
0-7803-7087-2/01/$10.00 © 2001 IEEE

SUPERVISORY CONTROL OF MULTIPLE ROBOTS BASED
ON A REAL-TIME STRATEGY GAME INTERACTION PARADIGM

HANK JONES and MARTIN SNYDER

Aerospace Robotics Laboratory, Stanford University, Stanford, CA, USA 94305, hlj@arl.stanford.edu
Ethermoon Entertainment, Inc., Edgemont, PA, USA 19028, msnyder@ethermoon.com

Abstract

As robots are deployed beyond the laboratory
and into the field, the method with which they
interact with their operators is vital to efficient and
optimal use. This paper describes the design and
implementation of a supervisory control architecture
that enables the straightforward operation of multiple
complex robots.

The design was inspired by the flexibility and
scalability of the real-time strategy (RTS) game
interface paradigm. However, the basic RTS
architecture had to be substantially adapted to
accommodate the constraints of field robot operation.
Initial experimental results show that this familiar
and tested interaction paradigm is applicable for
complex robotics systems.

Keywords

Supervisory control, multiple robots, human-system
interaction, real-time strategy, RTS, agents

1 Introduction

Current methods of controlling robots fall into
one of two categories: those designed for a single
complex robot and those designed for distributed
systems of simple robots. This research addresses the
need for an interface and system architecture in a
third category that provides supervisory control for a
single operator to manage the conduct of multiple
complex robots. This paper distinguishes between
simple and complex robots by the latter’s ability to
perform extended missions that call for more than
one kind of task.

There have been a wide variety of human-system
interfaces for single complex robots. Autonomous
helicopters have been controlled using point-and-
click [12] and virtual dashboard [1] techniques;
autonomous underwater vehicles and space vehicles
have been directed using virtual environments [8] and
high-level tasking [25, 27]; intelligent arms have
been instructed using gestures [6] and graphical icons
[13]; and many complex robots have simply been
fully teleoperated [24].

However, if one operator were expected to
command multiple italicized complex robots, none of
these methods would easily scale to accommodate the
additional complexity. Direct teleoperation would
either overstress the operator or underutilize the
robots[10]. Extensions of the robot interfaces of
more automated systems, such as control panel,
dashboard, or master-slave mechanisms, for single
robots do not appear to naturally accommodate
additional robots.

Research regarding the control of multiple robot
systems that exhibit emergent or reactive behavior
has only recently moved beyond simulation work to
robotic implementations. Most architectures, such as
AuRA [2] and ALLIANCE [20], focus on
strengthening the autonomous capabilities of the
robot teams rather than their operation by humans.
The research that has incorporated the human
operator, such as ROBODIS [26], RAVE [7],
MokSAF [21], and MissionLab [3], have largely
concentrated on methods of cooperative motion and
task planning for surveillance and exploration, with
the user available either for assistance or initial
planning.

There have been a small number of other
research programs that have focused on the human-
system interaction for multiple complex robots.
Purely virtual but complex robots were operated in
DARPA’s SIMNET [5], and a high-level tasking
“playbook” interface has been developed and tested
for future operation of uninhabited combat air
vehicles [16]. The MAGIC2 system, developed for
operational control of unmanned air vehicles [14],
and the MACTA hybrid agent/reactive architecture
[4] are the only two robotic systems that have
demonstrated operation of multiple complex robots
experimentally. MAGIC2 combines control panels
for the control of unmanned aerial vehicles but
appears to be limited to a maximum of four vehicles
per operator. MACTA focuses on behavior scripts
and their ability to satisfy human-designated goals,
rather than human-system efficacy. Ultimately, no
standard method of interaction has emerged.

The Aerospace Robotics Laboratory at Stanford
University has developed complex robots capable of

xuwei
383

carrying out many different tasks given at a high
level [25, 27]. The focus has been on developing
human-robot teams, although the research to date has
been limited to single robot-operator-task
combinations. The purpose of our research was to
design and implement a human-robot interaction that
extends this past work to enable intuitive and scalable
control of multiple complex robots by one user.

2 Objectives and Constraints

2.1 User-centered design

As a rule, systems built around autonomous
robots often provide mechanisms for human
involvement only as an afterthought. This tendency
to push user interaction to the background is not only
a problem in robotics; many other technological
fields have similar histories during their early
development [11]. In addition, the human-system
interactions for robots are almost always designed by
the engineers responsible for the robots’
development. The resulting interface is thus often
based on the engineer’s model of the underlying
system rather than the task that the robot was built to
accomplish. [9] However, robotics could benefit
from the lessons learned in other fields [23] that have
embraced the concepts that constitute user-centered
design.

User-centered design, a concept originated by
Don Norman and Stephen Draper, is a philosophical
approach to interface design that seeks to put the user
first and the technology second. Typical user-
centered design efforts incorporate end user input
from the beginning to encourage the maximum
possible ease of use and utility of the final product.

To develop a user-centered interaction for
multiple robots, we observed the command and
control of police Special Weapons and Tactics
(SWAT) teams during field exercises. SWAT teams
are a valuable environment for studying hierarchical
human-human interaction for the command of teams,
and are also a potential end user of autonomous
robots. Some important lessons learned include:

• Commanders and subordinates naturally
interact through dialogues about current
positions, surroundings, and capabilities

• Comprehensive world knowledge for the
purpose of conceiving commands was
extremely difficult to construct and convey

• Interfaces to the system require a high level
of flexibility

Given these lessons, we sought to develop a
supervisory control architecture that replicated the
dialogue interaction to some extent, avoided the
assumption that complete world knowledge could be

obtained, and flexibly adapted to changing robot
capabilities and missions.

2.2 RTS user interaction

As discussed previously, there is no standard
interaction for the operation of multiple complex
robots. However, we did identify a suitable
interaction paradigm for the command and control of
multiple complex robots that has undergone
extensive testing and refinement -- although only for
simulated ideal robots. This interface genre, used
most often in Real-Time Strategy (RTS) computer
games, has the following pertinent characteristics:

• Implements an interface between a superior
controller and multiple autonomous entities

• Third-person perspective of the environment
is the dominant viewpoint

• Robots and objects are represented as icons
that may be selected singly or in groups for
subsequent action

• Operator uses a combination of mouse
gestures and keystrokes for input

The concept behind Real-Time Strategy games is
that one person is required to command many
autonomous entities (Figure 1) to achieve strategic
goals. Popular examples of the genre include
Strifeshadow (http://www.ethermoon.com) and
Starcraft (http://www.blizzard.com/starcraft/). Future
robot applications should benefit from the existence
of millions of operators with experience in this
interaction paradigm. A Boeing-led study funded by
the Department of Defense identified such an
approach as the best method to overcome current
human-system interface challenges [17].

Figure 1. Example RTS interface
(from Strifeshadow)

2.3 RTS control architecture

RTS control protocols allow for shared
commands and multi-entity interaction so that game
objects can easily be instructed to collaborate on

xuwei
384

certain tasks. While the implementations vary, most
RTS games share the following characteristics:

• User interface and data representation are
separate from the control architecture

• Entire game state is managed as a single
simulation; all entities operate within the
context of this shared state and contribute no
information to the simulation state

• Command architecture supports immediate
as well as high-latency and non-guaranteed
connections

The control architecture is typically constructed
in three parts: the data objects, the interface, and the
command and data transfer objects necessary for
communication. (Figure 2)

Figure 2. Generic RTS control architecture

2.4 Difficulties presented by field robots

Field robots, sometimes called telerobots, are
robots that extend a person’s sensing and/or
manipulating capability to a location remote from
that person. They usually have enough autonomous
capability to control their own movement and act on
high-level commands from their users.

The relationship between a field robot and its
user must be emphasized – they do not operate
‘within sight’ of one another. More generally, no
direct sensors provide a third-person perspective of
the robot activity to the user. Thus, the computer link
is the only conduit between human and robot and is
of vital importance to the success of a mission. This
characteristic is the key difference between field
robots and the better-known industrial or personal
robots.

A review of the typical field robot applications
might compare favorably to the list of scenarios
currently employed in RTS games. One might even
reason at first glance that a practical human-system
interface might be accomplished by simply “plugging
in” a robot system to an RTS game architecture.
However, further consideration reveals the following
significant differences between the typical RTS and
robot environments:

• The distributed sensors of the robots will
often disagree and send conflicting inputs
that may not be readily integrated into a
comprehensive world model

• The real-world nature of robot systems does
not allow the shared-state consistency found
in the standard RTS environment

• Disturbances to the robots and objects in the
world may be completely unobservable to
the interface

• Commands must be conceived and given in
the robot frame of reference

• Relationships between robots, their
capabilities, and objects in their world
change dynamically

An RTS system assumes knowledge of the
complete state of all robots and objects in the
environment. There is no confusion about an object’s
identity or location. However, in actual robot
operational systems, the assumption that robots will
sense infallibly and agree on everything is unrealistic.
Systems used to command robots must recognize that
robots will disagree about fundamental aspects of
their environment yet be able to handle these
discrepancies adroitly. The practical outcome is that
there is no conclusive global model of the world that
the robot or operator can use for command purposes.

Finally, a valuable trait of a well-designed
interface is that it only affords tasks and objects to
the user that the robot is capable of satisfying.
However, robots may change as its engineers provide
upgrades, or change dramatically as the realities of a
deployment effect its second-to-second capabilities.
This can be problematic, since robot capabilities not
available on the interface are effectively nonexistent,
and those capabilities on the interface that the robot
cannot accomplish will be a great source of
frustration to the user. [18]

3 Design and implementation

We performed our initial implementation on the
free-flying robots of the Stanford University
Aerospace Robotics Laboratory
(http://arl.stanford.edu) shown in Figure 3. To
implement the control paradigm required by the RTS
architecture, we needed to change the robots’
command and control structure, which had been
designed for the operation of a single robot
performing a single task. The commands to the
robots now have to distinguish between many robot,
task and object combinations. Much of the necessary
new functionality was realized by creating a
community of agents to handle communication
between the robots and the user interface. The basic
system structure is shown in Figure 4.

3.1 Object-Based Task-Level Control

Many of the fundamental issues of field robot
operation were addressed through the development of
Object-Based Task-Level Control (OBTLC) at the

xuwei
385

Stanford’s Aerospace Robotics Laboratory.
Originally created for controlling field robot systems
in space applications, OBTLC technologies have also
been applied to autonomous underwater vehicles
[27], flexible manipulators [22], and factory
workcells [19].

Figure 3. Experimental platform

In OBTLC, the robot handles its own low-level
control locally while the operator provides high-level
task commands to the robot. The operator specifies
treatment of an object, rather than motions of the
robot. (In the context of OBTLC, anobjectis a
physical entity around which a task command may be
constructed.) For instance, the user might command
a robot to put a rock into a sample container, but
would not specify the timing or trajectory of the task.
The result is a human-robot team where the
responsibilities are suited to the capabilities of the
human and the robot.

Figure 4. Basic System Diagram

However, OBTLC requires that the robot
maintain a list of objects that it senses, and a list of
tasks that it is capable of performing. The robot must
then maintain knowledge of which tasks are possible
for each individual object, resulting in a clutter of
interrelationships. When considering the command
of many such robots, the organization of just these
relationships is a daunting task.

3.2 Agents

To sort through the complication of a
deployment of many OBTLC-capable robots, we
introduced an agent architecture for communication
between operator and robots. For instance, an agent
listens to the communication traffic and maintains
interlinked lists of robot capabilities and sends the
appropriate ones to the interface when queried. As a
result, the user is only afforded functions that a robot
is capable of performing at that moment.

The agent architecture we employed was the
Open Agent Architecture developed at SRI
(http://www.ai.sri.com/~oaa). OAA is focused on
building distributed communities of agents, where
agentis defined as any software process that meets
the conventions of the OAA society. An agent
satisfies this requirement by registering the services it
can provide in an acceptable form, by being able to
speak the Interagent Communication Language
(ICL), and by sharing functionality common to all
OAA agents such as the ability to manage data in
certain ways [15].

Agents are useful at handling the transactions
between robots and the operator because they can
provide a consistent interface regardless of the
number or type of robots. The agent used most often
is the Query Agent, which listens to robot-operator
traffic and sends its own requests for information to
establish lists of robots, tasks, and objects that the
operator might be interested in knowing. For
instance, a robot only knows which objects it sees
and the tasks it can perform on each of those objects.
The Query Agent gathers this information and
assembles lists of all tasks that a robot can perform at
a given time, or a list of which robots sense a
particular object. The interface can then access these
lists through a standard call without requiring it to
implement its own information-collection procedures.

Another agent under development, the
Correspondence Agent, monitors robot output to
determine which objects seen by two different robots
are actually the same. This correspondence is based
on object characteristics and location and is accessed
by the interface to allow the operator to give
commands for cooperative efforts.

3.3 Command process

Commands are formed through an iterative
process (Figure 5) that ultimately affords only the
most current capabilities of the robots to the user. A
screen shot of the graphical user interface during an
example task assignment is shown in Figure 6.

For example, assume that an operator’s goal is to
have a robot relocate a science instrument. The
robots have periodically published a list of every

xuwei
386

object that they sense. The interface shows graphical
representations of the robots and these objects. The
operator clicks on a robot to select it, and then she
clicks on an object sensed by the robot. The interface
queries the robot to determine the tasks that the robot
can perform on that object, which in the example
shown is Retrieve, Move, and Reset, and presents the
tasks to the operator in a pop-up dialog box (Figure
7) next to the object. A command packet is
constructed by the interface and sent to the robot,
which adds it to its queue of upcoming tasks.

Data: Interface to Robots Data: Robots to Interface

State info for all robots
Selected: <Robot A>

Visible for Robot A:
<Obj1>, <Obj2>

Selected: <Obj1>
Possible for <Robot A> and
<Obj1>:
<Task1>, <Task2>

Command: <Robot A>
<Task1> <Obj1>

Acknowledge Task
Figure 5. Command formation process

For commands to multiple robots, the process is
much the same. The only difference is that the object
being operated on must be sensed by all robots and
must have been determined to be the same object by
the Correspondence Agent.

Figure 6. Screen shot of GUI

One of the most important aspects of this
architecture is that tasks are conceived and
commands are given in the local frame of the robot.
Rather than formulate tasks based on a world model
that may be inconsistent with the sensors of the robot,
we decided to maintain each local model of the robot
separately. This concept recognizes that the robot is
best suited for controlling itself locally, and
commands should only provide the minimum amount
of information necessary to accomplish a task.

Consequently, the robot is only asked to act on
objects that it senses, and interactions with objects
can take place in relative coordinate frames rather
than global frames. What the user sees may or may
not indicate variations between these local contexts.
The interface may highlight or suppress this
information depending on its application.

Figure 7. Close-up of Task Selection Window

There are two types of tasks -- those that are
preemptive of all other tasks and those that can be
added to the queue of tasks the robot must perform.
The task descriptions that the robot provides also
note whether the task requires some modifying
information such as a destination.

4 Experimental results

Experimentation utilizing this new architecture
was recently begun using the free-flying space robots
at the Stanford University Aerospace Robotics
Laboratory. These three robots float on an air
bearing on a large granite table to emulate the zero-
gravity, zero-drag dynamics of space with high
fidelity in two dimensions. The robot shown in
Figure 3 has cold-gas thrusters for propulsion, two
manipulators with pneumatic grippers, on-board
computation and power, and wireless
communications. The robot is capable of
autonomous navigation, picking up and placing
objects, catching and throwing objects, escorting and
monitoring tasks, and simple construction primitives.

Thus far, only one robot has been converted to
communicate with the agent architecture and accept
commands from the new interface. Initial tests have
been very positive, as new and experienced users
have found the system intuitive.

New visitors to the laboratory were able to
immediately operate the robot after verylittle training
and felt comfortable utilizing all of the robot
capabilities. These users were told only that selecting
a robot and then clicking on objects in the
environment would provide enough information to
operate the robots. The users could then see the task
dialog box when they clicked on an object visible to
the selected robot, and they readily chose from the
options presented.

Informal surveys of advanced users have found
that the operators trust the robot more because of the

xuwei
387

assurance that the task affordances are recent and
valid. They also compare the list of tasks against
their expectations for quick debugging of the robot
during experiments.

5 Conclusions and future work

This research has led to the development of a
control architecture that leverages a familiar human-
computer interaction in use by many millions of
users. Most of the standard interaction primitives had
been resolved through generations of game
development, so we were able to concentrate on the
issues that resulted from using robot hardware.

While implementing the RTS interface for this
robotic system, we realized that the underlying
architecture is easily expandable to other interfaces
that allow a dialogue to communicate current
affordances. For instance, voice-only systems and
text-based screens should also provide the necessary
affordances to control multiple robots in some
situations. We plan to explore these options and
compare them to the graphical representation method.

References
1. M. Adams et al, “An Automation-Centered
Human-System Integration Architecture for
Autonomous Vehicles,”AUVSI ’98, 1998.
2. R. Arkin & T. Balch, “AuRA: Principles and
Practice in Review,”Journal of Experimental and
Theoretical Artificial Intelligence, 1997.
3. R. Arkin et al, “Tactical Mobile Robot Mission
Specification and Execution,”Mobile Robots XIV,
1999.
4. R. Aylett et al, “Supervising multiple
cooperating mobile robots,”Autonomous Agents 97,
1997.
5. D. Brock et al, “Coordination and Control of
Multiple Autonomous Vehicles,”Proc. of the 1992
IEEE Conference on Robotics and Automation, 1992.
6. D. Cannon, Point-and-Direct Telerobotics:
Object Level Strategic Supervisory Control in
Unstructured Human-Machine System Environments,
PhD Thesis, Stanford University, 1992.
7. K. Dixon et al, “RAVE: A Real and Virtual
Environment for Multiple Mobile Robot Systems,”
Proc. of the 1999 International Conference on
Robotics and Systems, 1999.
8. S. Fleischer & S. Rock, “Underwater Vehicle
Control from a Virtual Environment Interface,”Proc.
of the Symposium on Interaction 3D Graphics, 1995.
9. D. Gentner & J. Grudin, “Why Good Engineers
(Sometimes) Create Bad Interfaces,”CHI ’90
Proceedings, 1990.
10. R. Gilson et al, “Key Human Factor Issues for
UAV/UCAV Mission Success,”AUVSI ’98, 1998.

11. J. Grudin, “The Computer Reaches Out: The
Historical Continuity of Interface Design,”CHI ’90
Proceedings, 1990.
12. H. Jones et al, “Human-Robot Interaction for
Field Operation of an Autonomous Helicopter,”
Mobile Robots XIII, 1998.
13. D. Lees,A Graphical Programming Language
for Service Robots in Semi-Structured Environments,
PhD Thesis, Stanford University, 1994.
14. “MAGIC2 – Multiple Aircraft GPS Integrated
Command and Control System,”AUVSI ’98, 1998.
15. D. Martin et al, “The open agent architecture: a
framework for building distributed software
systems,” Applied Artificial Intelligence, 13(1),
1999.
16. C. Miller et al, “‘Tasking’ Interfaces to Keep the
Operator in Control,”5th Annual Symposium on
Human Interaction with Complex Systems, 2000.
17. C. Monson et al, “The Development of
Specifications and Guidelines for the Design of Crew
Stations for UAV Systems,”AUVSI ’98, 1998.
18. D. Norman,The Design of Everyday Things,
New York: Basic Books,1988.
19. G. Pardo-Castellote,Experimental Integration of
Planning and Control for a Intelligent Manufacturing
Workcell, PhD Thesis, Stanford University, 1995.
20. L. Parker, “ALLIANCE: An Architecture for
Fault Tolerant Multi-Robot Cooperation,”IEEE
Trans. Of Robotics and Automation, 14 (2), 1998.
21. T. Payne et al, “Varying the User Interaction
within Multi-Agent Systems,”Proc. of the 4th Int’l
Conference on Autonomous Agents, 2000.
22. H. Schubert, “Space construction: an
experimental testbed to develop enabling
technologies,”Telemanipulator and Telepresence
Technologies IV, 1997.
23. T. Sheridan, “Speculations on Future Relations
Between Humans and Automation,” inAutomation
and Human Performance, 1996.
24. T. Sheridan,Telerobotics, Automation, and
Human Supervisory Control, Cambridge, MA: MIT
Press, 1992.
25. H. Stevens et al, “Object-Based Task-Level
Control: A Hierarchical Control Architecture for
Remote Operation of Space Robots,”Proceedings of
the AIAA/NASA Conference on Intelligent Robotics in
Field, Factory, Service, and Space, 1994.
26. H. Surmann & M. Theissinger, “ROBODIS: A
dispatching system for multiple autonomous service
robots,”Proc. of Field and Service Robotics, 1999.
27. H. Wang,Experiments in Intervention
Autonomous Underwater Vehicles, PhD Thesis,
Stanford University, 1996.

xuwei
388

