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Abstract—Terrain-Relative Navigation (TRN) is a technique for
localizing a vehicle in GPS-denied environments. TRN augments
a dead-reckoned solution with continuous position fixes based on
correlations with a pre-stored map. In underwater applications
TRN accuracy on the order of 3m has been demonstrated,
however convergence to incorrect solutions has been observed
when operating for extended periods over featureless terrain.
Specifically, the TRN filter can become overconfident in an
incorrect position fix.

Previous work by the authors introduced an adaptive tech-
nique for mitigating over-confidence in uninformative terrain.
Specifically, the algorithm exponentially down-weights the prob-
abilities with a factor α between zero and one, based on the esti-
mated terrain information. This paper focuses on understanding
the source of false fixes in uninformative terrain, and uses this
insight to develop the method behind the adaptive technique.

This paper shows that the cause of false fixes using standard
TRN weighting in information-poor regions is the assumption
that the terrain is uncorrelated. It also introduces a method to
analyze the probability of false peaks using the standard TRN
measurement weighting. This analysis is an extension of work
in the statistics community on robust adjusted likelihood ratios,
and is used to bound the probability of large false peaks.

The resulting robust, adaptive technique is capable of real-
time operation and its effectiveness is demonstrated in simulation
and with field data from MBARI AUV runs over flat terrain in
Monterey Bay.

I. INTRODUCTION

Terrain-Relative Navigation (TRN) is an emerging tech-
nique for localizing a vehicle in the underwater environment.
TRN offers a means to eliminate drift accrued during dead
reckoning by matching range measurements of the terrain to
an on-board terrain map. The TRN concept was first deployed
as the cruise missile guidance system TERCOM (Terrain
Contour Matching), which used a batch correlation of altimeter
measurements against an a priori map to generate a position
estimate [1].

TRN was adapted to autonomous underwater vehicles
(AUVs) starting in the 1990s [2] [3] and TRN packages are
now available on commercial vehicles such as the HUGIN
AUV [4]. Map-relative position estimates are particularly
valuable for AUVs as they reduce the necessity of surfac-
ing for GPS fixes or deploying USBL or LBL positioning
systems. Further, many return-to-site underwater missions are
to locations identified in a map, and since underwater maps
can be inaccurately geo-referenced, a map-relative position is
necessary [5].

In informative terrain TRN accuracy is typically on the order
of the map resolution. Accuracy of a few meters has been
demonstrated in field trials using MBARIs Dorado-class AUVs
in Monterey Bay [6], and similar performance was observed
in field trials using the HUGIN AUV in Ostfjords [7].

When operating over featureless terrain for an extended
period, converging to an overconfident, incorrect solution -
a false fix - is a recognized issue with TRN filters [8] [9].
False fixes greatly reduce the value of a TRN estimate. An
incorrect TRN estimate can result in failure to accomplish a
mission, and in the case of close proximity operations, can
lead to trajectories intersecting the terrain.

This has motivated a large amount of effort towards un-
derstanding and reducing the incidence of false fixes due to
uninformatve terrain. Simulations in [10] showed that false
fixes increase with the amount of noise in the map. The
information metrics developed in [11] were used to select
informative regions of terrain for correlation. The integrity
methods in [7] reject TRN position fixes if the variation in
the terrain contour is insufficient.

The adaptive method presented in [12] is designed to slow
convergence in uninformative terrain to prevent false fixes.
This paper focuses on understanding the source of false fixes
in uninformative terrain, and uses this to develop the method
behind the adaptive technique.

In the standard formulation of the TRN problem, a Gaussian
likelihood function is typically used to perform the measure-
ment update. That is:

L(x)standard = p(z, ĥ|x)standard = η exp

(
−(z − ẑ)2

2(σ2
map + σ2

sensor)

)
(1)

where z is the measurement, ẑ = ĥ(x) is the estimated
measurement from the map, and σ2

map and σ2
sensor are the map

and sensor noise.
This paper shows that this formulation implicitly assumes

that the vehicle is operating over informative terrain, and that
this results in false fixes when operating over uninformative
terrain. This assumption enters the measurement update as
a probabilistic terrain model that characterizes the degree of
spatial correlation in the terrain; in standard TRN, the terrain
is assumed to be uncorrelated. This assumption is reasonable
when the terrain correlation is small with respect to error in
the map, but results in false peaks when the terrain correlation



is large with respect to map error.
The relation between the level of terrain correlation and

the occurrence of false peaks using standard TRN correlation
is demonstrated using simulated informative and uninforma-
tive terrains generated from probabilistic terrain models. The
probabilistic terrain models employed are Gaussian and are
commonly used in the Geographic Information System (GIS)
community to characterize spatial correlation. Likelihood sur-
faces are computed using the standard uncorrelated terrain
model and the known Gaussian terrain model for both cases.
Both probabilistic terrain models have comparable perfor-
mance in informative terrain, but in uninformative terrain the
correlated Gaussian terrain model eliminates the false peaks
that arise using standard TRN correlation. This motivated the
development of the adaptive technique presented in [12].

The result of this development is that the likelihood function
used in the measurement update becomes

L(x)adjusted = L(x)αstandard = p(z, ĥ|x)αstandard (2)

Specifically, this adaptive adaptive method exponentially
down-weights the probabilities calculated using the standard
TRN algorithm to account for the false peaks introduced
by the uncorrelated terrain model. This method is based on
analyzing the likelihood of false peaks using the standard
TRN measurement weighting, and is an extension of work in
the statistics community on robust adjusted likelihood ratios
[13]. This analysis shows that adjusting the probabilities with
a factor α between zero and one, based on the estimated
terrain information, can eliminate the large false peaks using
the standard TRN weighting. Here, terrain information is
the amount of variance in the expected measurements that
can not be attributed to map error. This method achieves
good performance in simulated runs on both informative and
uninformative terrain, at a computational cost comparable to
using the standard TRN weighting.

This paper is organized as follows. Section II outlines the
basics of the TRN problem. Section III describes how terrain
models enter in to the measurement update, and how the stan-
dard TRN assumption results in overconfidence. Section IV
introduces the method of mitigating false-fixes by matching
false peak likelihoods. Section V compares results using the
standard and adaptive TRN algorithms in offline runs using
field data gathered in flat terrain in Monterey Bay.

II. THE BASIC TRN PROBLEM

The goal of a TRN estimator is to localize a vehicle with
respect to the underlying terrain. This is accomplished using
an estimation filter that fuses a vehicle motion model with an
observation model.

The filter presented here is characteristic of TRN applica-
tions. It consists of three components: a particle filter used
to model the uncertainty in the vehicle position, a kinematic
process model to propagate the vehicle dead reckoning esti-
mate and associated error, and a range measurement model to
estimate the vehicle position given range measurements and a
terrain.

A. TRN Filter

The TRN filter models the probability distribution of the
vehicle position. The fundamental non-linearity of natural
terrain introduces multi-modal distributions that require the
use of non-parametric filters. A particle filter was selected for
use in this work due to its general applicability and ease of
expansion to higher state estimates.

A particle filter models the belief distribution as the set:

Xk := x
[1]
k , x

[2]
k , . . . , x

[M ]
k (3)

where each particle xmk (1 < m < M ), is a discrete hypothesis
with its own likelihood w[m]

k , and M is the number of particles.

B. Process Model

The process model characterizes the growth in position
uncertainty introduced by dead reckoning. The rate of growth
of uncertainty depends on the type and quality of the sensors
available on the vehicle. The vehicle used in these tests is a
MBARI Dorado-class mapping AUV, which is equipped with
a high-grade inertial navigation system with an accuracy of
< .05% DT when aided by DVL velocity measurements. Due
to the availability of inertial-grade navigation sensors, the state
is the vehicle position in northings, eastings and depth:

x = [xN xE xD] (4)

and a kinematic process model is used [14]:

xk+1 = xk + δxINS
k + rk (5)

The change in position at time step k, δxINS
k , is measured by

the INS and rk ∼ N (0,ΣINS) models the INS noise. The
inclusion of depth as a state is necessary as local maps often
have depth offsets.

In cases of poor vehicle odometry, low quality instruments,
or frequent DVL outages, the vehicle state and process model
can be expanded to accomodate the estimation of additional
error states [15]. Minimizing the number of estimated param-
eters, however, is valuable for making non-parametric filters
computationally tractable.

C. Measurement Model

The TRN measurement update bounds the growth of error
from dead reckoning. This model evaluates the likelihood of
observing measured ranges at different positions in the map,
and is thus able to constrain the region of plausible vehicle
locations. The ranges recorded by the vehicle at time step k
are referred to as zzzk, where zi,k denotes the ith beam. The
a priori map is generated from sonar ranges recorded during
mapping runs and is noted as ĥ. Both the map and the vehicle
measurements are treated as random error off the true terrain,
h.

The sensor model p(z|x, h) treats each range measurement
zi,k as a noisy measurement of the true terrain at the projected
location, h(xk)i:

zi,k = xD,k − h(xk)i + νi,k,sensor (6)



νi,k,sensor ∼ N (0, σ2
i,k,sensor) (7)

The map model p(ĥ|h) assumes the map, ĥ, is a noisy model
of the terrain, h:

ĥ = h+ νmap (8)

νmap ∼ N (0,Σmap) (9)

Here ĥ covers the entire map, and Σmap is assumed to be
diagonal with covariance σ2

map.
The Bayesian update for the particle filter requires calculat-

ing the likelihood of the measurements given a position:

p(xmk |zzzk, ĥ) = ηp(zzzk, ĥ|xmk )wmk (10)

The standard method of computing p(zzzk, ĥ|xmk ) is a Gaussian
weighting on the squared error:

p(zzzk, ĥ|xmk )standard = η exp

(
−1

2

∑
i

βi,k(zi,k − ẑmi,k))2

)
(11)

βi,k =
1

σ2
i,k,sensor + σ2

map
(12)

where ẑmi,k is the expected range measurement for each parti-
cle:

ẑmi,k = xmD,k − ĥ(xmk )i (13)

Here ĥ(xmk )i is the elevation at the projected location in the
map for particle m at position xmk for beam i.

This weighting was demonstrated in [12] to result in false
peaks in uninformative terrain, and the author introduced an
adaptive parameter α to mitigate the false peaks by down-
weighting measurements in uninformative terrain.

III. PROBABILISTIC TERRAIN MODELS AND TRN

The measurement update in Equation 10 is the foundation
of the TRN correlation step, and the challenge is developing
the model for p(zzzk, ĥ|xmk ). This is not specified by either the
sensor model p(z|x, h) or the map model p(ĥ|h). Both of these
models are relative to the terrain; the sensor is not measuring
the map.

Bayesian TRN estimators typically use a Gaussian weight-
ing as in Equation 11, however, this weighting does not
account for the impact of spatial terrain correlation.

Evaluating the measurement update in Equation 10 with the
known sensor and map models requires a probabilistic terrain
model to account for correlation in the terrain. This correlation
is introduced through p(h) when the terrain h is marginalized:

p(zzzk, ĥ|xmk ) = η

(∫
p(zzzk, ĥ|xmk , h)p(h)dh

)
(14)

Incorporating the map and sensor models, this becomes

p(zzzk, ĥ|xmk ) = η

(∫
p(zzzk|xmk , h)p(ĥ|h)p(h)dh

)
(15)

The model p(h) represents the prior statistics on the terrain,
of which the primary characteristic is the degree of spatial
correlation in the terrain. In informative terrain - where the

correlation in the terrain is small with respect to map noise -
p(h) can be reasonably modeled as uniform:

p(h) = 1 (16)

Incorporating this into Equation 15 yields the standard TRN
weighting - Equation 10. However, this uniform prior assump-
tion is the source of false peaks in uninformative terrain.

In uninformative terrain, p(h) = 1 insufficiently models the
correlation in the terrain. The remainder of this section will
demonstrate that p(h) = 1 is reasonable when the terrain is
informative, but fails when the terrain is uninformative.

Specifically, simulated informative and uninformative ter-
rain are used to demonstrate the impact of the p(h) = 1
assumption, by comparing the results of the standard TRN
weighting with the results using a known terrain model.

In order to do this, a terrain model is required.

A. Correlated Terrain Model

The probabilistic terrain model selected for this work is
drawn from the GIS community and represents the terrain as a
Gaussian distribution with a common mean and the correlation
between points in the terrain is only a function of the distance
between them [16]:

p(h) ∼ N (µterrain,Σterrain) (17)

where µi = µj = µterrain and

var[hi − hj ] = E
[
(hi − hj)2

]
(18)

= 2γ(δi,j) (19)

where δi,j is the separation between points hi and hj , and
γ(δ) is the semi-variance.

Fig. 1: Example variogram - the range and sill are the
characteristic length over which terrain varies and the size of
that variation.

The primary input to this model is the semi-variogram, γ(δ),
which describes the spatial characteristics of the terrain. Two
main characteristics are the range and sill, shown in Figure 1,
where the range is the length scale over which the terrain
varies, and the sill is the maximum amount that the terrain
varies. In uninformative terrain the variance is small and grows



much more slowly as a function of distance. Subsitituting the
Gaussian terrain model p(h) into Equation 15 results in

p(zzzk, ĥ|xmk )Corr. Terrain = η
1

det(Axm
k

)
exp

(
1

2
bTxm

k
A−1
xm
k
bxm

k

)
(20)

where

Axm
k

= HT
xm
k

Σ−1
k,sensorHxm

k
+ Σ−1

map + Σ−1
terrain (21)

bxm
k

= −HT
xm
k

Σ−1
k,sensorzzzk − Σ−1

mapĥ− Σ−1
terrainµterrain (22)

In Equation 21 Hxm
k

is the matrix for the observation of the
terrain for the estimate xmk , Σmap is the map error (diagonal
with value σ2

map). As before, ĥ is the map, µterrain and Σterrain
are the mean and variance the terrain, zzzk and Σsensor are the
measurement and measurement noise, respectively. Both Σmap
and Σterrain are of dimension n by n and Hxm

k
is of dimension

n by l, where n is the total number of points in the map
and l is the number of measurements. The matrix Σsensor is of
dimension l by l.

B. TRN in Simulated Terrain

TRN runs are simulated using a short trajectory across sim-
ulated terrain. The terrain patches 50m by 50m are generated
with variograms using a Gaussian variogram model,

γ(δ) = β0 + βsill

(
1− exp

(
−δ2

β2
range

))
(23)

where the parameters β0, βsill and βrange control the amount
of variation in the terrain and the range over which it occurs.
For both cases βrange is set to 20m and β0 is set to (.01m)2,
for informative terrain βsill is set to (5m)2, for uninformative
terrain βsill is set to zero. The simulated informative and
uninformative terrains are shown in Figures 2 and 6.

Maps of the terrain are made by adding uncorrelated
Gaussian noise of variance σ2

map to all points in the terrain.
Comparing the map for informative terrain in Figure 3 and
uninformative terrain in Figure 7, the map noise is much more
evident when there is little terrain information.

Measured terrain profiles are simulated by adding uncorre-
lated Gaussian measurement noise of variance σ2

sensor to the
actual terrain profiles.

Likelihood surfaces are evaluated over a 20m by 20m
area centered on the correct location at (0,0). Surfaces are
computed using the standard weighting with p(h) = 1 from
in Equation 11 and Gaussian weighting using Equation 20
with the known correlated Gaussian p(h) used to generate the
terrain.

In informative terrain p(h) = 1 is a reasonable approxima-
tion for the true p(h), and both weightings produce similar
results - a peak at the correct location. Results are shown in
Figures 4 and 5 for the standard and Gaussian weightings,
respectively.

In uninformative terrain, there is a stark difference between
p(h) = 1 and using the correct p(h). Using p(h) = 1 results
in a number of false peaks, shown in Figure 8, whereas the

correlated Gaussian p(h) produces a low, broad likelihood
surface, shown in Figure 9

This motivates the development of a method for reducing
flat peaks in uninformative terrain.

Fig. 2: Simulated informative terrain

Fig. 3: Map of simulated informative terrain

IV. FALSE PEAK BOUNDS AND TRN

The previous section illustrated how the terrain model used
for standard TRN can cause issues in uninformative terrain.
While one method of approaching this problem is to pursue
improved terrain models, this section introduces a different
method to achieve this based on bounding the size of false
peaks.

This analysis is related to the false fix analysis by Nygren
in [11]. Nygren analyzed likelihood ratios to determine the
confidence in a PDF peak for use with a maximum-likelihood
estimator, however, in Nygrens analysis the difference between
the map at the two locations was assumed to be the true
difference.



Fig. 4: Likelihood surface using standard TRN weighting on
informative terrain

Fig. 5: Likelihood surface using known Gaussian terrain model
on informative terrain

Fig. 6: Simulated flat terrain

Fig. 7: Map of simulated flat terrain

Fig. 8: Likelihood surface using standard TRN weighting on
uninformative terrain

Fig. 9: Likelihood surface using known Gaussian terrain model
on uninformative terrain



A. False Peak Bounds

A false peak occurs when the data appears to provide strong
support for the wrong hypothesis. That is, when comparing for
a correct hypothesis θtrue to a false hypothesis θfalse:

L(θfalse)

L(θtrue)
=
p(z|θfalse)

p(z|θtrue)
>> 1 (24)

For the TRN problem, the likelihood L(θ) and p(z|θ) are
the likelihood L(x) and probability p(z, ĥ|x), respectively.
While occasional support for the false hypothesis is a sta-
tistical certainty, large support is unlikely when the models
underlying p(z|θ) are correct. Royall demonstrated in [17] that
Equation 24 can be analyzed to determine the bound on the
likelihood of false peaks, by considering

max
N

(
L(θfalse)

L(θtrue)
> k

)
(25)

Where k is the size of the false peak, and N is the number of
measurements, and L(θtrue) is shorthand for p(z|θ). Maximiz-
ing this as a function of N returns a bound on the probability
of vs the size of a false peak. In [17] it was shown that when
using correct, Gaussian models this bound is

max
N

(
L(θfalse)

L(θtrue)
> k

)
= Φ

(
−
√

2 ln(k)
)

(26)

where Φ is the cdf of a normal distribution. Royall showed that
using inaccurate models to calculate p(z|θ) can result in a high
probability of large false peaks, where this bound is broken.
Royall adopted the bound in Equation 26 as a robust bound in
[13]. These bounds are shown in Figure 10. The robust bound
is shown in solid blue, and an example of a bound calculated
for an imperfect model is shown in dashed red.

Restoring this robust bound is the basis for making like-
lihood calculations robust to model error. The method intro-
duced in [13] adjusts the probabilities with an exponential
factor α

p(z|θ)adjusted = p(z|θ)α (27)

The ability to restore the false peak bound through this ex-
ponential adjustment is the primary driver behind the approach
presented in this paper.

This adjustment is calculated from the data and model used
in p(z|θ), and the output of this is termed the robust adjusted
likelihood. Although the parametric models this was developed
for are not directly applicable, the mindset of restoring bounds
on false peaks is well suited to the problem of false peaks in
uninformative terrain.

B. Applying False Peak Bounds to TRN

Section III demonstrated that the probabilistic terrain model
used in standard TRN is the cause of false peaks in unin-
formative terrain. The remainder of this section is focused
on adapting the robust adjusted likelihood methodology to
the TRN measurement update. The goal is to estimate the
parameter α, such that

p(z, ĥ|x)adjusted = p(z, ĥ|x)αstandard (28)

Fig. 10: Bounds on the probability of false peaks. The size of
the false peaks increases to the right, and the bound is on the
probability of a false peak of that magnitude occurring.

Applying likelihood ratio analysis to TRN, the likelihood for
a single measurement update is

L(xmk ) = p(zzzk, ĥ|xmk ) (29)

Adapting the methods from [13] requires modeling the prob-
ability distribution on this likelihood as the filter continues
to integrate measurements. Therefore rather than a single
measurement, the terrain profiles measured at the true and false
trajectories are considered:

htrue = h(xtrue) (30)
hfalse = h(xfalse) (31)

and strong support for the wrong position is when

p(zzz, ĥ|xfalse)

p(zzz, ĥ|xtrue)
>> 1 (32)

where xtrue denotes the true vehicle position, xfalse is a wrong
position, and zzz are the vehicle measurements. At this point
likelihood notation will be adopted, and applied to the standard
Gaussian weighting on the terrain profile this means

L(xfalse)standard

L(xtrue)standard
=
p(zzz, ĥ|xfalse)standard

p(zzz, ĥ|xtrue)standard
(33)

The likelihood of large false peaks occurring as a function of
the terrain information can then analyzed, with the simplifying
assumption that σ2

sensor and σ2
map are constant. Incorporating

these assumptions into Equation 11 yields

L(xfalse)standard

L(xtrue)standard
= exp

(
−eTfalseefalse + eTtrueetrue

2
(
σ2

sensor + σ2
map

) )
(34)



where

etrue = z − ẑtrue (35)

= (xD,true − htrue + νsensor)− (xD,true − ĥtrue) (36)
= (xD,true − htrue + νsensor)− (xD,true − htrue − νmap,true)

(37)
= νsensor − νmap,true (38)

At the false location,

efalse = z − ẑfalse (39)

= (xD,true − htrue + νsensor)− (xD,false − ĥfalse) (40)
= (xD,true − htrue + νsensor)− (xD,false − hfalse − νmap,false)

(41)
= νsensor + δt-f − νmap,false (42)

where the difference between the expected measurements of
the true and false trajectories is δt-f

δt-f = (xD,true − xD,false) + (htrue − hfalse) (43)

Equations 35 and 39 can be interpreted as follows: for the true
trajectory the expected difference between the measurements
and the map is the sum of the noise in the measurements
and the map, whereas at the false location there is also a
contribution from the difference between the terrain profiles
and error in the depth estimate. In the case of known depth,
δt-f is the difference between terrain profiles, and as such is
referred to as the terrain information. With these models, the
false peak likelihood using Equation 34 can be evaluated as
a function of the map noise, sensor noise, and the difference
δt-f.

p

(
L(xfalse)standard

L(xtrue)standard
> k

)
= f

(
δt-f, σ

2
map, σ

2
terrain, k

)
(44)

Although the analysis can be done with any δt-f profile
difference, it is the sum of the squared difference, δTt-fδt-f that
enters into the equation. This term is therefore modeled as

δTt-fδt-f ∼ Nδ2rms (45)

Where δrms is used to characterize the RMS terrain profile
difference. The pdf of the likelihoood ratio can thus be written
as a log-normal distribution,

p

(
L(xfalse)standard

L(xtrue)standard

)
∼ lnN

(
µLR, σ

2
LR

)
(46)

where the terms µLR and σ2
LR are a function of δrms,

σ2
map,σ2

terrain, and the profile length N .

µLR =
−Nδ2rms

2
(
σ2

sensor + σ2
map

) (47)

σ2
LR =

N
((
σ2

sensor + σ2
map

) (
δ2rms + σ2

map

)
+ σ2

sensorσ
2
map

)(
σ2

sensor + σ2
map

)2 (48)

With this log-normal distribution, a more negative mean indi-
cates a lower likelihood of a false peak, but a larger standard
deviation results in a larger spread in possible weightings and

higher likelihood of false peaks. A simple example is the case
for flat terrain - as there is no information in the terrain, the
mean stays at zero (eg, the true location is indistinguishable
from the false location), however because of the growing
variance there is will be a high likelihood of strong evidence in
favor of either location. Thus, the likelihood of false peaks is
determined by the growth of the mean relative to the standard
deviation.

Calculating the likelihood of a mis-weighting using the
standard TRN formula is therefore done with the cumulative
distribution of a normal variable. For a mis-weighting greater
than k, that returns:

p

(
L(xfalse)standard

L(xtrue)standard
> k

)
= Φ

(
µLR − ln (k)

σLR

)
(49)

The bound on the likelihood of a false peak of size k is
calculated by maximizing this probability. As δrms, σ2

map and
σ2

terrain are fixed, this is with respect to N , and is

max
N

p

(
L(xfalse)standard

L(xtrue)standard
> k

)
= Φ

(
−
√
aLR

bLR

√
2 ln (k)

)
(50)

where

aLR = δ2rms (51)

bLR =

(
σ2

sensor + σ2
map

) (
δ2rms + σ2

map

)
+ σ2

sensorσ
2
map

σ2
sensor + σ2

map
(52)

and aLR and bLR are dependent only on the terrain information,
map and sensor error.

Examining this equation shows two important features. The
first is that, in the case where the map error is small with
respect to the terrain information, σ2

map is small with respect
to δ2rms, aLR ≈ bLR and the bound on false peaks matches the
robust bound. The second is that the robust bound will be
significantly broken in flat terrain, when σ2

map is large with
respect to δ2rms. This makes aLR small compared to bLR, and
consequently the likelihood of false peaks will be much higher.
The broken bound shown in Figure 10 is for the case where
σ2
m,σ2

m are 1 and δ2rms is 0.5.
The general conclusion is that the lower the amount of

terrain information relative to map error, the further to the
right the false peak bound is pushed. That is, the likelihood
of large false peaks is increased. This supports the simulation
results from Section III-B, where there were many large peaks
in uninformative terrain.

The robust bound on false peaks can be restored in unin-
formative terrain through the parameter α, which changes the
mean and variance of the likelihood ratio. Noting the adjusted
likelihood ratio as

L(x)adjusted = L(x)αstandard = p(zzz, ĥ|x)αstandard (53)

the mean and variance of the log-normal likelihood ratio
become

µLR, adjusted = αµLR (54)

σ2
LR, adjusted = α2σ2

LR (55)



Fig. 11: Adjustment α vs δ̂rms
σmap

, for the case of σmap = σsensor.

and the probability of false peaks is

p

(
L(xfalse)adjusted

L(xtrue)adjusted
> k

)
= Φ

(
αµLR − ln (k)

ασLR

)
(56)

Selecting α is based on restoring the robust bound, and results
in

α =
aLR

bLR
(57)

which can be written as

α =
δ2rms

(
σ2

s + σ2
m

)
(σ2
s + σ2

m) (δ2rms + σ2
m) + σ2

sσ
2
m

(58)

The parameter α is a function of the terrain information, map
and sensor noise and is lower bounded by 0 and upper bounded
by 1. In the case of perfect maps, σ2

m = 0 and α is 1; no
adjustment is necessary. If there is map error, the amount
of information does matter, and the scaling of α is largely a
function of the ratio of terrain information to map error. The
behavior of α vs terrain information is shown in Figure 11 for
the case of equal map and sensor. For uninformative terrain,
the ratio of terrain information to map error tends to zero, and
α must tend to zero to make the approximation robust.

C. Real-time TRN Filter Implementation

The robust, adaptive technique was developed for use in
real-time TRN filters in [12]. This method calculates αi,k -
the adjustment to apply to each beam at each timestep based
on the expected information, δ̂2i,k,rms for each beam. The term
βi,k in Equation 11 becomes

βi,k =
αi,k

σ2
i,k,sensor + σ2

map
(59)

where the adjustment depends is taken from Equation 58

αi,k =
(σ2
i,k,sensor + σ2

map)δ̂2i,k,rms

(σ2
i,k,sensor + σ2

map)(δ̂2i,k,rms + σ2
map) + σ2

i,k,sensorσ
2
map
(60)

Fig. 12: Likelihood surface using adaptive weighting on infor-
mative terrain

Fig. 13: Likelihood surface using adaptive weighting on unin-
formative terrain

and δ̂2i,k,rms is the estimate of the terrain information

δ̂2i,k,rms = Var(ẑi,k)− σ2
map (61)

D. Adaptive TRN in Simulated Terrain

The efficacy of the adaptive algorithm is demonstrated using
the simulated trajectories and maps as in Section III-B.

The result of using the adaptive filter in informative terrain
is shown in Figure 12. In informative terrain, the filter pro-
duces a result similar to the standard filter - a peak at the
correct location, as the higher terrain information pushes α
towards 1.

The result of using the filter in uninformative terrain is
shown in Figure 13. Here, the adaptive filter eliminates the
false peaks that arise using standard TRN weighting, and
yields a low, broad distribution similar to the Gaussian filter



Fig. 14: MBARI Dorado-class Mapping AUV

Fig. 15: AUV trajectory plotted over Soquel Canyon map. The
AUV starts at the right and drives over flat terrain for ∼1km
before entering the canyon.

using the known terrain model, as the low terrain information
pushes α towards zero.

V. OFFLINE DEMONSTRATION ON MBARI DORADO
CLASS AUV

The performance of the adaptive and standard TRN algo-
rithms are compared using data taken by the MBARI Dorado-
Class mapping AUV shown in Figure 14 at Soquel Canyon in
Monterey Bay. The geo-referencing error of this map is known,
and the ’true map-relative’ trajectories incorporate this offset.

The test trajectory is shown in Figure 15. The AUV de-
scends from the surface to 70m depth, then makes a 1km
traverse across flat terrain of 100m average depth before
dropping into Soquel Canyon.

The offline simulations use a particle filter with 4000
particles initialized over a 200m by 200m region at the start of
the trajectory. Figures 16 and 17 show typical results of using
a standard TRN algorithm and the modified TRN algorithm,

Fig. 16: Offline results for TRN filter using standard weight-
ing. The filter converges to a tight peak with a ∼20m offset
before the vehicle reaches informative terrain.

Fig. 17: Offline results for TRN filter using adaptive weighting.
The adaptive filter maintains a broader distribution but con-
verges tightly to the true position when the vehicle reaches
informative terrain.

respectively. These plots are close-ups on the left side of the
map, to demonstrate the filter performance when the vehicle
reaches the dropoff into Soquel Canyon after flying over flat
terrain. The plots show the evolution of the mean in dashed red
and uncertainty in red ellipses relative to the true trajectory.
Although the simulations use a particle filter, ellipses are
chosen to represent the position uncertainty for the sake of
clarity.

TRN results using the standard weighting, shown in Fig-
ure 16 , demonstrate false convergence over uninformative
terrain. By the time the vehicle reaches informative terrain
the filter has converged to an incorrect location with ∼20m
offset.



TRN results using the adaptive weighting, shown in Fig-
ure 17, show slower convergence in flat terrain. Upon entering
informative terrain the adaptive filter converges rapidly to the
correct location with an accuracy of a few meters.

VI. CONCLUSION

The presented analysis demonstrates the standard TRN
estimators implicitly assume that the vehicle is operating in
informative terrain. This assumption can cause the filter to
converge to the wrong location when the vehicle is operating
in uninformative terrain.

Adjusting the filter measurement weighting to meet a robust
bound on the likelihood of false peaks presents an effective
means of preventing false peaks in flat terrain.
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