor instead of a proper covariance in
the second step, has been described in van der Merwe and Wan [56].

Before creating the sigma points, the state vector has to be augmented to handle nonlin-
ear process noise np. This involves adding states that are set to zero but have a covariance
equal toQ. Let the augmented state be Y ∈ IRl×1, (l = n+p) and the associated square-root
factor of the covariance be S ∈ IRl×l.

Ŷk =

[

ŷk

0l×1

]

(4.18)

Ŝk =

[

∗P̂
1/2
k 0

0 Q1/2

]

(4.19)

The UT uses 2l+1 sigma points for vectors of length l. The first point is the actual mean.
The remaining points are computed by adding and subtracting columns of the square-root
factor of the covariance to the mean. The sigma points are stacked horizontally as columns
of the matrix Ŷk ∈ IRl×(2l+1).

Ŷk = Ŷk + η
[

0l×1 Ŝk −Ŝk
]

(4.20)

η is a design parameter that controls the spread of the sigma points. The optimal value for
η is

√
3.

The power of the sigma point representation is that the mean and covariance of the
original distribution matches that of the sigma points:

Ŷk =
1

2l + 1

2l
∑

i=0

Ŷk,i (4.21)

ŜkŜ
T
k =

1

2η2

2l
∑

i=0

(

Ŷk,i − Ŷk

) (

Ŷk,i − Ŷk

)T
(4.22)

where Ŷk,i represents the ith column of Ŷk.
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Equations 4.21 and 4.22 can be generalized to provide additional design parameters.
Equations 4.23 and 4.24 correspond to the implementation suggested in [56].

Ŷk =
2l

∑

i=0

WiŶk,i (4.23)

ŜkŜ
T
k =

2l
∑

i=0

Wi

(

Ŷk,i − Ŷk

) (

Ŷk,i − Ŷk

)T

+
(

1 − η2/l + β
) (

Ŷk,0 − Ŷk

) (

Ŷk,0 − Ŷk

)T
(4.24)

Wi =







η2−l
η2 , i = 0
1

2η2 , i > 0
(4.25)

The two parameters η and β are used to control properties of the sigma points that are
beyond matching their first and second moments. η controls the spreading of the sigma
points about the mean. A useful setting is η =

√
3. β can be used to match higher moments.

If the distribution is in fact Gaussian, β = 2 is optimal.
Propagating these sigma points through a nonlinear transformation generates a new

set of sigma points that approximates the true distribution of the output. This mapping
corresponds to the nonlinear continuous-time dynamics.

Ȳk+1 = F
(

Ŷk,u1,k, zω,k,∆T
)

. (4.26)

Section 4.3.4 explains how (4.26) is implemented. Applying (4.23) and (4.24) to Ȳk+1 gen-
erates an approximation of the true mean and covariance of the predicted state.

However, the desired output includes the square-root factor S̄k+1 of the covariance.
This can be obtained by rewriting these equations as follows:

Ȳk+1 =
2l

∑

i=0

WiȲk+1,i (4.27)

S̄k+1S̄
T
k+1 =

2l
∑

i=0

Wi
(

Ȳk+1,i − Ȳk+1

) (

Ȳk+1,i − Ȳk+1

)T

+
(

1 − η2/l + β
)

(

Ȳk+1,0 − Ȳk+1

) (

Ȳk+1,0 − Ȳk+1

)T (4.28)

= AAT (4.29)

=
[

A 0l×(l+1)

]

ΘΘT

[

AT

0(l+1)×l

]

(4.30)

= AAT (4.31)



64 Chapter 4. Estimator Design

where

A =
[

√

W ∗
0

(

Ȳk+1,0 − Ȳk+1

) √
W1

(

Ȳk+1,1:2l − Ȳk+1

)

]

(4.32)

W ∗
0 = W0 +

(

1 − η2/l + β
)

(4.33)

I = ΘΘT (4.34)

If a Θ that satisfies A =
[

A 0l×(l+1)

]

Θ can be found, this approach produces a square-
root factor without first computing the covariance by associating S̄k+1 = A. Of course, a Θ

can always be found with a QR decomposition, which is a standard matrix algorithm [29,
Appendix A].

Equation 4.32 assumes that W ∗
0 ≥ 0, which is not necessarily the case, especially for

small η (note that W1 ≥ 0 is always true). The correct way to handle W ∗
0 < 0 is with a

Cholesky downdate algorithm. However, a much simpler alternative is to set

W ∗
0 = max

{

0,W0 +
(

1 − η2/l + β
)}

(4.35)

This approximation results in no meaningful difference in performance and has therefore
been integrated into the design.

4.3.2 Related Work on Sigma Point Methods

Sigma Point Methods approximate a probability distribution by a deterministic set of
sigma points. This enables the propagation of the distribution through a nonlinear map-
ping without approximating the mapping. The Symmetric Unscented Transform, which
has been discussed in this section, is one of those methods. Much of the research on Sigma
Point Methods is recent and on-going, and consequently, new variations, with specific ad-
vantages for particular problems, are still presented and compared in the literature.

Julier, Uhlmann and Durrant-Whyte [24, 25] first introduced this technique. Ito and
Xiong [22] have presented Sigma Point Methods as Gaussian filters and derived several
variations, one of which is the Unscented Transform. They also present the Central Dif-
ference Filter (CDF) and claim that it is more accurate than the UT with similar cost. Van
der Merwe and Wan have introduced the square-root form of the UT and the CDF in [55].
More recently, Julier and Uhlmann [28] have presented a new point selection method that
reduces the required number of sigma points to just l+ 1. Julier [27] has also presented an
improved method to scale sigma points.

All of these methods avoid the linearization of the system equations and significantly
outperform the EKF. The effect of their differences has not been evaluated for this problem.
Additional performance improvements could be gained by considering other Sigma Point
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Methods. The UT was chosen because it is simple to implement and affords an efficient
square-root implementation.

4.3.3 Continuous-Time Dynamics

The nonlinear transformation of (4.26) is based on the integration of the continuous-time
dynamics presented in (4.15). The function F() (defined in Section 4.3.4) implements a
Runge-Kutta integration that uses the function F () below. Let Y ∈ IRl×(2l+1). It contains
2l + 1 sigma points, each composed of a state y and a process noise np.

Y =

[

y0 y1 · · · y2l

np,0 np,1 · · · np,2l

]

(4.36)

Now define

F (Y,u1, zω ,∆T ) (4.37)

= ∆T
d

dt
Y (4.38)

= ∆T

[

f(y0,u1, zω ,np,0) f(y1,u1, zω ,np,1) · · · f(y2l,u1, zω,np,2l)

0p×1 0p×1 · · · 0p×1

]

(4.39)

Note that the function f() in (4.15) is singular for d
dtψ if Zy = Zz = 0. However,

the actual implementation can avoid this singularity by using an alternative formulation.
From the inverse of (2.5), the angular velocity can be related to the rate of change of the
Euler angles.

RTω =









cosψ cos θ − sinψ 0

sinψ cos θ cosψ 0

− sin θ 0 1









dλ

dt
(4.40)

Rz is the last column of (2.3) and is given by

Rz =









Rzx

Rzy

Rzz









= R









0

0

1









=









− sin θ

cos θ sinφ

cos θ cosφ









. (4.41)

Although Rz does not appear explicitly in the state vector y, it can be computed from the Z

component of y.

Rz =
Z

‖Z‖ (4.42)



66 Chapter 4. Estimator Design

A new expression can be obtained by extracting the last row of (4.40), substituting Rz

and dλ
dt =

[

dφ
dt

dθ
dt

dψ
dt

]T
, and rewriting.

RT
z ω =

[

− sin θ 0 1
] dλ

dt
(4.43)

=
[

Rzx 0 1
]













dφ
dt

dθ
dt

dψ
dt













(4.44)

= Rzx
dφ

dt
+
dψ

dt
(4.45)

Integrating over time ∆T and rearranging yields a new expression for ∆ψ which does not
have any singularities.

∆ψ = RT
z ω∆T −Rzx∆φ (4.46)

This expression depends on ∆φ, which can be computed from Rz and ∆Rz .

φ = tan−1 Rzy
Rzz

(4.47)

∆φ = tan−1Rzy + ∆Rzy
Rzz + ∆Rzz

− tan−1Rzy
Rzz

. (4.48)

The ability to take advantage of this singularity-free approach is an advantage of the
Unscented Transform, which does not require Jacobians of the system equations. The man-
ner in which the nonlinear transformation is computed is not important. This is in contrast
to methods like the EKF, which requires explicit Jacobians.

4.3.4 Runge-Kutta Integration

The time update uses a standard fourth-order Runge-Kutta algorithm [40, Section 15.1] to
integrate the process model. This generates the function F() used by the UT to propagate
the sigma points.

Ȳk+1 = F
(

Ŷk,u1,k, zω,k,∆T
)

(4.49)
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Figure 4.3: Rotation of P̂
1/2
k

For large uncertainties, it is possible for the sigma points to be chosen such
that ζ < 0 for some of the points, which is non-sensical. Plot (a) shows a two-
dimensional example for which the sigma points (◦) have been chosen from
a distribution indicated by the ellipse. ζ corresponds to the horizontal axis.
Plot (b) shows a second set of sigma points (3) which have been chosen with a
reduced η such that all sigma points satisfy ζ > 0. Plot (c) shows an improved
choice of sigma points (×) found by rotating the square root factor of the co-
variance. Note that these sigma points are stacked vertically, minimizing the
spreading of ζ for a given η.
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Y1
RK = F

(

Ŷk,u1,k, zω,k,∆T
)

Y2
RK = F

(

Ŷk + a21Y1
RK ,u1,k, zω,k,∆T

)

Y3
RK = F

(

Ŷk + a32Y2
RK ,u1,k, zω,k,∆T

)

Y4
RK = F

(

Ŷk + a43Y3
RK ,u1,k, zω,k,∆T

)

Ȳk+1 = Ŷk +
∑4
i=1 αiYiRK

a21 = a32 = 1/2

a43 = 1

α1 = α4 = 1/6

α2 = α3 = 1/3

(4.50)

4.3.5 Rotation of P̂
1/2
k

The inverse range estimate ζ in this sensor fusion problem is constrained to be a positive
quantity (ζ > 0), which expresses the requirement that the object is positioned in front of
the camera. However, if the uncertainty of ζ is large, it is possible to use (4.20) to con-
struct sigma points with negative values of ζ . Figure 4.3 illustrates this problem and its
solution using a simple two-dimensional example. Let Sζ denote that row of P̂ 1/2

k which
corresponds to ζ . If

η (max |Sζ |) > ζ̂ (4.51)

then at least one sigma point will have a negative ζ-value, which is not permissible.
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To avoid negative values of ζ , there are two degrees-of-freedom that can be exploited
in the selection of sigma points, shown in (4.20). First, η can be reduced below its optimal
value of

√
3 to reduce the spread of the sigma points. The following rule uses this approach

to compute a permissible value of η.

η = min

{√
3,
ζ − ζmin
max |Sζ |

}

(4.52)

where 0 < ζmin < ζ represents a lower bound for the ζ-values of the sigma points.
However, reducing η below its optimal value has adverse consequences for the accu-

racy of the unscented transform. By contracting the sigma points towards the mean value,
less of the uncertainty of the estimate is exposed to the nonlinearity. Therefore, adjusting
η should be used as a last resort.

The second available degree-of-freedom is the square-root factor of the covariance,
which is not unique. This section explores a particular rotation of P̂ 1/2

k that leads to a set of
sigma points with the least amount of spreading in the ζ-value for a given η value. When
this optimization is combined with (4.52), the largest possible values of η are generated.
This rotation is the first step of the time update depicted in Figure 4.2.

It is possible to rotate P̂ 1/2
k by a unitary matrix Θ.

P̂k = P̂
1/2
k P̂

T/2
k = P̂

1/2
k ΘΘT P̂

T/2
k = ∗P̂

1/2
k

∗P̂
T/2
k (4.53)

∗P̂
1/2
k = P̂

1/2
k Θ (4.54)

I = ΘΘT (4.55)

Let ∗Sζ be the corresponding row of ∗P̂
1/2
k . Then a Θ can be chosen that yields any desired

values of ∗Sζ subject to a constraint on the variance of ζ .

σ2(ζ) = SζS
T
ζ = ∗Sζ

∗STζ (4.56)

If ∗Sζ has length n, a useful objective is to satisfy

max | ∗Sζ | < κσ(ζ) /
√
n (4.57)

κ ≥ 1 (4.58)

If κ = 1, all entries of ∗Sζ have absolute values of σ(ζ) /
√
n. This is the rotation that

generates the least amount of spreading of the sigma points in the ζ-component. Values
of κ > 1 lead to more variation in the entries of ∗Sζ . The objective can be satisfied by
iteratively applying j Givens-like rotations [29, Appendix B.2] between the two entries
with the largest and the smallest absolute values in the remaining ∗Sζ (j ≤ n).



4.4. Measurement Update 69

4.4 Measurement Update

As a result of the design choices described above, the measurement update of the Kalman
Filter framework is identical to that of a linear system. It has been implemented as an
array algorithm to improve its numerical properties and to interoperate more easily with
the square-root UT. The measurement update produces the corrected estimates

(

ŷk, P̂
1/2
k

)

from the predicted estimates
(

ȳk, P̄
1/2
k

)

by incorporating the current measurement zk.
This section presents a summary of the procedure presented in [29, Section 12.3]. It

involves assembling A, the pre-array, rotating it into a lower-triangular post-array B, as-
sociating the required components from B, computing the Kalman gain L, and correcting
the estimate.

The pre-array is assembled from the square-root factor of the predicted covariance es-
timate P̄ 1/2

k , the square-root of the measurement noise covariance R1/2, and H , the matrix
describing the linear sensor model in (4.13).

A =





R1/2 HP̄
1/2
k

0n×m P̄
1/2
k



 (4.59)

The lower-triangular post-array is computed from the pre-array with a rotation by the
unitary matrix Θ.

B = AΘ (4.60)

=

[

X 0m×n

Y Z

]

(4.61)

I = ΘΘT (4.62)

X ∈ IRm×m (4.63)

Y ∈ IRn×m (4.64)

Z ∈ IRn×n (4.65)

By multiplying (4.60) by its transpose, it is possible to associate X,Y and Z with useful
quantities.

BBT = AΘΘTAT = AAT (4.66)

B =





R̂
1/2
e,k 0m×n

P̄kH
T R̂

−T/2
e,k P̂

1/2
k



 (4.67)
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Because R̂1/2
e,k is lower triangular, it is possible to compute L, the Kalman gain, with an

efficient backward substitution.

Lk =
[

P̄kH
T R̂

−T/2
e,k

]

/
[

R̂
1/2
e,k

]

(4.68)

Finally, L is used to correct the predicted estimate with the current measurement.

ŷk = ȳk + Lk









zk −Hȳk +









0

0

u1,k

















(4.69)

4.5 Estimator Output

The estimator output, a relative position between the observer and the object, does not
appear explicitly in the state vector y. Instead, the output r (in body coordinates) is given
by

r = g(y) (4.70)

=
1

ζ









sx

sy

1









(4.71)

Again, the nonlinearity, coupled with potentially large uncertainty of ζ , can lead to a biased
result. To reduce errors caused by linearization, this nonlinear transformation can also be
implemented with a straight-forward application of the UT using 7 sigma points.

4.6 Summary

This chapter presents a solution for the nonlinear estimation problem described in Chap-
ter 2. The design is based on a Kalman Filter framework and incorporates several modi-
fications that address the unique requirements of this estimation problem. The solution
includes a new representation of the system representation that yields a linear sensor
model. The square-root version of the unscented transform is used to propagate the es-
timate through the nonlinear state dynamics. The next chapter describes the experimental
system that was used to validate this design. Results from these experiments are presented
in Chapter 6.



Chapter 5

Experimental System

An important part of this research is the experimental demonstration of an autonomous
object pick-up task that is enabled by the sensing strategy. This chapter describes the ex-
perimental hardware, the demonstration task, the simulation system, and the trajectory
that was used to generate these results.

This relative position sensing strategy, based on fusing monocular vision measure-
ments of a single feature and inertial rate sensor measurements, has been pursued in this
research because it has the potential to be very robust in real underwater environments and
because it can be implemented with sensors commonly available on underwater vehicles.
A robust measurement of relative position is required to enable autonomous manipulation
for underwater vehicles. However, to evaluate the sensing strategy and to demonstrate
how it could be applied for autonomous manipulation with an underwater vehicle, an
experiment with a fixed-base manipulator arm has been constructed. In this experiment,
the endpoint of the manipulator arm simulates the motion of an underwater vehicle. This
experiment, which is described in detail in this chapter, is more useful than an underwa-
ter vehicle for this research because it provides a flexible development environment and a
truth measurement of relative position.

Section 5.1 describes the robot, sensors, computer systems and other hardware required
to perform the demonstration task. Section 5.2 describes the demonstration task that was
used to validate the sensing strategy on the experimental system. Section 5.3 focuses on
the control system for the robot, including the implementation of the desired trajectory
and the simulation of typical dynamics and disturbances of an underwater vehicle. Sec-
tion 5.4 presents some calibrations of the experimental hardware. Section 5.5 explains the
difference between the relative position that is produced by the sensing system and the
relative position that is used for control of the manipulator arm. It also describes a method
for determining a truth measurement for the relative position. Section 5.6 summarizes all
of the important parameter values for the experimental system. Section 5.7 presents the
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Figure 5.1: Functional Diagram of the Experimental System

software-based simulation of the hardware experiment. Finally, Section 5.8 presents the
trajectory design for the object pick-up task.

5.1 Hardware

The experimental system is constructed around the K-1607 manipulator arm by Robotics
Research Corporation (RRC). This manipulator simulates the motion and manipulation
capabilities of an intervention-capable underwater vehicle. The endpoint of the manipula-
tor carries a pneumatic gripper, a camera, and an inertial rate sensor package.

An important choice in the design of the experimental system was to utilize only sen-
sors that can also be used with underwater vehicles. This approach ensures that the esti-
mator design is based on adequate sensor models and that the results from experiments
are meaningful in the context of an underwater vehicle application.

In addition to the manipulator and the sensors, the experimental system includes sev-
eral computers, the network and bus infrastructure to connect these computers, and some
special purpose hardware. All of these components are shown in Figure 5.1. The main
computer handles the estimation and most of the control algorithms. This is a PowerPC
running the VxWorks operating system. It sends manipulator motion commands to and
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receives joint angle updates from the RRC Control cabinet via a special purpose bus inter-
face. This cabinet contains a computer, some analog circuits for control and the power am-
plifiers for the motors in the manipulator. The video signal from the camera is connected
to the vision processing system, which reports bearing measurements to the network. The
inertial rate sensors are connected directly to the estimation and control computer via a
serial link. The graphical user interface (GUI) runs on a UNIX workstation connected to the
network.

5.1.1 RRC Manipulator

The K-1607 manipulator arm (see Figure 1.6) by Robotics Research Corporation [46] is the
core of the experimental system. It is a large, 7-DOF, kinematically redundant, serial-link
electric manipulator located in the Aerospace Robotics Lab at Stanford University. The
purpose of the manipulator is to simulate the motion of an underwater vehicle, to transport
the vision and inertial rate sensors and to perform a simple, closed-loop manipulation task.

The commands to the manipulator can include desired joint angles, desired joint
torques, or desired endpoint positions. The first approach—specifying desired joint angles
at 200Hz to the manipulator—is the most useful for this experiment because it is simple
and robust to implement, can easily support the control bandwidth of a typical underwater
vehicle, and satisfies the simple requirements for the object manipulation task. Specifying
only desired endpoint positions would be useful if the dynamics of the endpoint are not
important. Specifying desired joint torques would be necessary to achieve greater control
bandwidth and to perform manipulation tasks that require force control.

The joint angle commands are transfered to the RRC computer via a Bit3 bus interface.
The RRC computer interfaces to the analog electronics and handles other functions, like
homing the robot joints and applying the brakes when the robot is disabled. The difference
between desired and actual joint angles is used by the controller to compute a pulse-width
modulated (PWM) joint torque command.

Each joint of the manipulator is driven by an electric motor and has encoders to mea-
sure the actual joint angle. This joint angle measurement is used by the joint controller and
is also published to the Bit3 bus interface.

5.1.2 Vision System

The experiment has a very simple vision system that tracks points in the camera view. This
system uses a Pulnix TM-7EX [41] camera connected to the PointGrabber II hardware [5].
The PointGrabber segments points from the background of the video signal using a simple,
constant-threshold algorithm. In the lab, this is feasible because it was possible to attach
an infrared LED to the object and an infrared filter to the camera. This results in a dramatic
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contrast in the video signal between the bright spot of the LED and the dark background. It
has the additional benefit of simplifying the interpretation of the scene and demonstrating
that the estimation algorithm works with only one bearing measurement.

The VisionServer [48] software reads the point locations detected by the PointGrab-
ber II hardware, applies a third-order polynomial to correct for lens distortion, tracks
points in time, and reports point locations to the network. The estimator runs at 10Hz

and therefore incorporates vision measurements from every third video frame. There is a
delay of about three iterations (i.e., 0.3 s) in the system between the motion command and
the vision measurements. The measurement noise of this vision system is approximately
σ(sx,y) = 0.01.

5.1.3 Inertial Rate Sensors

All six inertial rate sensors are collocated in the DMU-6X inertial measurement unit by
Crossbow [8]. This is a low-cost solid-state device. The accelerometers measure differential
capacitance between micro-machined cantilevers and the rate gyros are based on vibrating
ceramic plates.

The random walk of the accelerometers due to measurement noise is rated at
0.15m/s/

√
Hr. At a sample rate of 10Hz, this is equivalent to measurement noise with

a 0.008m/s2 standard deviation. The turn-on accelerometer bias has a standard devia-
tion of 0.1m/s2. The random walk of the rate gyros due to measurement noise is rated
at 0.35◦/

√
Hr. At a sample rate of 10Hz, this is equivalent to measurement noise with a

0.0003 rad/s standard deviation. The turn-on rate gyro bias has a standard deviation of
0.018 rad/s.

The inertial measurement unit generates measurements at about 160Hz and sends
them to the main computer over a serial data link. They are down-converted and syn-
chronized to the vision measurements using a symmetric finite impulse response (FIR)
filter with 37 taps and a 3 dB bandwidth of 3Hz. This introduces a delay of 0.11 s, which
was chosen to synchronize the inertial rate sensor measurements with the vision measure-
ments.

Actual outputs from the inertial rate sensors led to the parameter values actually used
for the inertial rate sensor models. The measurement noise is larger at 0.1m/s2 and 0.001 rad/s.
The turn-on bias has been identified as

[

0 −0.23 −0.12
]

m/s2 with a standard devia-

tion of 0.04m/s2 for the accelerometers and
[

0.004 −0.003 0.010
]

rad/s with a stan-
dard deviation of 0.01 rad/s for the rate gyros.
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Figure 5.2: Manipulator Endpoint with the Camera, Inertial Rate Sensors, and Gripper;
and the Cup with an Infrared LED

5.2 Object Pick-Up Task

A simple robotic task—picking up a cup with the manipulator arm—has been developed
to demonstrate the capabilities of the sensing strategy. Figure 1.6 shows the K-1607 manip-
ulator by Robotics Research Corporation in position to pick up a cup, placed at a position
unknown to the robot. To complete the task, the robot has to determine its relative posi-
tion and move to a desired relative position with sufficient accuracy to close its gripper
successfully on the handle of the cup.

Figure 5.2 is a close-up of the endpoint of the robot arm and the object. It shows the
pneumatic gripper, the camera, and the inertial rate sensors mounted on the robot end-
point. An infrared LED on the bottom of the cup handle provides an easy point feature for
the camera to track.

The demonstration task is performed autonomously by the robot using a real-time im-
plementation of the sensing strategy. Complete results are presented in the next chapter.
Figure 5.3 shows a sequence of snapshots of the demonstration task. The task is initialized
in Frame 1 such that the LED of the cup is visible in the camera’s field of view. The relative
position of the cup is not known by the estimator or the controller. The robot begins by
rotating down (Frame 2) and back up (Frame 3 and 4) while controlling its relative position
based on the current estimator output and the desired trajectory. Finally, it moves into the
contact position (Frame 5), grasps the cup, and demonstrates success by raising the cup
(Frame 6).
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1. 2.

3. 4.

5. 6.

Figure 5.3: Sequence of Snapshots from a Successful Demonstration of the Object Pick-Up
Task
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This task can be interpreted in more than one context. For example, it shows how the
sensing strategy can be employed on a fixed-base manipulator that requires an indepen-
dent estimate of endpoint motion. However, the robot can also simulate an intervention-
capable AUV. In this case, the manipulator endpoint, including the sensors and the gripper,
represents the AUV. The links of the manipulator and the forces they transmit simulate the
combined action of the AUV thrusters and any disturbances from the environment. It is
this interpretation that is most useful for this dissertation.

The purpose of this demonstration task is to validate the relative position sensing strat-
egy on a hardware experiment. Consequently, several assumptions have been applied to
the task to avoid many of the other research issues associated with autonomous manipula-
tion tasks. To eliminate the need for online object modeling and grasp planning, a known
object is used. Is is assumed that the LED on the handle of the cup is the only feature vis-
ible in the camera image. This obviates the need for any reasoning about the scene and
interpretation of the task.

This demonstration also takes a simplified approach to vision processing. With the
help of an infrared filter on the camera and an infrared LED on the object, vision process-
ing is reduced to applying a threshold to the image and extracting the centroid of the only
suitable blob, which are routine capabilities. Effective processing of images in the field,
especially in the underwater environment, is much more difficult, very application depen-
dent, and beyond the scope of this dissertation. An important contribution of this work is
to reduce the number of robust, trackable features required to determine relative position
with a monocular vision system. Reducing this number has the potential to simplify the
requirements on vision systems for real environments in a significant manner.

The demonstration assumes that the object’s geometry and orientation are known.
Without these assumptions, realistic tasks other than station-keeping cannot be defined by
specifying only a single point feature. While only a single feature is required to determine
relative position, more than one feature are necessary to define a general manipulation
task. By assuming that the cup is always upright, that is always faces the same direction,
and that the position offset between the object’s LED and the grasp point is known, es-
timating the relative position between the robot and the LED is sufficient to perform the
pick-up task.

Applying this sensing strategy in the context of real autonomous manipulation tasks
requires more knowledge about the object than can be conveyed with a single feature.
However, if the object is stationary, only the current bearing to a single feature is necessary
in real-time to execute the task. All other information could be obtained before the ma-
nipulation task begins from non-real-time reasoning or from low-bandwidth interactions
with a human supervisor.
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Figure 5.4: Block Diagram for the Experimental System

5.3 Control System

The control of the manipulator arm to simulate the motion of an underwater vehicle and
to perform a manipulation task is distributed into three layers. The top layer, operating
at 10Hz implements the task, which includes the relative position sensing system, the
desired trajectory, and the observer control. The output of this level are observer force and
torque commands. The middle level, operating at 200Hz, computes desired robot joint
angles to generate the endpoint motion that is implied by the observer force and torque
commands. The bottom level, operating on analog hardware and some high-sample-rate
digital hardware, implements the joint control for the robot. This system is depicted in
Figure 5.4. This section describes the important parts of this control system except for the
estimator, which has been discussed at length in Chapter 4.
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5.3.1 Trajectory

The trajectory describes the observer motion as a function of time for the duration of the
task. This description includes the desired relative position and velocity, the desired orien-
tation and angular rates, and the nominal force and torque commands required to achieve
this motion. The trajectory-following control includes a feedback and a feedforward com-
ponent. The desired relative position and orientation, as well as their desired rates of
change, are compared to the sensed values by the observer control, which computes the
feedback forces and torques. These are added to the nominal commands (i.e., the feedfor-
ward control), which have been pre-computed in the trajectory design. The design of the
trajectory is described in Section 5.8.

5.3.2 Observer Control

The observer control generates the feedback control commands to align the observer mo-
tion with the nominal trajectory. It is implemented in body coordinates as a PD controller
with saturation.

u1,fb = sat(−K1,p (rdes − r̂) +K1,d (vdes − v̂) , u1,max) (5.1)

The control input for the rotational degrees-of-freedom is computed from the difference
between the desired and estimated values of three parts: Rz (the direction of gravity in
body coordinates), ψ (heading) and ω. The contribution from Rz should be perpendicular
to Rz and the contribution from ψ should be parallel to Rz . Consider the last column of
(2.4):

dRz

dt
= −ω ×Rz (5.2)

Let ω = ω1 + ω2 such that ω1 is perpendicular to Rz (i.e., ω
T
1 Rz = 0) and ω2 is parallel

to Rz (i.e., ω2 × Rz = 0). Taking the cross-product between −Rz and (5.2) results in a
useful expression for motivating the proportional term in the control law.

−Rz ×
dRz

dt
= Rz × (ω ×Rz) (5.3)

= Rz × (ω1 ×Rz) (5.4)

=
(

RT
z Rz

)

ω1 −
(

RT
z ω1

)

Rz (5.5)

= ω1 (5.6)
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Param. Value Units
K1,p 2 1/s2

K1,d 2 1/s

u1,max 0.2 m/s2

K2,p 2 rad/s2

K2,ψ 1 1/s2

K2,d 2 1/s

u2,max 0.2 rad/s2

Table 5.1: Parameters for the Observer Control

Now, the error in Rz can be associated with dRz/dt and the related torque command with
ω1.

u2,fb = sat
(

K2,p

(

−R̂z ×
(

Rz,des − R̂z

))

+K2,ψR̂z

(

ψdes − ψ̂
)

+K2,d (ωdes − ω̂) , u2,max

)

(5.7)

= sat
(

K2,p

(

Rz,des × R̂z

)

+K2,ψR̂z

(

ψdes − ψ̂
)

+K2,d (ωdes − ω̂) , u2,max

)

(5.8)

Useful parameters for a 10Hz implementation of this controller are given in Table 5.1.

5.3.3 Observer Control Input

The feedback controller can operate in two different configurations based on its input.
In the “control-from-estimate” configuration, it computes the feedback control from the
estimator output of relative position and velocity, orientation, and angular rate. In the
“control-from-truth” configuration, it computes the feedback control from the true state.

Both of these configurations will be useful for the experiments described in Chapter 6.
The “control-from-estimate” configuration enables the object manipulation task by guid-
ing the robot towards the object, which can be randomly placed in the robot workspace.
The “control-from-truth” configuration is useful for controlling the robot independently
from the estimator and is available if the object location has already been calibrated. Sec-
tion 5.5.1 explains how the true state can be computed from the known object location and
the endpoint pose, which is derived from the joint angle measurements. The switch on the
observer control input in Figure 5.4 indicates this choice of configuration.

5.3.4 Simulated Disturbances

Free-floating underwater vehicles are subject to significant disturbances from the environ-
ment. Typical underwater disturbances are a dominant factor in the performance of the
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sensing strategy. Therefore, the experimental system includes the capability to generate
artificial disturbance forces and to add these to the control commands for the manipulator.
This approach provides insight into the performance of a potential underwater vehicle ap-
plication by investigating the effect of disturbances of various magnitudes on the estimator
results.

The experimental system is also subject to some real disturbance forces. These are
caused by unmodeled effects like calibration errors, time delays and friction. However,
the effect on performance from these disturbances is small. The contribution from the
artificial disturbances is much more significant.

The Gauss-Markov models that have been defined to capture typical disturbances in
the underwater environment have been described in Section 2.3 and are reprinted below.
The vector d1 represents forces and d2 represents torques.

d

dt
d1 = − 1

τ1
d1 + nd1 (5.9)

d

dt
d2 = − 1

τ2
d2 + nd2 (5.10)

This section develops realistic parameters for τ1, τ2, σ(nd1) and σ(nd2).
The parameter values are based loosely on an experiment with the Ventana ROV [44].

In this experiment, a slowly varying bias force, with a time constant of approximately
τ1 = 60 s, was detected in the fore-aft direction of the vehicle. A typical size for the bias
force in units of acceleration was 0.012m/s2. If this can be assumed to be the standard
deviation of the bias force, then σ(nd1) =

√

2/τ1σ(d1) = 0.0022m/s3 . These values have
been used for all three of the translational degrees-of-freedom.

Parameter values for the rotational motion were more difficult to derive from the ex-
periment. Nevertheless, useful quantities have been identified: τ2 = 60 s and σ(d2) =

0.01 rad/s2. This leads to σ(nd2) =
√

2/τ2σ(d2) = 0.0018 rad/s3 . In the experiment,
discrete-time versions of these equations were implemented at 10Hz.

5.3.5 Observer Dynamics

The manipulator has sufficiently powerful motors to simulate the dynamics of an under-
water vehicle. This is achieved by propagating the commanded forces and torques through
the dynamics defined in Section 2.3. This generates motion commands (desired velocities
and rotational rates) specified in Cartesian coordinates. These motion commands are the
input to the endpoint pose controller.

The input to the dynamics includes the feedback control computed by the observer
control, the feedforward commands from the trajectory, and the simulated disturbances.
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Discrete time versions of (2.15) and (2.17) were implemented at 200Hz. The drag parame-
ter in (2.15) was estimated to be γ = 0.2 1/s from the same experiment that was described
in the previous section.

5.3.6 Endpoint Pose Controller

The purpose of the endpoint pose controller is to compute a set of robot joint velocities such
that the robot endpoint moves according to the desired velocities and rotational rates. Pose
represents the 6-DOF combination of position and orientation of the endpoint expressed
in the robot base frame. The manipulator forward kinematics compute the pose of the
endpoint from joint angle measurements.

The robot is kinematically redundant because it has seven degrees-of-freedom (joints),
which is more than the necessary number to perform a 6-DOF task. Therefore, the joint
velocities are not unique until a null space objective has been defined.

The implementation of the pose controller follows the standard designs for resolved
rate controllers described in [7, 37] with the following customizations: The pseudo-inverse
of the Jacobian matrix is computed using the singularity-robust method described in [37].
A specific joint-velocity weighting is computed with an algorithm described in [4] that
guarantees joint-limit avoidance. The nullspace objective is to draw the joint angles to-
wards the midpoint of their range of motion.

When the robot operates in the “control-from-estimate” configuration, the pose con-
troller is the highest level in the control architecture where robot joint angle measurements
are used.

5.4 Calibration

5.4.1 Camera Calibration

The camera measurements are corrected for lens distortion by two third-order polynomi-
als, one for each axis of the image plane. The camera calibration involves computing a
set of twenty constants that define these polynomials. The vision system described in Sec-
tion 5.1.2 is typically installed for 2D applications with a fixed overhead camera above a
table with constant object heights. In this case, the camera calibration is most easily per-
formed with a calibration board that has many LEDs, each at known locations (see [5]).
However, in this application, the camera is moving and the object range is variable, from
about 20 cm in front of the camera to up to 3m. Therefore, a different calibration approach
was developed.
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If a and b are the uncalibrated vision plane measurements, then the calibrated measure-
ments are given by

sx = Cx,0a
3 + Cx,1a

2 + Cx,2a+Cx,3b
3 + Cx,4b

2 + Cx,5b

+ Cx,6a
2b+ Cx,7ab

2 + Cx,8ab+ Cx,9 (5.11)

sy = Cy,0a
3 + Cy,1a

2 + Cy,2a+ Cy,3b
3 + Cy,4b

2 + Cy,5b

+ Cy,6a
2b+ Cy,7ab

2 + Cy,8ab+ Cy,9 (5.12)

By associating the actual pixel measurements with known values of sx and sy, these poly-
nomials can calibrate not only the lens distortion, but also the conversion from pixel mea-
surements to the dimensionless s-measurements and any offsets between the center of the
lens and the center of the CCD.

The camera was calibrated with a single LED at a fixed position. The camera was then
moved to various positions such that it covered all the expected object ranges and that it
recorded feature positions across the entire field of view. At each position, the location
of the camera in robot coordinates and the raw image plane position of the LED feature
was recorded. Throughout this process, the orientation of the camera remained constant.
A nonlinear optimization was then applied to determine both the calibration coefficients
(Cx,n and Cy,n) and the position of the LED in robot coordinates.

5.4.2 Calibration of Position Offsets

The parts of the system used to accomplish the object pick-up task are not collocated. The
position and orientation offsets between the manipulator tool plate, inertial rate sensors,
camera, gripper, LED, and cup handle are important for estimating the relative position
between the inertial rate sensors and the LED and for using this estimate to control the
position between the gripper and the cup handle. This section presents the calibration of
these offsets.

Figure 5.5 shows the parts of the manipulator endpoint. The tool plate is the interface
between the RRC manipulator and the custom parts that have been attached to the ma-
nipulator. The point marked A1 is the center of the tool plate. The forward kinematics
typically compute the position and orientation of the tool plate as a function of the joint
angles. However, the observer body frame is centered on the inertial rate sensors (i.e., at
the point marked A2), so the position offset P12 and the rotation Φ12 between A1 and A2 is
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required to compute the correct forward kinematics.

P12 =









0.203

0

0.036









m Φ12 =









−25◦

0

90◦









(5.13)

P12 is expressed in the tool plate coordinates. Φ12 is a roll-pitch-yaw vector also starting
from the tool plate.

The remaining positions are all resolved in the observer body frame. Pcam is the camera
position between A3 and A2 and Ptool is the tool position between A4 and A2.

Pcam =









0

0.064

0.040









m Ptool =









0

0.131

0.213









m (5.14)

However, the values

Ptool =









−0.003

0.130

0.203









m (5.15)

produce more accurate results in the experiment, so these have been used instead of the
measured values.
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Figure 5.6 shows the geometry of the cup. The LED is attached to the bottom of the
cup handle. The grasp location of the cup is on the upper part of the handle. With this
geometry, the LED will continue to be visible in the camera image during the grasping
phase of the task. Ptarget is the position of the grasp position (the location of the guide
hole) relative to the LED. This is expressed in inertial coordinates.

Ptarget =









0.004

0

0.074









m (5.16)

5.5 Task Geometry

The sensing system determines the relative position r between the LED and the observer
body frame whereas the object pick-up task is based on the relative position rtask between
the cup handle and the gripper. Figure 5.7 shows the difference between r and rtask based
on the position offsets defined in the previous section.

r = p − q (5.17)

rtask = p + Ptarget − q − Ptool (5.18)

= r + Ptarget − Ptool (5.19)
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The observer control (presented in Section 5.3.2) should be defined in terms of rtask so
that (5.1) operates on the difference

r̃task = rtask,des − r̂task (5.20)

= rtask,des − r̂ − Ptarget + Ptool (5.21)

= (rtask,des + Ptool) − (r̂ + Ptarget) (5.22)

In the experimental system, this is handled by defining the trajectory in terms of rtraj,des =

rtask,des + Ptool, which is convenient because both terms are expressed in observer body
coordinates. In the control, Ptarget is first rotated from inertial to body coordinates based
on the current orientation and then added to the relative position estimate before passing
it to the controller.

5.5.1 Relative Position Truth Measurement

The experimental system does not provide a direct truth measurement for the relative
position between the observer and the object, but the observer position q, computed from
the encoders on the manipulator joints, can be used to calibrate and derive the relative
position. This section explains the truth measurement and discusses its accuracy.

When the gripper is in the correct location to pick up the cup, rtask = 0. If this occurs
at q = q0, then

rtask = 0 = p + P 0
target − q0 − P 0

tool (5.23)

p = q0 + P 0
tool − P 0

target (5.24)

r = p − q (5.25)

= q0 − q + P 0
tool − P 0

target (5.26)

Therefore, by calibrating q0 at a grasp position of the observer, the relative position at other
positions q can be computed. Although P 0

tool and P 0
target are constants, the superscript

has been added to indicate that frame transformations have to be computed using the
orientation of the observer when q0 was measured.

This is a derived truth measurement and is itself subject to systematic errors. These
are introduced by errors in the calibration of the offsets and in the forward kinematics,
which is the mapping from robot joint angles to endpoint position and orientation. These
errors are small when q0 − q is small, or more precisely, when the actual joint angle differ-
ences between the current and grasp positions are small. As this difference increases, the
systematic errors also grow.
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Table 5.2: Estimator Initial Conditions
ŷ0

Entry Value Units
sx −0.006

sy −0.013

ζ 1.79 1/m

v 0 m/s

a 0 m/s2

ba







0
−0.23
−0.12






m/s2

Z







0
1
0







ψ 1.57 rad

bω







0.004
−0.003
0.010






rad/s

Σ0

Entry Value Units
sx 0.2

sy 0.2

ζ 0.53 1/m

v 0.1 m/s

a 0.012 m/s2

ba







0.04
0.04
0.04






m/s2

Z







0.15
0.02
0.15







ψ 0.01 rad

bω







0.003
0.003
0.003






rad/s

5.6 Parameter Values

This section provides the parameter values required for implementing the estimator. Some
of these parameters have already been defined in previous sections. The parameters can
be grouped into initial conditions, the process noise covariance and the sensor noise co-
variance.

The initial estimate covariance P0, the process noise covariance Q and the sensor noise
covariance R are diagonal matrices.

P0 = E
(

y0y
T
0

)

= (diag(Σ0))
2 (5.27)

Q = E
(

npn
T
p

)

= (diag(Σp))
2 (5.28)

R = E
(

nzn
T
z

)

= (diag(Σz))
2 (5.29)

where the Σ-vectors specify the standard deviations along the diagonals.
The initial conditions ŷ0 and Σ0 are defined in Table 5.2. The entries corresponding to

sx, sy, ζ , v, and Z are representative of the typical initial conditions at the beginning of the
manipulation task. The entries for a are derived from Section 5.3.4. The entries from ba

and bω are from Section 5.1.3.
The system does not have an absolute measurement of heading. Therefore, any ini-

tial error in the heading measurement cannot be eliminated. Consequently, the system is
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Table 5.3: Process and Measurement Noise Parameters
Σp

Entry Value Units
nd1 0.0022 m/s3

nba 0.00001 m/s3

nω 0.001 rad/s

nα 0.000001 1/s

nbω 0.00001 rad/s2

Σz

Entry Value Units
zs 0.01

za 0.1 m/s2

initialized with the known heading of ψ = 90◦ and a low uncertainty. An analysis of the
results then shows how well the estimator can maintain the estimate of heading based only
on integrating the rate gyro measurements.

The Σ-vectors corresponding to the process noise np and the measurement noise nz are
defined in Table 5.3. The standard deviations for nd1, nω, zs and za are defined earlier in
this chapter.

The standard deviations for nba, nbω and nα are set to be very low because the duration
of the experiments is short—20 s is the length of the manipulation task—so any variabil-
ity in the bias and scale factors is negligible. To use this estimator for longer-duration
experiments for which changes in the bias and scale factors are significant, appropriate
parameters for these process noise components should be chosen.

The values of Σp are used by the simulation system. For use by the estimator, σ(nω)

is increased by 0.0015 rad/s and σ(nα) is increased by 0.001 1/s. Fictitious process noise
is added to cover the effects of approximations in the estimator algorithm. The fictitious
process noise has minimal effect during normal conditions. However, it is important when
entries in Σp are scaled down for some of the experiments in Chapter 6 that simulate low-
noise conditions.

5.7 Simulation System

A simulation system has been developed to improve the efficiency of the design process
and to provide a means to compute Monte Carlo results based on a large number of runs.
Whenever possible, the simulation system is based on the same parameter values as the
hardware system. However, the complexity of the simulation system is significantly re-
duced. The transformations between observer motions and robot joint motions are not
necessary. The state dynamics and simulated measurements can all be implemented at
10Hz using the same equations that were developed in Section 4.1. Finally, only the
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Figure 5.8: Block Diagram for the Simulation System

“control-from-truth” configuration needs to be implemented. The simulation system was
developed in Matlab using the structure shown in Figure 5.8.

5.8 Trajectory

The trajectory specifies the desired relative positions, velocities, orientation and angular
rates for performing the demonstration task, as well as the nominal force and torque com-
mands required to achieve this desired motion. The trajectory design has to satisfy two
competing objectives. First, it has to generate sufficient observer motion for the relative
position estimates to converge. This tends to require motion transverse to the line-of-sight.
Second, it has to result in observer motion towards the object—from the initial observer
position to a final position that permits a grasp of the object.

The design of this trajectory is based on an ad hoc optimization of the estimate un-
certainty subject to reaching the desired final grasp position. Candidate trajectories are
represented by a superposition of motion primitives, each defined by a number of pa-
rameters like amplitude, start-time and duration. Using properly designed primitives and
parameter ranges ensures that each candidate trajectory starts at the nominal initial rela-
tive position, stops at the relative position and orientation required for successful grasping,
and provides sufficient degrees-of-freedom to ensure estimator convergence. Parameters
can then be optimized to balance the estimator performance with the amount of motion
and the duration of the trajectory. The ad hoc design method is based on proposing various
trajectories based on intuition and choosing the best trajectory based on the performance
of the estimator.

A trajectory is proposed by defining the desired relative position and the desired orien-
tation as a function of time. From these, the desired velocity and the desired angular rates
can be computed. This intermediate trajectory is then propagated through the closed-loop
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Figure 5.10: Desired Observer Motion Corresponding to the Trajectory in Figure 5.9.

control of the simulation system, which is subject to the modeled bandwidth limitations
and actuator saturation of the experimental system. This generates an achievable trajectory
of motion commands including the forces and torques that produce that motion.

Figure 5.9 presents the trajectory for the demonstration task. This trajectory is used
for all of the simulation and experimental results in Chapter 6. The first row shows the
desired relative position rdes and the desired orientation λdes in the roll-pitch-yaw represen-
tation. The second row shows the associated desired velocity vdes and the desired angular
rates ωdes. The third row shows the feedforward commands u1,des and u2,des. Figure 5.10
presents this motion on a 3D plot.

The two dominant motions in frames 1 to 5 of Figure 5.3 are the motion towards the
object, represented by rz,des (the z-axis in the body coordinates is parallel to the camera
axis), and the rotational motion in the vertical plane represented by φdes. As discussed in
Section 5.5, rdes includes the Ptool offset and therefore does not converge to zero at the end
of the trajectory.

5.9 Summary

This chapter has presented the experimental system and the demonstration task used to
validate the sensing strategy, its feasibility, and it applicability to a closed-loop manipu-
lation task. The description focused on the actual hardware, the object pick-up task, the
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control system, calibration and parameters, the development of a simulation system, and
the trajectory design. Simulation and experimental results using this system are presented
in the next chapter.
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Chapter 6

Results

This chapter presents results from computer simulations and hardware experiments that
demonstrate that the sensing strategy—fusing monocular vision measurements of a single
feature with inertial rate sensor measurements to determine relative position—is feasible
and that it is a useful capability for the closed-loop control of an autonomous robot. Com-
puter simulations and hardware experiments provide complementary advantages. Com-
puter simulations provide greater insight into the performance of the estimator because
modeling errors can be avoided, parameters can be varied more easily, more experiments
can be performed and all truth measurements are immediately available. Hardware exper-
iments provide confidence that all critical issues have been addressed, that the problem can
be solved in real time, and that the capability is suitable for an autonomous manipulation
task.

All of the experiments are performed in the context of the object pick-up task intro-
duced in Section 5.2. Chapter 2 describes the estimation problem that has to be imple-
mented to perform the pick-up task. The design of an estimator to solve this problem
appears in Chapter 4. Chapter 5 describes the experimental hardware and the associated
simulation environment used to generate the results presented in this chapter.

This chapter is divided into three main sections. The first section presents simula-
tion results for the baseline problem. These results are generated with the “control-from-
truth” configuration in which the observer control is independent of the estimator results.
Estimator results demonstrate centimeter-level accuracy for the relative position sensing
capability. Analyzing these results confirms that the estimator design can exploit the non-
linearities inherent in this sensing strategy.

To develop additional insight into the performance of a potential underwater vehicle
demonstration, the second section presents simulations for environments with larger and
smaller disturbances and higher-quality inertial rate sensors. This analysis shows that the
effectiveness of the sensing strategy depends strongly on the disturbance environment and

95
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only weakly on the inertial rate sensor quality. Therefore, employing more expensive sen-
sors to improve performance does not help, which is a fundamental limitation of this sens-
ing strategy. This limitation can be addressed by fusing additional sensor measurements,
like tracking additional features or incorporating additional sensors. These extensions are
discussed in Chapter 7.

Results from the hardware experiment are presented in the third section. This includes
results for the baseline experiment, which validate the simulation results and show that the
implementation of the sensing strategy can tolerate the effects of unmodeled errors that are
present in the hardware experiment. A second experiment demonstrates the effectiveness
of the sensing strategy for an autonomous manipulation task in which the estimator results
are used for the closed-loop control of the observer. This hardware experiment represents
the first real-time implementation of this sensing strategy to perform a useful manipulation
task with an autonomous robot.

6.1 Simulation Results

This section presents simulation results for the baseline experiment. The baseline exper-
iment focuses on the estimator performance by using the “control-from-truth” configu-
ration (described in Section 5.3.3). In this configuration, the robot control depends on
the known relative position and velocity. This configuration avoids any estimator perfor-
mance issues that result from closing the control loop around the estimator. The parame-
ters that define this estimation problem are summarized in Section 5.6.

These simulation results show that the estimator works well in the presence of mod-
eled uncertainties and provide insight on the observability issues of the sensing strategy.
Hardware experiments (presented later in Section 6.3.1) validate these simulation results
and show that the estimator also performs well with real sensor measurements.

This section is split into two parts. The first part shows the results for one simulation
run. This provides a context for later results by plotting the true states, the associated es-
timates and their predicted uncertainty. The second part presents a Monte Carlo analysis,
which provides averages of the estimate error—the difference between the true state and
the estimate—over many runs.

6.1.1 One Simulation Run

Figures 6.1 to 6.6 present the results from one simulation run. The simulation environment
is described in Section 5.7. For each run, the actual system state is initialized at y0 =

yinit + ∆y0, where ∆y0 is sampled according to P0. The estimator is initialized at ȳ0 =
yinit. The relative position encoded in yinit corresponds to the desired relative position at
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the start of the trajectory. The control uk is computed from the known state yk and causes
the state to follow the relative position and velocity described in the trajectory.

Figure 6.1 shows the evolution in time for sx, sy, ζ and the relative velocity; Figure 6.2
shows the disturbance and Z-vector components; Figure 6.3 shows the inertial rate sensor
biases; and Figure 6.4 shows the observer heading. Finally, Figure 6.5 shows the relative
position, which is computed from sx, sy and ζ . All of these plots show the true state with
a solid line, the estimate with a dashed line, and the uncertainty envelope in gray. The
uncertainty envelopes y̌ and ř are defined to be one estimated standard deviation above
and below the true state.

y̌ =















y +

√

diag
(

P̂
)

y −
√

diag
(

P̂
)

(6.1)

ř =















r +

√

diag
(

P̂r
)

r −
√

diag
(

P̂r
)

(6.2)

The uncertainty of sx and sy is low because these components are directly observable
in the camera measurements. In contrast, the uncertainty of ζ is larger because it cannot be
measured directly. The inverse object range, ζ , is determined by an implicit triangulation
which depends critically on the uncertainty of several other states.

The Z-vector, scaled by the acceleration due to gravity, is the dominant component of
the accelerometer measurement, which leads to a relatively good estimate. The distur-
bance force a and the accelerometer bias ba, which are the smaller contributions to the
accelerometer measurement, are more difficult to estimate accurately.

Note that the uncertainty in b̂a,x shows almost no improvement during this experiment.
This is a consequence of the trajectory design and does not affect the accuracy of the range
estimate. Because Zx and ba,x are mainly constant throughout the trajectory, the estimator
cannot assign contributions in the corresponding accelerometer measurement to one or
the other state. Introducing more variation in Zx by modifying the trajectory leads to
more pronounced convergence in b̂a,x, but this is not necessary for good overall estimator
performance.

The heading ψ is not actually observable in the sensor measurements—the estimator
can only integrate angular velocity around the Z-vector to compute changes in heading.
Therefore, the estimator is initialized with the true heading. This implies that the initial
uncertainty of the heading is zero. As time progresses, that uncertainty grows to accommo-
date the noise and bias errors of the rate gyro measurements. Although absolute heading
is not observable, it helps to include it in the estimator to enable heading control. Adding
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Figure 6.1: One Simulation Run: sx, sy, ζ and Velocity

sx and sy are the image plane feature positions. ζ is the inverse range. The
range is the object position along the optical axis of the camera. The velocity v

is the relative velocity between object and observer expressed in the observer
body frame.
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Figure 6.2: One Simulation Run: Disturbances and Z-vector

a is the force disturbance, in units of acceleration and expressed in the observer
body coordinates. Z is the scaled gravity direction in the observer body coor-
dinates.
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Figure 6.3: One Simulation Run: Inertial Rate Sensor Biases

ba are the biases on the accelerometers. bω are the biases on the rate gyros.
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The observer heading ψ is the rotation about the gravity vector or the Z-vector.

a compass to the sensor strategy would result in a significant improvement of the heading
estimate.

The relative position in Figure 6.5 is computed from sx, sy and ζ using the nonlin-
ear transformation r = g(y) (see Section 4.5). In the estimator, this is implemented with
another UT algorithm. The object range rz depends directly on ζ and is the least certain
estimate. As shown in these plots, the other two components of r are easier to estimate.

Figure 6.6 shows the innovations z̃ = z − z̄ for the vision and accelerometer measure-
ments. These plots are a powerful analysis tool because the innovations can be computed
without an independent truth measurement and most estimation problems are detectable
in the innovations. The gray region indicates the uncertainty envelope defined as

ž =















√

diag
(

R̂e
)

−
√

diag
(

R̂e
)

(6.3)

where R̂e is the covariance of the innovations (see Section 4.4).
The results for this single simulation run provide a context for the other results in this

chapter. Clearly, the estimator converged and the innovations are reasonable. However,
this is only a single run which is not representative of a stochastic nonlinear problem. The
next section presents a Monte Carlo analysis, which provides confidence that these results
are valid over a large number of simulations. Section 6.3.1 presents results from a hardware
experiment, which is subject to a variety of unmodeled errors.
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The relative position between the object and the observer is expressed in ob-
server body coordinates. It is computed from sx, sy and ζ.
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zs is the image plane measurement of the feature. za is the accelerometer mea-
surement.
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6.1.2 Monte Carlo Simulations

Monte Carlo simulations capture the averaged behavior of the estimator and summarize
the performance of the estimator over many different runs. This type of analysis is es-
pecially useful for nonlinear systems for which the estimator performance cannot be pre-
dicted accurately from analysis. The Monte Carlo results in this chapter are all generated
from N = 1000 runs like the one described in the previous section. If N runs are averaged
to produce the Monte Carlo results, the mean estimate error µ(ỹ), the actual standard de-
viation of the estimate error σ(ỹ), and the predicted standard deviation σ̂(ỹ) are given
by

µ(ỹk) =
1

N

N
∑

i=1

ỹik (6.4)

σ(ỹk) =

√

√

√

√

1

N − 1

N
∑

i=1

(

ỹik − µ(ỹk)
)2 (6.5)

σ̂(ỹk) =

√

√

√

√

1

N

N
∑

i=1

diag
(

P̂ ik

)

(6.6)

ỹik = yik − ŷik (6.7)

where the superscript i denotes a given run. Equivalent relationships can be written for
the relative position r and the innovations z̃.

The Monte Carlo analysis contains several integrity checks which are applied to each
run. These checks are evaluated only from information available to the estimator (i.e., not
from truth data) and are used to remove runs that have generated non-sensical results. A
variety of conditions can cause these anomalies in a nonlinear stochastic estimator. For
example, ζ should be positive, but neither of the estimate updates explicitly enforces that.
The integrity checks can trap for this situation. Ideally, all of these failures are trapped by
the integrity checks and η, the percentage of successful runs, is large. In these results, η is
reported as a metric for the estimator design.

Two different integrity checks are used. The first triggers if ζ falls outside of the range
[0.2, 100]. This corresponds to object ranges above 5m and below 1 cm. The second triggers
if the innovations for a measurement fall outside of the uncertainty bound for more than
10 consecutive measurements.

Figures 6.7 to 6.11 present Monte Carlo results for the baseline experiment. For these
results, η = 99.7%, that is, 3 out of 1000 runs were culled.
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ã
z

(m
/s

2
)

Z̃
x

Z̃
y

Z̃
z

µ
σ
σ̂

Figure 6.8: Baseline Monte Carlo Experiment: Disturbances and Z-vector



6.1. Simulation Results 107

0 5 10 15 20

0

0.02

0.04

Time (s)
0 5 10 15 20

0

5

10

15

x 10
−4

Time (s)

0 5 10 15 20

0

0.02

0.04

Time (s)
0 5 10 15 20

−1

0

1

2

3

x 10
−3

Time (s)

0 5 10 15 20
−0.01

0

0.01

0.02

0.03

0.04

Time (s)
0 5 10 15 20

0

5

10

15

x 10
−4

Time (s)

PSfrag replacements

b̃ a
,x

(m
/s

2
)

b̃ a
,y

(m
/s

2
)

b̃ a
,z

(m
/s

2
)

b̃ ω
,x

(r
a
d
/s

)
b̃ ω
,y

(r
a
d
/s

)
b̃ ω
,z

(r
a
d
/s

)

µ
σ
σ̂

Figure 6.9: Baseline Monte Carlo Experiment: Inertial Rate Sensor Biases



108 Chapter 6. Results

0 5 10 15 20
−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

Time (s)

PSfrag replacements
ψ̃

(r
a
d
)

µ
σ
σ̂

Figure 6.10: Baseline Monte Carlo Experiment: Observer Heading

These plots demonstrate some important characteristics of this estimator design. First,
the mean estimate error (square symbols) is small compared to its standard deviation (tri-
angle symbols), so it does not represent a dominant source of error. Second, the predicted
standard deviation (σ̂, dashed line) correctly predicts the actual standard deviation (σ).
Third, states that are unobservable for this particular trajectory (e.g., ba,x in Figure 6.9) do
not diverge. Fourth, the innovations have minimal structure. These observations indi-
cate that problems which typically arise when applying optimal estimators to nonlinear
systems with dynamic observability have been avoided with this estimator design.

Estimates are unbiased if the mean estimate error approaches zero. Although the sim-
ulations show that the estimate biases are small, the estimator is not completely unbiased.
But this is not surprising given that the problem is nonlinear and the estimator design con-
tains necessary approximations. Furthermore, all of the runs that have been averaged to
produce these results have used the same desired relative position trajectory. Therefore,
any systematic errors that arise from the approximations are reinforced by every run.

These observations about the merits of the estimator design are similar to those of Sec-
tion 3.7, where the design was applied successfully to the much simpler three-state ex-
ample. The results here demonstrate that the estimator design can successfully scale to
much more complicated problems. Note that unlike the three-state example, this estima-
tion problem includes process noise (real and fictitious) which can sometimes mask small
nonlinear effects.

The purpose of the baseline experiment is to explore the performance of the estimator
in the context of the application and system defined in Chapter 5. The Monte Carlo sim-
ulations show that the uncertainty in the object range, the most important output of the
estimator, has a standard deviation of about 1 cm. These results assume a known model for
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disturbance forces and torques in the underwater environment and assume no modeling
errors.

6.2 Parameter Study

The size of the external disturbances from the environment is a key factor that determines
the estimator performance. Larger disturbance levels lead to more uncertain results be-
cause the observer motion is more difficult to estimate. The results presented in this sec-
tion demonstrate that smaller disturbances lead to corresponding improvements in the
estimator performance. They also show that when disturbances grow by about an order of
magnitude without modifying the observer trajectory, the estimator performance quickly
degrades.

An obvious question that arises is whether better inertial rate sensors, with lower mea-
surement noise and more stable sensor biases, lead to a corresponding increase in estima-
tor performance? The simulations in this section predict no improvement in the relative
position estimate with increased inertial rate sensor accuracy. This effect can be explained
as a consequence of the sensing strategy and leads to specific recommendations for future
work.

Unfortunately, the factors that have the greatest influence over the performance of the
sensing strategy are the most difficult to affect. For instance, the size of external distur-
bances is given by the environment. Model errors, which have a similar effect as distur-
bances, are difficult to eliminate. Conversely, the quality of inertial rate senors, which can
be improved by orders of magnitude at a dollar cost, has little effect. Therefore, any im-
provements in the performance of the sensing strategy will likely come from increased
observability due to additional sensor measurements.

6.2.1 Parameter Variations

This analysis considers various parameter variations that are controlled by two scale fac-
tors. The disturbance factor, or βD , controls the size of the external disturbances. The noise
factor, or βN , controls the quality of the inertial rate sensors. These two scale factors define
a two-dimensional parameter study. While there are many ways to construct an analysis
to compare parameter variations, this provides a simple approach to highlight two core
trends. The parameters listed below are modified by these scale factors. The underbar
indicates that the parameters are a function of βD and βN . These parameters replace the
corresponding baseline parameters defined in Section 5.6.
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The disturbance factor modifies the size of the noise source that drives the models for
the external disturbances and the initial uncertainty of the disturbance force.

σ(nd1) = βDσ(nd1) (6.8)

σ(nd2) = βDσ(nd2) (6.9)

σ(a0) = βDσ(a0) (6.10)

The noise factor affects all of the parameters that define the inertial rate sensors, including
the measurement noise

σ(na) = βNσ(na) (6.11)

σ(nω) = βNσ(nω) , (6.12)

the process noise on the sensor bias and scale factor states

σ(nba) = βNσ(nba) (6.13)

σ(nbω) = βNσ(nbω) (6.14)

σ(nα) = βNσ(nα) , (6.15)

and the initial uncertainty in the bias states

σ(ba,0) = βNσ(ba,0) (6.16)

σ(bω,0) = βNσ(bω,0) . (6.17)

The baseline experiment at the beginning of the chapter corresponds to βD =

1 and βN = 1. This section introduces results for combinations of βD =
[

0.1 0.32 1 3.2 10 32 100
]

and βN =
[

0.001 0.01 0.1 1
]

.

6.2.2 Results

Figures 6.12 to 6.16 present results from the Monte Carlo simulations at each combination
of (βD, βN ). Each simulation represents 1000 runs and is generated with the same algo-
rithm except for the parameter modifications listed above. The parameter modifications
affect both the data generated for the simulation and the estimator gains used to process
the data.

Figure 6.12 shows a comparison between the actual and predicted standard deviation
of the estimate error for the object range (rz). This plot is based on data with βN = 1 and
various values of βD . The actual standard deviations, σ(r̃z), are computed at the end of the
trajectory (when the observer makes contact with the object) from the difference between
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the estimated and true states. The predicted standard deviations, σ̂(r̃z), are computed from
the estimate covariance.

This comparison shows that the estimate covariance is a useful predictor for the actual
standard deviation of the estimate error, which broadens a conclusion from Section 6.1.2.
However, it also shows that as the disturbance factor increases, the disparity between the
actual and predicted standard deviation also increases.

This effect can be explained by the presence of greater uncertainty in the estimate, par-
ticularly in the ζ state, as βD increases. Although the UT algorithm (not unlike most other
optimal estimators) assumes that the probability distribution is Gaussian, the actual dis-
tribution is not necessarily Gaussian in a nonlinear system. In fact, the probability distri-
bution for ζ is expected to be quite skewed. When the uncertainty is small, this difference
in shape is not very important and the assumption that all distributions are Gaussian is
a good one. However, when the uncertainty is large, this assumption induces errors that
are not accounted for. This effect is illustrated in Stengel [53, pp. 382-3]. When errors
caused by this approximation begin to dominate, an estimator design that can handle non-
Gaussian distributions, like a Particle Filter, should be used (see Section 7.1.3).

The plots show that as the disturbance grows, the accuracy of the range estimate be-
comes much larger than typical objects in an underwater environment. This occurs be-
cause the trajectory used for all of these runs was designed for βD = 1 and is constrained
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by assumed observer actuator limits. When the disturbance factor is greater than 10, typi-
cal disturbance forces actually exceed the assumed observer actuator limits, which would
also lead to a breakdown in controller performance. A more realistic scenario would con-
sider an observer with actuators that are more powerful than the expected disturbances
and are capable of executing a faster trajectory. Such a trajectory would provide greater ob-
servability and presumably better performance than is indicated in these plots. However,
in this analysis, the trajectory remains the same, regardless of the size of the disturbances.

Next, a comparison between multiple values of βD and βN is presented. Figure 6.13
shows the standard deviation of the estimate error for the object range (rz) as well as the
z-components of the disturbance force, the Z-vector and accelerometer bias vector (az , Zz ,
and ba,z , respectively). Only the standard deviation computed from the estimate error (σ)
is plotted. These are computed at the end of the trajectory. Each line represents a different
value of βN .

The plot for object range shows an obvious trend towards better estimator performance
as the disturbance factor decreases and worse performance as it increases. It also shows
that changes in βN have very little effect on the accuracy of the range estimate. The same
is true for the disturbance estimate. Not surprisingly, changes in βN have a direct effect
on the accuracy of the accelerometer bias estimate. However, for the bias estimates, βD
has very little effect. The dependence on βD and βN of the accuracy of the Z-vector is
discussed later.

Figure 6.14 shows η, the success rate of the estimator, which represents the number
of runs that were not culled based on the integrity checks described in Section 6.1.2. The
degradation in performance above βD = 10 coincides with the separation between the
actual and predicted standard deviations discussed above.

The next plot compares the mean and standard deviation of the range estimate error for
different values of βD and βN . Again, these quantities are computed at the end of the trajec-
tory. Figure 6.15 shows that the standard deviation of the estimate error (σ(r̃z) , solid lines)
is greater than the mean estimate error (µ(r̃z) , dashed lines) as long as βD < 10. Although
the estimates are slightly biased—which is not uncommon for nonlinear estimators—the
standard deviation represents the dominant source of error. For larger values of βD , this
relationship reverses. This is another manifestation of the assumption that all probability
distributions are Gaussian. As the uncertainty increases, errors due to this assumption also
increase and cause the estimates to become biased.



114 Chapter 6. Results

10
−1

10
0

10
1

10
2

10
−4

10
−2

10
0

10
2

10
−1

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

10
−1

10
0

10
1

10
2

10
−5

10
0

10
−1

10
0

10
1

10
2

10
−5

10
0

PSfrag replacements

σ
(r̃
z
)

(m
)

σ
(ã
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6.2.3 Discussion

These simulations, which explore the effect on estimator performance of different distur-
bance levels and higher quality inertial rate sensors, provide insight into the sensing strat-
egy and the operation of the estimator. As shown in Figure 6.13, the positioning accuracy
does not improve if the quality of the inertial rate sensors improves. This is a surprising
observation which indicates that another uncertainty controls the achievable relative po-
sition accuracy. The simulation suggests that a key factor for determining the achievable
accuracy is the size of the external disturbances.

This effect can be explained by focusing on the accelerometer sensor model:

za = −u1 + γv − a + ba + gZ + na (6.18)

The force input u1 is deterministic, so the innovations from this measurement depend on
five terms: the linear drag term (γv), the disturbance (a), the accelerometer bias estimate
(ba), the Z-vector scaled by the apparent acceleration due to gravity (gZ), and the measure-
ment noise (na). Figure 6.16 compares the standard deviation for these five terms (only the
z-components) on the same plot. Each plot corresponds to a different value of βN .

These plots suggest that the Z-vector dominates the uncertainty of the accelerometer
measurement. The drag (γvz) and disturbance (az) estimates behave independently from
the size of the measurement noise. This suggests that these estimates are corrected by a
different mechanism within the estimator. One possibility is an implicit differentiation of
the relative position, which explains their susceptibility to the size of disturbances. The
accelerometer measurement update corrects primarily the bias (ba,z) and gravity vector
(gZz) terms. The accelerometer bias is constant for the short time-scales of each experi-
ment. Therefore, it has substantially different dynamics than the other states and can be
separated easily from them. However, the gZz term has similar dynamics to the drag and
disturbance terms, which makes these terms more difficult to separate. Therefore, the ac-
celerometer measurement update cannot improve the gravity vector estimate below the
accuracy of the drag and disturbance terms. This is evident in the plots, which show that
the gZz term is approximately bounded below by all the other terms. This leads to the
knee in the curve for the Z-vector trace.

The presence of the gravity vector in the accelerometer measurement has the effect of
improving the attitude estimate and degrading the disturbance estimate. Even though the
Z-vector, converted to units of acceleration by g, is the least certain term, it provides a very
good estimate of attitude. This helps to reduce the effect of measurement noise in the rate
gyro measurement and leads to good convergence of the rate gyro biases. Because of this
ability to correct errors in the rate gyro measurements, the quality of the rate gyros is not
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very important. However, the uncertainty of the gravity vector is large compared to typi-
cal disturbances, so that estimating disturbances from the accelerometer measurements is
difficult, regardless of the quality of the accelerometers.

If observer attitude were known exactly, then the effect of gravity could be removed
from the accelerometer measurement and the measurement would be able to correct the
estimate of disturbance to an accuracy close to the accelerometer measurement noise.

This explains why the relative position estimates are insensitive to the inertial rate sen-
sor quality. Any measurement or bias errors in the rate gyro measurement are corrected
by the accelerometer measurement, which tends to be sufficiently accurate for this pur-
pose regardless of the inertial rate sensor quality. However, the gravity component in
the accelerometer measurement limits the accuracy with which real accelerations can be
measured. In practice, this limit is high enough so that the accelerometer measurements
contribute little to the estimate of acceleration and relative position.

This analysis reveals a key limitation of the sensing strategy. The achievable accuracy
of the relative position estimate is determined by the disturbance environment. Distur-
bances are determined by the given application and not by design parameters, like inertial
rate sensor quality, which can be affected by the sensor, estimator, or trajectory design.
Therefore, if more than the achievable accuracy is required, a modified sensor strategy has
to be developed. This will be suggested as future work in the final chapter.

6.3 Hardware Experiments

The purpose of the hardware experiments is to validate the simulation results presented in
the previous section, to identify and bound the effect of those features of a potential appli-
cation that were not part of the simulation, to demonstrate the usefulness of this sensing
strategy for an autonomous object manipulation task, and to show that the estimator can
run in real time. Section 6.3.1 presents open-loop hardware results that complement the
Monte Carlo simulations presented in Section 6.1.2. Section 6.3.2 shows a closed-loop exper-
iment for in which the estimator output is used for the motion control of the robot.

These experiments are performed with the experimental system described in Chapter 5.
The results demonstrate the performance of the estimator in the context of real sensor
measurements and other challenging aspects of a hardware experiment, like model errors,
calibration errors and time delays.

6.3.1 Baseline Experiment

This section presents results from the baseline hardware experiment. This experiment con-
sists of twenty runs in the “control-from-truth” configuration. In this configuration, the
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observer motion does not depend on the estimator output. The observer control is based
on the truth measurement of relative position.

Variation between the runs of this experiment are caused by a variety of factors. Al-
though the object position remained the same for the entire experiment, each of the twenty
runs started with a different initial observer position. Therefore, the observer motion—
determined by the initial observer position, the fixed object location, the desired relative
position specified in the trajectory, the simulated disturbances on the observer, and the per-
formance of the controller—is different for each run. This variation in the observer motion
together with variation in the process noise and measurement noise leads to variations in
the estimator performance between runs.

The results in Figures 6.17 to 6.20 are averages of the estimate error and the innovations
computed over all twenty runs. Estimate errors can only be computed for states with
a truth measurement. These include relative position, disturbance forces and observer
orientation. Each of the estimate error plots shows the mean estimate error (µ), the actual
standard deviation of the error (σ), and the predicted standard deviation of the error (σ̂),
computed from the covariance matrix of the estimator. Equations 6.4 to 6.7 show how
these statistics are computed.

The relative position estimate is the main output from the estimator. The three plots in
Figure 6.17 show the consistency between the actual and predicted standard deviations for
the relative position estimate error. The actual standard deviation (σ) is sometimes larger
than the predicted standard deviation (σ̂), but the excess is small and the shape of the two
curves remains similar. This consistency is a significant achievement of the estimator de-
sign for this sensor fusion problem. This was already observed for the simulation results.
This plot extends this conclusion to the experimental results. The estimate error shown in
these plots is due in part to errors in the truth measurement (see Section 5.5.1). At the end
of the trajectory, the standard deviation of the range estimate is 2.8 cm compared to the
predicted standard deviation of 1.0 cm. The mean range estimate error is −1.7 cm.

Figure 6.18 shows results for the estimate of disturbance forces in the left column and
observer attitude in the right column. For the disturbance forces, the standard deviation of
the estimate error is larger than predicted by the covariance matrix. This indicates sources
of process noise in the hardware experiment that are not fully modeled. For the com-
parison of observer attitude, the estimate is normalized from the Z-vector representation
used by the estimator to the Rz-vector representation available on the robot. This is done
according to (4.42).

Figure 6.19 shows the results for the heading estimate. The heading estimate is the
result of an implicit open-loop integration of rate gyro measurements. That is, no absolute
measurement of heading has been integrated into the sensor fusion algorithm. Because
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ã
y

(m
/s

2
)

ã
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the estimator can only determine changes in heading, it was initialized with the actual
heading at the beginning of every run.

Figure 6.20 shows the innovations, which are the difference between the predicted and
actual measurements and can be computed without truth measurements. These plots were
used to set the measurement noise parameters that have been used throughout this disser-
tation.

For these hardware results, which include a variety of unmodeled errors, the standard
deviation in the error of the range estimate is about 3 cm. This is significantly larger than
the corresponding simulation result of 1 cm. This shows the sensitivity of the performance
to small errors, which is a consequence of the limited observability of the sensing strategy.
This effect has already been described in Section 6.2.

Nevertheless, the hardware experiments confirm the validity of the Monte Carlo sim-
ulations. Although the simulation results indicate better accuracy than the hardware ex-
periment, the quality of the performance (e.g., the shape of the standard deviation plots,
relative accuracies, convergence properties) are similar. Therefore, the simulations are a
useful tool for evaluating the sensing strategy and for predicting the performance of hard-
ware experiments.

6.3.2 Object Pick-Up Task

The sensing strategy has been designed to be integrated into the control of an observer to
perform autonomous manipulation tasks. This section presents an experiment in which a
real-time implementation of the sensing strategy is used to guide the manipulator towards
an object whose position is unknown. This is the first time that a relative position estimate
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derived from a bearing measurement and inertial rate sensor measurements has been used
to perform such a manipulation task.

This experiment includes three runs with a different unknown cup position for each
run. Therefore, the relative position between the moving observer and the stationary ob-
ject is unknown at the beginning of each run. For each run, the robot is commanded to
execute the trajectory, which defines the desired relative position and velocity between the
observer and the robot as a function of time. For this experiment, the relative position and
velocity used by the controller is determined by a real-time implementation of the estima-
tor, which corresponds to the “control-from-estimate” configuration. Each run terminates
with the manipulator endpoint in position to grasp the cup.

Figure 6.21 shows the endpoint position of the robot for all three runs, each of which
begins at the same starting position and terminates at one of the three cup positions. The
picture on the right shows the robot at the starting position. The three pictures on the left
show the robot at one of the three final positions. The arrows connect the pictures to the
corresponding robot location on the plot.

This experiment shows that a real-time (10Hz) implementation of the estimator is pos-
sible and that the estimator can be incorporated into the closed-loop control of an au-
tonomous robot.

These results have been obtained by eliminating the external disturbance input to im-
prove the accuracy of the control. The preceding experiments in this Chapter have high-
lighted the estimator uncertainty that can be achieved at disturbance levels that are con-
sidered typical for the underwater environment. However, these uncertainties are large
enough to cause significant failure rates for this particular object pick-up task. The geom-
etry of the object and the gripper can only accommodate deviations of about ±1 cm. The
Monte Carlo simulations in Section 6.2 indicate that the disturbance level is a key parame-
ter that affects positioning accuracy. It is also easily controlled in the hardware experiment
because the dominant disturbances are simulated. Setting the disturbance level to zero im-
proves the estimator accuracy sufficiently to provide for successful execution of the object
pick-up task.

In a real operational setting, in which the external disturbance cannot be manipulated,
improving accuracy by reducing the disturbance is not an option. In this case, only tasks
that can handle greater misalignment than the object pick-up task described in this dis-
sertation can be performed. For example, a gripper could be designed that can grasp an
object in the presence of larger variation in the relative position between the two. Also, a
variety of observation tasks that do not involve contact could be performed.

However, this limitation is due only in part to the estimator performance. Even with a
perfect measurement of relative position, designing a controller to position an underwater
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vehicle in the presence of significant disturbance forces with centimeter-level accuracy is
challenging.

6.4 Summary

This chapter has presented results from Monte Carlo simulations and from hardware ex-
periments. The first section focused on simulation results for the baseline experiment,
which demonstrate the estimator performance with default parameters. The simulation
results show that the new estimator design generates results with only small estimation
biases and that the estimate covariance accurately predicts the uncertainty of the estimate.
The second section presented a parameter study where both the level of disturbances and
the inertial rate sensor quality have been varied. This analysis shows that the estimator
performance depends strongly on the disturbance levels, but is largely insensitive to the
inertial rate sensor quality. The third section described two hardware experiments. The
baseline experiment performed on the hardware validates the simulation results and high-
lights the effects of model errors associated with real hardware. The object pick-up task is
an experiment in which a real-time implementation of the sensing strategy has been used
to perform a simple manipulation task with an autonomous robot. This is the first imple-
mentation of this sensing strategy that has been used to perform an autonomous object
manipulation task.



Chapter 7

Conclusions

Fusing monocular vision measurements of a single feature with inertial rate sensor mea-
surements generates a feasible sensing strategy for determining relative position between
a moving observer and stationary object. This capability enables relative position control
for floating underwater vehicles, and can be adopted to other applications.

The main contribution of this research is the design of a real-time, nonlinear estima-
tor to perform the fusion of these measurements. This estimator design has enabled the
new sensing strategy. The dissertation explains why standard nonlinear estimation tools,
like the Extended Kalman Filter, perform poorly for this sensor fusion problem; it shows
that the new estimator leads to adequate performance, producing results with only small
estimation errors and accurately predicting the standard deviation of the estimate errors;
it presents the first hardware demonstration of this sensing strategy; and it shows how to
integrate the sensing strategy into a useful closed-loop manipulation task.

The research provides important contributions to a range of applications. The estimator
design strategy—avoiding linearizations by choosing a representation with a linear sensor
model and implementing the time update with an Unscented Transform—should provide
improved results for any nonlinear estimation problem that suffers from error introduced
by linearizations. The relative position estimate can be used to perform a variety of un-
derwater vehicle tasks including station-keeping, tracking, and observation. The sensing
strategy is a useful capability for other types of floating robots—especially those that al-
ready use inertial rate sensors to determine their motion, like aerial and space robots.

7.1 Future Work

This dissertation represents a first step in the exploration of a new sensing strategy. At
the outset of this work, it was not obvious that determining relative position with this
approach would in fact work, or what the most difficult issues would be. This dissertation
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has presented a detailed description of the sensing strategy, a design for the nonlinear,
real-time estimator to fuse the sensor measurements, and a demonstration of a useful task
based on this sensor strategy.

In the course of this research, several opportunities for future work have been iden-
tified. These include issues that have not been fully explored in this dissertation, ideas
for extensions of the sensing strategy, and additional advances required to enable a robust
demonstration on an operational vehicle.

7.1.1 Uncertain Dynamics

The main limitation of this sensing strategy is that its performance degrades in the pres-
ence of large disturbances and significant errors in the dynamics model of the observer.
Although it is possible, determining accurate dynamics models for underwater vehicles is
very challenging. Moreover, the effect of disturbances, which tend to be large for underwa-
ter vehicles, can result in diminishing returns for more sophisticated dynamics modeling.
Some applications, especially those with small disturbances, are not affected by this limi-
tation. However, when disturbances and model errors cause errors in the relative position
estimate that exceed the requirements, the sensing strategy should be extended to avoid
this limitation. Section 7.1.2 recommends possible extensions based on additional sensor
measurements.

If disturbances are not the primary source of estimate error, an analysis of the estimator
sensitivity to errors in the observer dynamics model would identify the accuracy with
which these models should be known for a given estimate accuracy. This would be a
useful step towards determining the level of complexity that is required for these models.

7.1.2 Additional Sensor Measurements

This research was focused on a minimal set of sensor measurements to determine relative
position between a moving observer and a stationary object. The goal was to expose fun-
damental issues in the implementation of the sensing strategy by reducing it to its core
requirements. However, the sensing strategy has a significant limitation—in the presence
of large disturbances, the performance of the estimator degrades.

In many cases, more than the minimal set of sensor measurements are available and the
performance of the system can be improved by incorporating additional measurements. A
key strength of this sensing strategy is that it is flexible enough to accept many additional
measurements given only minor modifications to the estimator that solves the sensor fu-
sion problem.
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• Additional Features

The ability to determine relative position by tracking just one feature is a very use-
ful property, especially underwater, where robust features can be scarce. However,
taking advantage of additional features, when available, should provide significant
benefits, like improved accuracy and increased robustness. This approach provides
additional sensor measurements without adding additional hardware. It also adds
flexibility to the sensing strategy, whereby a feature that is traveling out of the field
of view of the camera can be augmented by a more appropriate feature before the
first feature is lost.

Tracking additional features with the monocular vision system requires a simple ex-
tension of the estimator. For each additional feature, three new states (sx,j, sy,j , and
ζj , j = 2, 3, . . .) need to be added to the state vector, with obvious extensions to the
sensor and process models. Each additional feature should correspond to objects that
are also stationary.

Of particular interest with a multiple feature design is the ability to detect when not
all tracked features correspond to the same stationary object. This situation will lead
to poor estimator results unless the problem features are removed from the estimator.

• Additional Cameras

Integrating additional cameras into the sensing strategy combines the benefits of
multi-camera solutions with the robustness of this sensing strategy. When accurate
feature correspondences can be established in a multi-camera system, they provide
range to an object without the need for motion. However, during vision drop-outs
of one or more cameras or when feature correspondences are unreliable, the sensing
strategy can operate without the multi-camera constraint and the inertial rate sensors
can be used to propagate a useful estimate.

Solutions based on multiple cameras and inertial rate sensors can be constructed us-
ing either tight or loose integration. In a loose integration, the camera measurements
are combined to form a relative position measurement, which is subsequently fused
with the motion estimate computed from the inertial rate sensors. In a tight integra-
tion, which is enabled by this research, all of the vision measurements and inertial
rate sensor measurements are fused in the same estimator.

The advantage of tight integration appears in the application of the multi-camera
constraint. For loose integration, the constraint has to be applied in the vision algo-
rithm to corresponding features in order to get any output from the vision system.
However, for tight integration, the constraint can be applied selectively, that is, only
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when a correspondence exists and the system has confidence in it. When the con-
straint is applied correctly, the estimate accuracy improves the most. But even with-
out the constraint, the separate vision measurements provide a useful contribution
to the estimator output.

The estimator requires a triplet of states
[

sx sy ζ
]T

for each feature measure-
ment in each camera, with obvious extensions to the sensor and process models.
The constraint between corresponding features, when it exists, can be applied in the
time-update. Being able to incorporate a nonlinear constraint between redundant
states highlights a key advantage of the choice to use the Unscented Transform to
implement the time-update.

• DVL

Many underwater vehicles now carry a Doppler velocimetry logger, or DVL. The
DVL measures the body velocity either over the seafloor or relative to particles sus-
pended in the water, using a sonar Doppler approach. In the first mode, the velocity
over the seafloor corresponds one-to-one to the velocity states in the estimator and
could therefore be incorporated with a linear sensor model. In the second mode, the
velocity relative to particles provides a measurement proportional to the disturbance
state a, which is linear in the relative velocity between the water and the vehicle (see
Section 2.3).

A DVL measurement could provide significant performance improvements, but would
also incur additional cost and complexity. A measurement of observer velocity would
improve performance in two ways: First, observer velocity has to be integrated only
once to obtain position. This reduces the accumulation of drift errors due to mea-
surement and bias errors. Second, differentiating the velocity measurement in the
estimator provides a means to separate actual observer accelerations from the other
components in the accelerometer measurement. Together, these performance im-
provements should reduce the dependence on accurate dynamics models. However,
incorporating additional hardware into the sensing strategy also introduces new fail-
ure modes (like losing bottom-lock in the DVL measurement) and creates more cal-
ibration parameters (both intrinsic, like transducer scale factors, and extrinsic, like
sensor position and orientation with respect to the other sensors).

• Compass

A compass would provide the sensing strategy with an absolute measurement of
observer heading. Without it, the estimator simply integrates the rate gyro mea-
surements, with corresponding growth of uncertainty. The estimator already has a
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state for observer heading, so the compass can be added with a linear sensor model.
However, compass measurements are not trivial to integrate into an estimation al-
gorithm because they can be biased by spurious fields generated by the vehicle and
by the environment. Without careful modeling, these biases can easily distort other
estimates.

7.1.3 Analysis of Achievable Performance

The results in Chapter 6 indicate that the estimator presented in this dissertation gener-
ates results that have only small biases, that it accurately predicts the RMS estimate error,
and that the innovations are appropriate. Although these are useful metrics for the per-
formance of a nonlinear estimator, they do not compare the estimator results to the best
achievable performance. The results cannot be used to claim that no other estimator, given
the same constraints and data, can provide a significant improvement in the estimate ac-
curacy.

An analysis of achievable performance would be useful in deciding whether additional
work in developing a better estimator design is warranted. A bound that is significantly
lower than the current estimator performance would motivate further research on the esti-
mator design. But if this estimator approaches the achievable performance, then research
effort should be directed toward some of the other issues described in this section.

An observability analysis could help to identify achievable performance. However,
simple nonlinear extensions of observability analyzes developed for linear systems are not
suitable for this sensing strategy. They suffer form the same problems with linearization
that were discussed in the context of the Extended Kalman Filter. Full nonlinear observ-
ability analysis is possible in theory, but rarely practical.

This sensing strategy requires a real-time solution, so that the estimate can be used for
the closed-loop control of the observer. However, by lifting the requirement for a real-time,
recursive estimate, building a potentially more accurate estimator should be possible, at
least for the purpose of analysis.

An interesting approach would involve a Particle Filter implementation. At least in
theory, Particle Filters provide a continuous trade-off between accuracy and computational
cost by varying the number of particles. As the number of particles is allowed to grow
to infinity, the Particle Filter should reach an arbitrarily accurate solution. Solving the
sensor fusion problem with progressively larger numbers of particles should identify a
lower bound on estimator accuracy. At the same time, it would provide a measure of the
computational cost involved in achieving this bound.

As research on Particle Filters progresses and as computers become faster, a Particle
Filter solution might also become a candidate for a real-time solution.



132 Chapter 7. Conclusions

7.1.4 Trajectory Design

The observer trajectory determines the quality of the information that is provided to the
estimator by the sensor measurements. Even a very good estimator will generate poor
results if the observer follows a poorly designed trajectory. The trajectory presented in
Section 5.8 for the demonstration task was designed in an ad hoc fashion (using heuristics
and trial-and-error) to satisfy the task constraints (moving to a goal position that enables
a grasp of the object) and to provide sufficient observer motion for convergence of the
estimator.

Future extensions could include trajectories that are planned online (quickly and with-
out human tweaking) and trajectories that are optimal with respect to a useful cost func-
tion. Online trajectory planning is the first step toward online task planning based on in
situ object modeling and reasoning. Optimal trajectories provide the best trade-off between
the amount of observer motion and estimator performance.

Much of the literature on optimal trajectory design for bearing sensors has come from
the passive sonar tracking community. More recently, Frew [14] has extended this work for
a system with a bearing measurement from vision and has developed an online solution.
The solution computes the predicted estimator performance for a subset of possible ob-
server paths and chooses the best one. Although optimality is not guaranteed, the search
runs quickly enough so that a lot of potential observer paths can be considered and good
solutions are typically found.

Although this approach could be extended for the sensing strategy discussed in this
dissertation, it would have to be modified to account for some important differences in the
problem. First, due to significant differences in the complexity of the estimation problem,
the cost of computing the predicted estimator performance increases dramatically for this
problem and Frew’s method becomes intractable. Second, additional task-specific con-
straints have to be incorporated. For instance, the trajectory has to be constrained to end
at a specific relative position for grasping.

An initial attempt to develop an online trajectory capability for this problem based on
an extension of Frew’s work has already been presented in [20], but this did not generate
optimal solutions, was still too slow, and has not yet been integrated with the experimental
system.

7.1.5 Moving Objects

All the work described in this dissertation assumes that the object to be tracked is sta-
tionary. A more exact requirement is that the object be non-accelerating: this ensures that
the accelerometer measurements actually describe the relative position between the object
and the observer. However, objects that travel at constant velocity are not very common in
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the underwater environment. For applications with moving, non-accelerating objects, the
sensing strategy, as is, should provide useful results.

An interesting extension to this work would allow moving objects that can accelerate.
To enable this capability, the estimator would need to estimate both the observer and the
object velocity. Extra help in the form of additional measurements, motion information
from the object, or dynamics models for the object might be required for adequate perfor-
mance.

7.1.6 Demonstration in an Operational Setting

This section describes several topics that should be addressed in preparation for a demon-
stration of this sensing strategy in an operational setting. The research so far has been
focused on the development of the sensing strategy and the laboratory demonstration.
The goal was to highlight fundamental issues, to determine whether the strategy is robust
enough to succeed on a hardware system, and to demonstrate that it can be implemented
in real time. Section 7.1.1 has already discussed the need to deal with uncertain dynam-
ics and large disturbance forces in real environments. This section considers the need for
a real vision processing capability, the opportunity to refine the sensor models, and the
construction of a multi-rate estimator.

• Vision Processing for Real Environments

Robust and effective vision processing algorithms for real underwater environments
are still a topic of current research. Before the sensing strategy can be applied in these
environments, it has to be matched with a vision processing algorithm that can track
features that are relevant to the target application. Although the research described
in this dissertation does not represent any progress toward better vision processing
algorithms for real environments, it enables useful vision-based tasks that can oper-
ate in environments, like underwater, that provide few robust trackable features.

• Refined Sensor Models and Improved Calibration

For this research, very simple sensor models were chosen and the model parameters
were determined with quick calibration methods. Now that the sensing strategy
has been developed and the effects of different design choices can be evaluated, an
analysis of sensitivity for many of these choices would focus attention on those that
are most critical to the design.

Many researchers have developed adaptive estimators which compute the best co-
variance matrices for the process noise (i.e., Q) and the measurement noise (i.e., R)
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based on the innovations process. These methods could be applied to this estimator
design in order to improve performance, to reduce the dependence on the calibration
parameters, and to adapt to slowly-changing conditions.

• Multi-Rate Estimator

In the current estimator, all measurements are incorporated at 10Hz. A prepro-
cessing step synchronizes and combines all measurements to conform to this rate.
However, the measurements are inherently generated at multiple rates. Inertial rate
sensors with digital interfaces typically produce measurements at rates greater than
100Hz. Those with analog interfaces could be sampled even faster. Cameras used
in vision systems typically produce new images at rates of up to 60Hz, but these are
subject to interpretation. Some features can be extracted quickly, but others require
computationally more expensive algorithms, which might depress the rate of avail-
able vision measurements. Some vision systems produce outputs at variable rates.

The rate at which measurements are incorporated can affect the overall accuracy of
the estimator. This factor should be examined more closely to quantify the advan-
tages of a multi-rate estimator.
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