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Abstract— This paper proposes a position estimator that fuses monoc-
ular vision with accelerometer and gyro measurements to generate a di-
rect, relative, 6-DOF position estimate between a free-floating underwater
vehicle and a stationary object of interest. This type of position estimate
is useful in the context of autonomous manipulation tasks, during which
the vehicle needs to control its position relative to objects in its environ-
ment. Most autonomous manipulation tasks are vision-based and assume
known camera motion. However, on free-floating vehicles, camera mo-
tion is generally unknown and must be estimated together with relative
position. Various vision-only systems have been used to estimate relative
position and camera motion, but these are often difficult to implement in
real underwater environments.

The system we propose relies on vision to generate relative position
information, but also fuses inertial rate sensors to reduce the amount of
information that needs to be extracted from the vision system. The result
is a system that is simpler and more robust than a vision-only solution.
However, the use of inertial rate sensors introduces several issues. The
rate measurements are subject to biases, which need to be estimated to
prevent the accumulation of unbounded drift when the measurements are
integrated. This problem is non-linear, which presents several challenges
in the estimator design.

This paper presents some results from initial experiments with a fixed-
base manipulator. So far, we have implemented a simplified estimator for
relative position when camera motion is known. The estimator is part
of the closed-loop control of the manipulator. With this system, we have
demonstrated a simple autonomous manipulation task.

I. INTRODUCTION

This paper describes a position sensing system for free-
floating underwater vehicles capable of performing au-
tonomous manipulation tasks, such as placing sensors and
retrieving samples. These are complex and difficult tasks
composed of modeling, planning and execution phases during
which the robot requires accurate control (or at least knowl-
edge) of its position and orientation relative to the object of
interest. Free-floating vehicles, which cannot lock their posi-
tion (e.g., by thrusting into the sea floor) during an autonomous
manipulation task, require a real-time estimate of the relative
6-DOF (degrees of freedom) position between the vehicle and
the object of interest. This paper proposes a sensing strategy
that enables underwater vehicle control relative to objects in
the environment.

Underwater manipulation tasks are usually performed by
remotely operated vehicles (Rovs) or manned submersibles.
These tasks require the control of many degrees of freedom of
the vehicle and the manipulator and are performed by very ex-
perienced pilots. Typically, the vehicle is thrust into the sea
floor or locked to a structure with an auxiliary arm to sim-
plify the task. Very simple manipulation tasks (e.g., sampling
of volcanic glass with the Autonomous Benthic Explorer [1])
have also been demonstrated on autonomous underwater vehi-
cles (AUVs).

Our focus is on autonomous manipulation tasks that can re-
lieve ROV pilots and that enable new manipulation capabilities
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on AUVs (which cannot be controlled directly by a human pi-
lot). While humans are superior at analyzing a scene and spec-
ifying tasks, computers can often execute manipulation tasks
more accurately and efficiently. Computers can derive an ad-
vantage from incorporating a larger suite of sensors and coor-
dinating more degrees of freedom. However, determining the
position of objects in the environment is still a major challenge
in autonomous manipulation.

When the underwater vehicle and the base of the manipu-
lator are fixed in inertial space, the scenario of underwater au-
tonomous manipulation tasks is similar to its land-based equiv-
alent. For land-based robots, various researchers have demon-
strated autonomous manipulation of known and prepared ob-
jects (e.g., [2]) and others have made progress towards au-
tonomous manipulation of unknown and a priori unmodeled
objects [3], [4], [5]. Most of these techniques use vision to de-
termine the relative 6-DOF position between the robot and the
object. Because the robot is fixed in inertial space, this work
assumes that camera motion is known.

However, fixing the underwater vehicle is not always possi-
ble (e.g., when there is nothing to thrust into) or desirable (e.g.,
when thrusting would generate a cloud of dust). We therefore
consider manipulation from a free-floating base. In this case,
the sensing system has to provide the relative 6-DOF position
between camera and object even though the camera motion is
unknown.

Several vision-only techniques (e.g., Structure from Motion,
Photogrammetry) can estimate unknown camera motion to-
gether with relative position. However, most of these tech-
niques are difficult to implement in real underwater environ-
ments because they require a large number of trackable image
features or rely on feature correspondences in multiple cam-
eras. Underwater manipulation tasks may occur in environ-
ments with only a small number of good visual features, given
the constraints on lighting and visibility imposed by real un-
derwater environments. In this case, robust tracking of multi-
ple features and maintaining reliable correspondences, which
are the basis of vision-only techniques, can be very difficult to
achieve.

The system we propose relies on monocular vision to gen-
erate relative position information, but also fuses inertial rate
sensors to reduce the amount of information that needs to be
extracted from the vision system. The result is a system that
is simpler and more robust than a vision-only solution. Our
system requires only a bearing measurement to a fixed point,
which can be obtained by tracking a single visual feature. Usu-
ally, this feature is associated with the object to be manipu-
lated. Compared to vision-only algorithms, tracking only the
best feature in a monocular vision system can be much faster



and more reliable.

The measurements from monocular vision and inertial rate
sensors complement each other well. The motion of the cam-
era between successive images generates a baseline for range
computations by triangulation. Inertial rate sensors, whose ac-
celeration and angular rate measurements can be integrated to
obtain vehicle velocity, position and orientation, can account
for the 6-DOF motion of the camera along this baseline. When
these measurements are fused, the relative position between
the camera and the object can be computed. A key benefit
of this system is that, after initialization, the inertial rate sen-
sors continue to maintain a useful estimate of relative position
during vision drop-outs (e.g., occlusions, lack of correspon-
dence). Furthermore, both inertial rate sensors (for navigation)
and monocular vision systems (for science purposes) are al-
ready common sensors on underwater vehicles.

However, the use of inertial rate sensors introduces a major
issue into the design of the system. Like other dead-reckoning
sensors, inertial rate sensors suffer from bias and random noise
errors, which lead to unbounded drift in the integrated quan-
tities. While more expensive sensors are associated with less
drift, we envision the use of low-cost inertial sensors, which
are subject to significant drift errors. Therefore, an estimator
to resolve the relative camera position, sensor biases and drift
errors is required.

Observability of the states to be estimated is a critical is-
sue because the problem is non-linear and observability de-
pends on the motion of the camera. During camera translation
directly towards or away from the feature, the estimator has
no new information with which to improve its range estimate.
Only camera motions transverse to the feature direction pro-
vide new information for the range estimate. As a result, the
estimator requires sufficient transverse camera motion in or-
der to produce useful position estimates. In some cases, extra
camera maneuvers are required to improve observability. This
presents an interesting conflict between trajectories which are
designed to complete the manipulation task and special camera
maneuvers required to ensure estimator observability.

The estimation problem contains two significant non-
linearities. The first is related to the rotational degrees of free-
dom of the camera and the second is caused by the camera’s
projection of the three-dimensional world onto the 2D image
plane. As a result, the dynamics and measurement equations
are non-linear and depend on the actual state of the system. In
fact, the estimator exploits the non-linearity of the problem to
observe the range to the feature. As motion of the underwater
vehicle modifies the system state, the measurement equations
change, and new measurements (i.e., bearings to the object
from new viewpoints) make the range to the object observable.

Section Il summarizes the estimation problem and presents
models for the vision and inertial rate sensor measurements.
Section 111 reviews our previous work in merging vision and
inertial rate sensors.

We are using two experimental platforms to support this re-
search. We will perform an underwater vehicle demonstration
on OTTER (see Fig. 1 and [6]), a small Auv operated in a test
tank at MBARI, the Monterey Bay Aquarium Research Insti-
tute. We are also conducting experiments in the laboratory
with a fixed-base 7-DOF manipulator arm, described in Sec-

Fig. 2. Relative position estimator scenario

tion IV. This platform provides a very accurate truth measure-
ment and can be used to investigate competing approaches, to
simulate different disturbance environments, and to quantify
performance.

This research is still in progress and we are reporting on
initial experiments. The estimator we discuss in Sections V
and VI assumes known camera motion and does not need to
fuse inertial measurements. It combines known camera mo-
tion with the bearing to a single, stationary visual feature to
estimate relative position of the feature. To demonstrate the ef-
fectiveness of this technique, the manipulator uses the position
estimate to locate and press a button.

The experiment described in this paper highlights how the
estimator can be combined with a trajectory generator and a
controller to build a system that can accomplish a simple ma-
nipulation task. Once we complete the development of an al-
gorithm that can estimate relative feature position as well as
camera motion (by fusing inertial rate measurements), we can
integrate this new capability into the existing control structure.
Similarly, an algorithm that can provide more efficient trajec-
tories can be substituted for the current trajectory generator.

Finally, Section VI states our conclusions and outlines fu-
ture work.

Il. PROBLEM DEFINITION
A. Estimation Scenario

Fig. 2 shows an underwater vehicle which has extended its
manipulator arm to grasp a stationary object in the environ-
ment. To succeed, the grasping task requires a relative 6-DOF
position measurement of the object in body coordinates. A
camera on the vehicle is tracking the object and inertial rate
sensors are reporting the vehicle’s acceleration and angular ve-
locity. These measurements can be fused to estimate relative
position.
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Fig. 3. Geometry of the estimation problem

The geometry of the estimation problem is represented in
Fig. 3. Frame O indicates the inertial reference frame and p
indicates the position of the stationary feature. Let q be the po-
sition of the camera, which is attached to the body frame C. In
principle, the camera and the inertial sensors can be mounted
anywhere on the vehicle, as long as their relative position and
orientation are known. To simplify the discussion, we assume
that all the sensors are collocated at q. R,. = RZ is the rota-
tion matrix from the camera to the inertial frame and w is the
associated rotational velocity.

In general, q and R,., which represent the camera motion,
are not known and need to be estimated. However, for the
experiments presented in this paper, we still assume that q and
R, are known.

The position of the feature as seen by the camera is r =
P — q. We assume that the feature is stationary in the inertial
frame, sop = p = 0. Therefore, r = —qand ¥ = —q.
Because of this assumption, a measurement of the acceleration
q in inertial space is useful for estimating the relative feature
position r.

We use the superscript C' (e.g., “r = R.,r) to indicate that
the vector is resolved in Frame C instead of inertial coordi-
nates.

B. Models for the Sensor Measurements

The vision measurement z, is the projection of “r onto the
image plane, and is modeled as follows:

" = Re(p—q) 1)

P = CTZ 2
Sy 1] %r,
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where v is zero-mean Gaussian noise A/ (0, Rs). For simplic-
ity, we assume that the camera measurements are normalized
so the effective focal length is 1. With a slight abuse of termi-
nology, we will refer to p as the range to the feature and to s,
and s, as the bearing. The optical axis of the camera is aligned
with the z-axis of Frame C.

The accelerometer measurement z,, includes the accelera-
tion g of the camera, the acceleration due to gravity, a sensor

bias b,, and sensor noise.

Zo = Reo (G+g) +ba + Va4 4)
We assume that v, is N (0, R,) noise. g = [ 0 0 —g }T
is the acceleration due to gravity in inertial coordinates.
The gyro measurement includes the rotational velocity of
the camera, sensor bias b,,, and sensor noise v, modeled by
N (0, R,).

Zy, = Rcow + bw + vu (5)

I1l. PREVIOUS WORK

The measurement equations in (1) to (5) include several non-
linearities. Because of the rotational degrees of freedom of the
vehicle, the dynamics are also non-linear.

Various methods exist to handle non-linear estimation prob-
lems. We consider estimators based on extensions to the pop-
ular Kalman Filter. The most widely used is the Extended
Kalman Filter (EKF), which linearizes the dynamics and mea-
surement equations of non-linear systems in order to take ad-
vantage of the Kalman Filter equations. Although the EKF
works very well for a wide range of applications, it comes with
no guarantees and can lead to very poor performance. An al-
ternative to the EKF is the two-step estimator [7], which re-
formulates the problem so that all the measurement equations
become linear and all of the non-linearities appear in the dy-
namics, where they can be handled more accurately with com-
putational methods.

In [8], we derive an EKF and a two-step estimator for a 2D
version of the estimation problem, and we present a simula-
tion that compares their ability to fuse vision and inertial rate
measurements. We compare the two estimators based on the
accuracy of the state estimate, the accuracy of the covariance
estimate, and the tendency of the estimators to diverge. This
simulation indicates that in the context of this fusion problem,
the two-step estimator performs significantly better.

In this paper, however, we derive only an EKF because the
estimation problem is simpler (assumes known camera motion)
and the EKF, which is easier to derive and implement, performs
sufficiently well in this case.

IV. LABORATORY TESTBED

The goal of this research is to develop a relative position
sensing strategy which is useful for autonomous manipulation
on underwater vehicles. However, in our initial work, we have
used a fixed-base manipulator. Fig. 4 shows the K-1607 ma-
nipulator built by Robotics Research Corporation® and located
at NASA Ames Research Center. It is a 7-DOF, kinematically
redundant manipulator whose endpoint can be moved to any
position and orientation in its workspace. We have collocated
the camera and the inertial rate sensors on the endpoint of the
manipulator.

We can use this general purpose manipulator to simulate var-
ious conditions. For example, it simulates an eye-in-hand ma-
nipulator mounted on an underwater vehicle which has been
fixed in inertial coordinates, possibly by thrusting into the sea
floor or by attaching itself to a structure. We can also treat

Lhttp://www.robotics-research.com



Fig. 4. RRC K-1607 7-DOF Manipulator

the manipulator endpoint as the underwater vehicle and use
the manipulator to simulate the motion of the vehicle due to
thruster and disturbance forces. All of the manipulator joints
are instrumented with encoders, so that the exact position of the
endpoint can be computed. This provides a truth measurement
which is usually not available when using operational vehicles.

While vision processing for underwater environments re-
mains a challenging problem, many researchers have already
developed useful algorithms that can be used to track a feature
on the object of interest. In our current research, we assume
that a robust point-feature can be tracked, and focus instead on
integrating this type of measurement into a position estimator.
For this experiment, we use an infrared LED to simulate a vi-
sual feature. The camera uses an infrared filter which blocks
most of the ambient light. When the LED is in the camera’s
field-of-view, the resulting image contains a bright spot which
can be tracked by simple threshold methods. To measure ac-
celeration and rotational velocity, we use the DMU-6X Inertial
Measurement Unit by Crossbow?.

Our experiment includes a simple manipulation task to
demonstrate the usefulness of our position estimator. Most
autonomous manipulation tasks are difficult to specify and in-
volve complex modeling, planning, and execution phases as
well as task-specific sensors. The task we have chosen is much
easier to implement because it only requires the manipulator to
push a button to toggle a light switch. Specifying the position
of the button and the pushing direction completely defines the
task. The size of the button determines the required accuracy
of the position measurement.

Fig. 5 shows the manipulator endpoint positioned close to
a board on which the button is mounted. The endpoint has a
tool used to push the button, a camera with an infrared filter,
and the inertial rate sensors. An infrared LED, which serves as

2http://www.xbow.com

Inertial Rate Sensors

Fig. 5. Manipulator endpoint with camera and inertial rate sensors positioned
close to the IR-LED and the push button
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Fig. 6. Block Diagram showing the Vehicle, Controller, Sensors, and Estima-
tors

the visual feature, is mounted on the board to the left of the
button. The position of the LED is estimated relative to the
camera, and the manipulator tool is used to push the button.
The necessary offset between estimated feature position and
desired tool position is a constant that can be determined by a
simple calibration procedure.

V. SIMPLIFIED ESTIMATION PROBLEM

We have used the manipulator to demonstrate a simplified
version of the estimation problem in which the camera mo-
tion is known in inertial space. We simulate this scenario by
providing the estimator with q and R,. derived from the ma-
nipulator encoders. The estimator then computes p based on
vision measurements, which provide the projection of r onto
the image plane.

Fig. 6 shows a block diagram for this system. The trajectory
generator specifies a desired camera offset r; from the feature
and a desired camera orientation R, 4. This leads to a desired
camera position

qq =P —rg. (6)

The controller computes a command u that drives the camera
to position q and orientation R,.. The control design is beyond
the scope of this paper. At this position, the camera generates a
measurement z, using (3). This measurement is used to update
p in the estimator.

We implemented the estimator as an EKF [9] with p as the
state vector and a trivial time update p = 0. Thus the EKF



time-update equations are given by

Pitv1i = Diji )

Py = P +Q/T. (8)

Let 7" be the sample interval with measurements recorded at
time ¢t = iT,7 = 0,1,...N. The notation p,; indicates an
estimate at time-step a using measurements up to time-step b.
P is an estimate of the error covariance and @ represents ficti-
tious process noise to keep the estimator from falling asleep.

The measurement update equations use a non-linear func-
tion k (p) and a time-varying matrix H; to capture the non-
linearity of the measurement equation.

Li = Py H(R+ HiPi\quiT)_l ©)]
Dii = DPiji—1+ L (Zs,i - h (ﬁi\i—l)) (10)
Py; = (I—LiH;) Py (11)

We can derive h (p) from (3). We first label the rows of R, ;

Ry
Rco,i = R2,i ) (12)
R3;
which allows us to rewrite (3) as
Zs; = h (pl) + Vs (13)
h1 (pi) ]
h (p; 14
(p) |: ho (pl) (14)
Ry (pi —ai)
h i) = : 15
1(p) Rz (pi — qi) 19)
Ry (pi — i)
h i) = : 16
2 (pi) Rz (pi — qi) 19

To compute H;, we write the first-order Taylor expansion of
h (p;) about the prior estimate p;;_;, which is based on the
assumption that Ap, and the higher order terms of the expan-
sion are small.

h(pi) = h (ﬁi\i—1) + H;Ap; (17)
Ap; Pi — f’i\i—l (18)
Ho= 2 (19)
p Piji—1
_ 1 [ piR1: — Rii (Piji—1 — Qig R3; }(20)
p? | piR2; — Ray (Piji—1 — i) Rs.i
pi = Rs;(Piji—1 — i) (21)

Because of the non-linearities in the estimation problem, the
camera trajectory is important in achieving a good estimate.
The camera needs to observe the feature from a variety of di-
rections for the triangulation procedure implicit in the estima-
tor to generate an accurate feature location.

The trajectory that we have chosen has two parts: an ex-
ploratory phase and an approach phase. During the exploratory
phase, the camera moves along an arc of constant radius cen-
tered on the current estimate of the feature. An arc maximizes
the range of directions from which the feature is observed. Be-
cause the feature estimate changes during the trajectory, the
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Fig. 7. Camera Motion in the x-z plane. The guides are spaced at 0.5 s
intervals and indicate the optical axis of the camera.

final motion might not represent an exact arc in inertial coordi-
nates.

During the approach, the camera moves primarily towards
the feature, so the camera measurements acquired during this
phase provide little new information. At the same time, the
measurement update (i.e., equation 20) becomes poorly condi-
tioned as p; becomes smaller. Therefore, we stop the estimator
at the beginning of the approach phase and complete the task
in a blind manner.

V1. EXPERIMENTAL RESULTS

This section presents results obtained from experiments with
the K-1607 manipulator. We implemented the estimator as part
of the closed-loop control of the manipulator arm. The estima-
tor used camera measurements z, of the feature and known
camera motion (i.e., q and R,.) to estimate the feature posi-
tion p.

Before each experiment, the estimator is reset to a new initial
estimate pq of the feature position. The system then moves the
camera through a desired trajectory and estimates the position
p of the feature. The trajectory is relative to the current feature
estimate and terminates at a predetermined offset to the final
feature estimate p . If this estimate is sufficiently accurate, the
manipulator succeeds in pressing the button beside the feature.

To simulate changing conditions, we chose different initial
camera positions qo for each experiment. The initial estimate
of the feature py was initialized at a fixed distance in front of
the camera.

Fig. 7 shows a plot of the camera motion in the x-z plane
for one experiment. Although the camera also moves in the y-
direction, the design of the trajectory concentrates most of the
motion is in the x-z plane. The camera starts at a position x =
0.0m,y = 0.0m, and z = 1.0 m and finishes by pressing the
button. The task is set up such that the manipulator approaches
the button always in the positive x-direction. At the beginning
of the task, the only unknown is the position of the LED feature
and the button, which are related by a fixed offset. The guides
in Fig. 7 indicate the position of the camera and the orientation
of its optical axis in 0.5 s intervals.

Fig. 8 shows the estimator results for the same experiment.
The estimator is initialized at x = 0.4m,y = 0.0m, and
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Fig. 8. Estimated Feature Position for one run, with initial and final estimates.

The vertical line indicates the beginning of the approach phase when the esti-
mator is turned off.
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Fig. 9. Estimated Feature Position for twelve runs each with different initial

conditions. The estimated standard deviation of the final estimate is shown for
each coordinate.

z = 1.0m, which is simply 0.4 m in front of the camera. The
parameters used for the estimator are:

T = 01s (22)
(01 0 O

Py = 0 01 0 (23)
0 0 01
(1078 0 0

Q = 0 1078 0 (24)
0 0 1078
[0.0001 0

ko= 0  0.0001 (25)

The @ and R matrices are selected to capture any noise and
bias errors in the camera measurements and robot joint en-
coders, errors in the kinematic model of the manipulator, and
biases induced by the estimator.

The vertical line in Fig. 8 separates the exploratory phase of
the trajectory from the approach phase. The estimator is only
active during the exploratory phase. The plot also shows the
initial and final estimates for this experiment.

Fig. 9 shows the estimator results for 12 experiments, each
with different initial conditions. The initial feature estimate

ranges from 0.2 to 0.8 m in X, —0.25t0 0.23m iny, and 0.75
to 1.34m in z. Table | shows the mean and standard devia-
tion of the state estimates for these 12 experiments. The robot
succeeded in pressing the button every time.

TABLE |
MEAN AND STANDARD DEVIATION OF ESTIMATES

standard
mean (m) | deviation (m)
p. | 0.5153 0.0050
py | 0.0460 0.0004
p. | 10189 0.0015

VIlI. CONCLUSIONS

We have proposed a relative position estimator for free-
floating underwater vehicles capable of performing au-
tonomous manipulation tasks. Such vehicles pose a unique
sensor requirement: a robust, 6-DOF, direct estimate of the
relative position between the vehicle and a stationary visual
feature.

We have defined a sensor strategy that merges vision and in-
ertial rate sensors, discussed its key advantages, and identified
some of the challenges of implementing this technique.

In our initial experiments, we used a fixed-base manipulator
with an endpoint camera to demonstrate the use of vision and
known camera motion to estimate the position of a single sta-
tionary feature. The position estimates were used to close the
loop on an autonomous manipulation task in which the robot
presses a button identified by an infrared LED.

Our future work will focus on four main topics. First, the
estimator needs to be expanded to merge inertial rate sensor
measurements to estimate camera motion. Some of our work
in this direction has already been described in [8], where we
have presented an estimator for a two-dimensional world. The
next step is to derive a two-step estimator for the full 3D prob-
lem. Second, when camera motion is unknown, the quality of
the models that predict disturbance dynamics (e.g., from ocean
currents) will limit the performance of the estimator. More
realistic modeling of disturbance processes will improve the
performance of an operational system. Third, we currently use
ad hoc trajectories to generate sufficient sensor motion. The
issue of blending optimal maneuvers to improve observability
with the execution of useful manipulation tasks remains to be
explored. Finally, we expect to demonstrate the estimator as
part of an autonomous manipulation task on a free-floating un-
derwater vehicle.
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