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Abstract—Providing a series of images of a site over time with
a survey-class AUV presents numerous challenges, particularly
in the process of getting close to rugged terrain with a motion-
constrained vehicle in an uncertain environment. To deal with
this, a baseline approach presented in previous work by the
authors plans spline-based trajectories based on an a priori
map of the terrain, allowing for improved performance over
purely reactive control schemes. This paper extends that approach
to account for uncertainty in the environment, both in the
knowledge of the terrain and the motion of the vehicle, providing
additional robustness and safety, while minimizing the potential
loss in performance. The trajectory optimization approach is
demonstrated over simulated terrain.

I. INTRODUCTION

A motivating mission for Autonomous Underwater Vehi-
cles (AUVs) is to collect a series of images of a site over time
to monitor it for change. In order to perform such a return-to-
site mission, the vehicle must be able to navigate back to the
site of interest, then drop down close to the terrain to gather
images.

Terrain-Relative Navigation (TRN) has made the naviga-
tion task possible in recent years, allowing the vehicle to return
within a few meters of a site of interest by navigating with
respect to an onboard a priori map of the terrain [1], [2], [3].

However, imaging the sea floor with an AUV presents
several challenges. Because sites of interest can be far from
the AUV’s launch point, an AUV optimized for range, or
survey-class, may often be used. The result of this is that
the AUV will likely have limited maneuverability (e.g. large
turning radius and limited pitch capability). An example of
such a vehicle is shown in Figure 1, one of the Monterey
Bay Aquarium Research Institute’s (MBARI) Dorado-class
AUVs. These motion contraints create a significant challenge
in rugged terrain when the AUV must fly within only a
few meters of the sea floor in order to achieve sufficient
illumination of the terrain for a visible wavelength camera (e.g.
due to the turbidity of the water).

Another challenge to imaging the terrain safely is that
there will be uncertainties in the a priori knowledge of the
environment as well as in the trajectory actually flown by the
AUV. That is, there will be uncertainty in the map of the terrain
and the model of the AUV used to compute the planned paths
as well as unknown disturbances acting on the AUV.

A demonstrated approach to maintaining the safety of the
AUV is to fly reactively, using a forward-looking sonar to

Fig. 1. A Dorado-class AUV at MBARI.

observe the terrain ahead [4], [5]. However, such reactive
approaches are often overly conservative, as they do not take
advantage of any prior knowledge. This can result in large
sections of terrain not being imaged.

Previous work by the authors [6] demonstrated that plan-
ning trajectories using a priori map data can provide a
significant improvement in performance over purely reactive
control schemes. The approach described there involved an
optimization problem to plan spline-based trajectories that
were constrained to satisfy motion constraints.

However, the previous approach assumed perfect knowl-
edge of the environment, making it vulnerable to unmodeled
uncertainty in the environment that could lead to violations of
the minimum altitude safety constraints. See Figure 4.

This paper extends that previous work to include uncer-
tainty in the optimzation in order to improve robustness and
safety. This new approach is based on the work on chance
constraints found in [7], modified for use with the spline
trajectory implementation.

II. BASELINE APPROACH

The trajectory planning approach presented in [6] uses
a uni-parametric spline to define the trajectory, which is
constrained to be both safe and feasible.



Fig. 2. A depiction of the planned trajectory over the terrain. Points are
moved to the desired standoff distance, then the trajectory is planned to fit
them as closely as possible while observing the motion and safety constraints.

Splines are chosen because they provide a smooth, easily
differentiable trajectory that requires the determination of a
smaller set of parameters (i.e. the control points) than the
number of data points, reducing the required computation and
allowing this approach to be implemented online. Further,
trajectories can be planned through any sequence of 3D points,
allowing this approach to plan trajectories using data from
either an a priori map or a local terrain profile measured by
onboard sensors.

A uni-parametric spline can be written as follows,

C = NP

C(1) = AP

C(2) = BP,

where C is the spline curve, C(j) its jth derivative, P are the
control points, N are the basis functions, and A and B are the
first and second derivatives of the basis functions respectively.
(For a detailed discussion of splines, see [8].)

To calculate a trajectory, a set of data points, dk, is
generated through which the trajectory is desired to pass. The
whole set of all k data points is D. In the results shown here,
the desired points are generated by taking points from the map
of the terrain at approximately one-meter intervals and raising
them to the desired standoff distance.

Thus, the goal for the optimization is to find the control
points P for which the desired points D are most closely
matched. The point on the spline NkP corresponds to the
data point dk, where Nk represents the basis functions eval-
uated at the kth point along the spline. At the same time,
constraints must be enforced that ensure that the trajectory is
still achievable for the motion-constrained vehicle and never
gets dangerously close to the terrain. Consequently, motion
constraints are placed on the curvature, κ, and the pitch, θ.
The safety constraint can be defined as E < 0, where E is the
margin of safety beyond the minimum standoff distance.

The baseline optimization problem being solved can be
written as

minimize
P

‖NP −D‖

subject to κ ≤ κmax

− θmax ≤ θ ≤ θmax

E > 0.

(1)

The constraints are further detailed below, separated into
the two categories of motion constraints and safety constraints.

A. Motion Constraints

The vehicles that this work has focused on are survey-
class AUVs that have been designed for long distance travel –
usually a long, thin cylinder with only a vectored thruster at
the rear. As a result, the vehicle is unable to hover and must
maintain forward motion in order to retain control authority.

For this type of vehicle, a minimum turning radius is a
convenient and effective description of its maneuverability.
This minimum turning radius can be expressed as a maximum
curvature, κmax = 1/rmin, of the spline trajectory. For the
AUVs used in the results presented here, the effective turning
radius is 17 meters.

Curvature is defined as follows and can be written in terms
of the spline parameters.

κ =
‖C(1) × C(2)‖
‖C(1)‖3

=
‖AP ×BP‖
‖AP‖3

.

(2)

The curvature constraint is difficult to implement as written
in Equation 2. However, a conservative and more computation-
ally convenient version of the constraint can be expressed as

κ =
‖AP ×BP‖
‖AP‖3

≤ ‖BP‖
‖AP‖3

≤ κmax (3)

The pitch constraint can be written in terms of the ratio of
the vertical component and the magnitude of the first derivative
of the spline,

‖sin(θ)‖ =
‖AP (3)‖
‖AP‖

≤ sin(θmax). (4)

Both of these parameterized motion constraints are non-
convex, but are written in a form that makes them easily
differentiable with respect to the spline control points, P . By
squaring the constraints, the Hessian of the Lagrangian can
be computed in closed form, enabling efficient solution via
interior point methods.

These constraints are enforced at locations all along the
spline trajectory.

B. Safety Constraints

As well as ensuring that the trajectories are feasible, they
must also respect the minimum standoff distance in order to
remain safe.

For the task of bottom following for the imaging mission,
the most important safety constraint is ensuring that the vehicle
never gets dangerously close to the terrain. This constraint,
shown in Figure 3, can be written as

Ek = hᵀk (NkP − dk,min) > 0, (5)

where Ek is the margin of safety at the kth location, defined as
the distance in the direction hk, which is perpendicular to the
terrain, between the point NkP on the spline and the minimum
standoff distance, dk,min.



Fig. 3. Minimum standoff distance constraint showing Ek . The trajectory
is constrained to keep Ek > 0, i.e. outside the minimum standoff distance
dk,min.

This implementation provides a hard, deterministic con-
straint on the minimum standoff distance, between the kth
location on the spline and the kth data point. With this
implementation, the constraint is linear, allowing it to be solved
very quickly within the optimization.

III. ADDING UNCERTAINTY

In order to make these planned trajectories more robust to
the known sources of uncertainties in the system, uncertainty
must be incorporated into the safety constraints. That is,
instead of placing deterministic constraints on the minimum
standoff distance as used in the baseline approach, limits
are enforced on the probability of violating those uncertain
constraints.

The goal is to jointly constrain the probability of getting too
close to the terrain at all points to be less than some threshold,
δ. With this, the optimization becomes

minimize
P

‖NP −D‖

subject to κ ≤ κmax

− θmax ≤ θ ≤ θmax

P (E < 0) ≤ δ.

(6)

However, this joint multivariate probability distribution is
prohibitively computationally complex, so a method to relax
the problem is needed to make it computationally feasible
for onboard computation. There are a number of common
relaxations to separate the joint constraint into a set of in-
dividual, independent constraints. The approach selected here
is to use Boole’s inequality, which states that the sum of the
probabilities of the individual events will be greater than or
equal to the joint probability of the events. For the problem
described above, this becomes

P (E < 0) = P

(⋃
k

Ek < 0

)
≤
∑
k

P (Ek < 0) . (7)

As a result, this relaxation will overestimate the probability of
violating the constraints, giving a trajectory that is conservative
on the side of safety.

With the definition of what constitutes unsafe proximity to
the terrain given in Equation 5, the probability of violating that
minimum can now be constrained as

P (Ek < 0) ≤ εk∑
k

εk = δ, (8)

where εk is the probability of violating the kth limit, and
δ is the total allowable probability of violation. Now the
optimization becomes

minimize
P

‖NP −D‖

subject to κ ≤ κmax

− θmax ≤ θ ≤ θmax

P (Ek < 0) ≤ εk∑
k

εk = δ.

(9)

Under the assumption of Gaussian uncertainty in the sys-
tem, each individual constraint can be written as

P (Ek < 0) = 1− Φ

(
Ek

σk

)
≤ εk, (10)

where Φ (·) is the Gaussian CDF and σ2
k is the variance of the

uncertainty associated with the kth constraint. This function
is convex for values of εk < 0.5, allowing for rapid solution
in the optimization. In order to evaluate this constraint, the
uncertainty term, σk, must be calculated.

A. Determination of Uncertainty

Capturing the various sources of uncertainty in σk is an
important part of implementing chance constraints.

By assuming that the spline trajectory and the map are
uncorrelated,

σ2
k = var (NkP − dk,min) (11)

can be reduced to

σ2
k = NkΣPNkᵀ + σ2

dk. (12)

The first component in this equation, ΣP , is the uncertainty
in the location of the spline’s control points. Another way to
interpret this term is that it represents the amount of uncertainty
in the vehicle’s ability to follow the trajectory. This captures
the stochastic sources of error in the motion of the vehicle,
including modeling errors and disturbances such as currents.

The other component of uncertainty, σ2
dk, captures the

uncertainty in the knowledge of the terrain. Maps of the terrain
are not perfect, with errors arising from averaging as well as
small changes to the terrain over time. In addition, the errors
that arise from averaging are amplified in exciting terrain.
Therefore, the uncertainty from the map is composed of two
terms – a baseline noise, σ2

nom, and a term that is calculated
based on the variation in the surrounding terrain, σ2

surr.

σ2
dk = σ2

nom + σ2
surr. (13)

When planning directly from an a priori map, σ2
surr is

computed using map cells in all directions. This takes into



Fig. 4. Reactive trajectory (red dashed line) compared to pre-planned trajectory (solid blue line). The top plot shows the trajectories over the map and the
terrain. The lower plot shows the altitude of the trajectories over the true terrain. The pre-planned trajectory has much better performance, staying within the
ideal imaging range for significantly more of the trackline.

account errors in the localization of the vehicle with respect
to the map. However, when planning a trajectory based on a
forward-looking profiling sonar, only along-track data points
are available and therefore used to calculate σ2

surr.

The evaluation of uncertainty from Equation 12 can be ap-
plied to Equation 10, allowing the constraint of the probability
of violating the minimum standoff distance to be implemented.

IV. RESULTS

For the results shown here, trajectories have been planned
for an AUV with a 17 meter effective turning radius and a
maximum pitch of 45 degrees. The desired standoff distance
is 3 meters, and the minimum standoff distance for safety is
2 meters. The ideal imaging range is given as 2-4 meters of
altitude.

Similar to work presented previously [6], Figure 4 shows
the improvement in performance of a trajectory planned with
a priori map data over that of the trajectory generated with a
reactive approach.

The reactive approach implemented here uses a forward-
looking multibeam sonar to sense the terrain ahead of it. The
commanded depth is set by the depth of the highest point
within a given distance ahead of the vheicle. As a result, as
soon as the AUV sees the step in the terrain ahead, it pulls up
to ensure safety.

The two trajectories flown by the vehicle traveling from left
to right are shown in the top plot of Figure 4 over the map

and the terrain, with the reactive trajectory as a red dashed line
and the pre-planned trajectory as a blue solid line. The lower
plot shows the altitude of the two trajectories over the true
terrain. The pre-planned trajectory uses the a priori map data
and stays closer to the terrain, staying within the ideal imaging
range for significantly more of the trajectory, providing much
improved performance.

Note that while the pre-planned trajectory in Figure 4
remains above the minimum altitude of 2 meters with respect
to the map, it ends up getting closer to the true terrain since the
assumption has been made that the map perfectly represents
the terrain.

Figure 5 demonstrates the improvement in safety that
can be gained by explicitly incorporating knowledge of the
uncertainty into the planning of trajectories. For this example,
δ = 0.15, ΣP = 0.2 meters, σdk = 0.5 meters, and the
map has Gaussian noise added with a standard deviation
of 0.75 meters. ΣP is left small to highlight the effects of
map uncertainty. The top plot of Figure 5 again shows two
trajectories over the map and the terrain, with a trajectory
planned with no uncertainty shown with a magenta dashed
line and a trajectory planned with uncertainty in the terrain
shown with a solid blue line.

The lower plot of Figure 5 shows the altitude of the two
trajectories over the true terrain. While the trajectory planned
without uncertainty violates the minimum altitude of 2 meters,
the trajecory planned with knowledge of the terrain uncertainty
never comes too close to the terrain.



Fig. 5. Trajectories planned with (blue solid line) and without (magenta dashed line) uncertainty. The top plot shows the two trajectories plotted over the map
and the true terrain. The lower plot shows the altitude of the two trajectories over the true terrain. The trajectory planned with no uncertainty spends more time
in the ideal imaging range, but violates the minimum altitude.

Including uncertainty in the trajectory optimization results
in improved safety for the vehicle, there is a tradeoff with
the potential loss of performance, with the AUV spending
more time outside of the ideal imaging range. This is the
fundamental trade in planning trajectories using uncertainty –
giving up some performance in order to have increased safety
by being more robust to uncertainties in the environment. The
approach presented here explicitly minimizes the potential loss
of performance while achieving the desired degree of safety.

V. CONCLUSIONS

This work demonstrates an effective way of incorporating
known sources of uncertainty into the process of planning
aggressive, terrain-following trajectories. The constrained op-
timization provides a trade off between safety and perfor-
mance by explicitly incorporating uncertainty into the safety
constraints. Trajectories that are planned without incorporating
uncertainty can end up too close to the terrain, while those that
take the sources of uncerainty into account are more robust, but
have a corresponding reduction in performance as they spend
more time outside the ideal imaging range.
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