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Abstract— Planning routes, defined by a series of commanded
waypoints between a start and goal location, for return-to-site
missions using Autonomous Underwater Vehicles with Terrain
Relative Navigation is particularly challenging due to the depen-
dence of the navigation estimate on the path flown. Waypoints
must be selected to ensure the vehicle has an accurate TRN
navigation estimate to arrive at the intended target site with a
high probability. This probability can be estimated using Monte
Carlo simulation and used to optimize the vehicle route. An
Upper Confidence Bound can also be used in the optimization
to decrease the number of simulations when compared to a
brute force search. For the example return-to-site mission at
Portuguese Ledge, the optimization significantly increases the
expected probability of ending at the target site when compared
the straight line route.

Index Terms—TRN, AUV, Planning, Waypoints, Monte Carlo,
UCB

I. INTRODUCTION

Presented is a new method for defining an optimal route
for an autonomous underwater vehicle (AUV) for a return-
to-site mission using terrain-relative navigation (TRN) as its
navigation solution. The objective of the mission is to arrive
at a goal location that is specified on a map, for example
to perform repeated scientific observations of that site. The
challenge is that using TRN causes the accuracy of the AUV’s
navigation solution to be dependent on the route flown. The
method presented here generates a commanded route, defined
by a set of intermediate waypoints, as the solution to an
optimization problem that maximizes the probability that the
AUV will reach the goal location.

TRN is the enabling technology for these return-to-site
missions due to its ability to provide a position estimate that is
map relative rather than one defined in inertial coordinates (e.g.
latitude-longitude). This is critical since, while the location of
a goal site might be well known on a map, the map used
may have significant geo-referencing errors and/or the vehicle
inertial estimate may have accumulated drift. TRN requires
only a map of the terrain and on-board sensors such as a DVL
or INS, plus an altimeter or other range measuring device (e.g.
sonar). It can provide a drift-free, map relative position that is
accurate on the order of the map resolution.

Recently TRN’s utility for a return-to-site mission was
demonstrated by the Monterey Bay Aquarium Research Insti-

Fig. 1: Dorado Class AUV

tute (MBARI) at the Portuguese Ledge site in Monterey Bay
using a Dorado Class AUV, which is pictured in Figure 1.
The results of the demonstration are shown in Figure 2. After
the TRN estimate converges, the vehicle is able to follow the
planned route and fly directly over the target site. Full results
from this demonstration are presented in [1]. Without the TRN
estimate, the vehicle would have missed the target site by 10s
of meters.

Figure 3 shows another run at Portuguese Ledge. In this
run, the AUV did not succeed in flying over its goal site.
The difference between these runs is that in the first run, the
AUV flew over information rich terrain which enabled TRN
to provide an accurate estimate of the AUV’s position. In the
second run, the AUV flew primarily over flat, information poor
terrain, and hence did not succeed in following the commanded
route. These results demonstrate the interaction of the route
flown and the probability that the AUV will reach its goal
state.

One way to define the route followed by an AUV is to
choose a set of intermediate waypoints for it to follow. To
ensure a high probability of mission success, a TRN return-
to-site mission requires a planned set of waypoints that trades
traditional performance metrics (i.e. distance traveled) against
the expected accuracy of the navigation solution. The offline
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Fig. 2: TRN Return-to-Site Demo at Portuguese Ledge

Fig. 3: Unsuccessful TRN Return-to-Site Run at Portuguese
Ledge

technique presented in this paper is designed to optimize the
probability of reaching the intended goal site.

II. BACKGROUND

Picking waypoints when using TRN-based navigation is
more challenging than basic planning problems because the
performance metric is both probabilistic and stochastic. Graph
based searches usually rely on a metric or heuristic that
satisfies the triangle inequality (i.e. distance traveled) or one
that can be back propagated, both of which are not the case
for the chosen probabilistic performance metric. Also, without
a probability distribution assumption (i.e. Guassian), iterative
approaches are computationally intractable for this problem
because these methods rely on repeated calculation of their
metric. Finally, TRN’s use of a stochastic position estimation

Fig. 4: TRN Sonar Correlation from a Single Measurement

filter makes prediction of the probabilistic performance metric
even more difficult to calculate in closed-form. The stochastic
TRN filter requires the method is able to estimate the proba-
bilistic performance metric used in the optimization.

A. Terrain Relative Navigation

TRN estimates a map relative position using a Bayesian
filter. Sonar range measurements are correlated to a known
map to predict the vehicle’s position. At each time step, the
prediction is updated with the motion from the INS and then
refined by comparing the actual measurement to predicted
range measurements. Due to the initial inertial drift of the
vehicle and the potential geo-referencing errors in the map,
the filter is initialized with a large initial (uniform) uncertainty.
The predicted measurements encompassed in this area of
uncertainty are highly nonlinear and linearization assumptions
of traditional filter approaches (i.e. Kalman Filter) are invalid.
Instead TRN is accomplished using a particle filter, which is a
stochastic, non-parametric filter. The vehicle position estimate
is represented as a set of particles randomly spread on an area
the map. The particle filter is appropriate for TRN because it is
able to handle the non-linear observation model, often leading
to multi-modal distributions. Figure 4 shows one correlation
of a single measurement to the map. The multi-modal TRN
distribution resulting from this correlation evolves through
time as the vehicle travels. The distribution relies on both the
full topography of terrain encompassed by the particle spread
and also the actual sonar measurements. The TRN estimate
is only used in the closed loop control if the covariance of
the weighted particle position estimates are below a gateway
threshold. More information about particle filters in general
can be found in [2] and its application to TRN in [3]. Since the
TRN estimate is path dependent, enough particles are spread
within the region of uncertainty to ensure there are particles
estimates in the vicinity of the actual vehicle position. Since
particle sampling and motion are stochastic, the TRN filter
performance can be difficult to predict from a single evaluation
of a route.

III. METHOD

The proposed method for choosing waypoints maximizes
the probability that the AUV arrives at its intended goal.
Specifically, starting from a stochastic initial region, the



Fig. 5: Mission Waypoints

method maximizes the probability that the AUV’s final po-
sition is within a specified radius of the goal site (the value
function) by changing the commanded route of the vehicle.
This route is defined by a fixed start waypoint, a fixed goal
waypoint and one or more intermediate waypoint positions
(free variables), all of which are defined on a given map. An
example is shown in Figure 5. The start waypoint and goal
waypoint are fixed locations on the map, and free variable
choices are shown as the intermediate waypoints.

The stochastic nature of the TRN navigation filter and
the analytic intractability of this performance metric function
motivates the use of a Monte Carlo (MC) sampling method to
approximate the optimization’s value function. MC methods
estimate a function by averaging a set of samples. As the
number of samples increases, the mean value approaches the
true value. The TRN route planning method is based on the
Monte Carlo Tree Search (MCTS). MCTS is an algorithm that
has been shown to be effective on solving decision making and
game playing problems, even when other solution methods
are not [4]. Two major benefits over other MC methods from
MCTS that are used in the proposed method are: use of
an Upper Confidence Bound (UCB) and organization into
a tree structure. Supplementing the value function with an
UCB reduces the total number of simulations required for
the optimization. The tree structure increases search efficiency
by breaking down a large decision into a series of smaller
decisions.

The method can be broken down into two major phases as
shown in Figure 6. Using information about the map, vehicle,
and mission, potential waypoint locations are sampled and
formed into a tree. Next, this tree is used in an MC opti-
mization that outputs an optimal route and its corresponding
success probability.

A. Waypoint Sampling and Tree Formation

Prior to running the optimization, a finite set of waypoints
is sampled from the map and formed into a search tree as

Fig. 6: TRN Route Planning Method

Fig. 7: Example Tree with 3 possible waypoint locations and
4 waypoint max route length

show in Figure 7. Using a sampling approach to build the
waypoint tree allows for planning on larger sized maps without
increasing the total number of routes. Each node on the tree
corresponds to a north/east waypoint position on the map. This
position is not unique to all other nodes in the tree, but the
position is unique to all other nodes with the same parent
node. In the example tree, all the #1 nodes correspond to the
same north/east coordinate in the map, but they arrive at this
waypoint via different routes. The tree’s root node is associated
with start waypoint position and every leaf node (and only
the leaf nodes) are assigned the goal waypoint position. The
number of waypoints in a route is determined by the depth of
that leaf node. The total number of routes being tested in the
optimization is equal to the total number of leaf nodes and is
the largest contributor to the length of time required for the
optimization.

B. MC Optimization

Using the tree, the MC optimization algorithm iterates
between two steps until it reaches an exit criteria. The first
step is to sample the value function for a specific route. Since
sampling cannot be done directly, it is accomplished using a
MC simulation of the vehicle using the route. The simulation
is assigned a value of +1 if the vehicle was within a certain
radius of the goal and 0 otherwise. Next, the tree is updated
using this value to decide the next route to simulate. The tree
is updated backwards, starting with the leaf node. The value
of a leaf node is equal to the mean estimate of all prior runs



Fig. 8: Route Selection as a Series of Smaller Decisions

plus UCB. The value of a non-leaf node is updated to be
the maximum value of all its children nodes. The subsequent
route to simulate is chosen by traversing down the tree via
the maximum valued child node until a leaf node is reached.
The nodes effected during the route selection is illustrated in
Figure 8. These two MC optimization steps continues until it
reaches one of the terminal conditions.

1) Upper Confidence Bound: The use of an UCB allows
for a higher proportion of simulations to be run on routes
with a higher estimate. An equally valid approach would be
to try routes an equal number of times, but the amount of
simulations required to ensure a statistically significant result
would be significantly higher. An alternative approach would
be to simulate the route with the highest estimated value
(greedy approach); however, this approach may miss a high
value route due to a ”unlucky” initial sample.

The use of an UCB in the value function mitigates this issue
by balancing exploitation and exploration. The value function,
V (r), supplemented with UCB used in the optimization is
shown in Eqn 1.

V̄ (r) =
1

nj ()

nj∑
i=1

xi (r) + c

√
2 ln (N)

nj (r)
(1)

The first term is an estimation of the success probability value
for a specific route, r, that is being estimated through repeated
MC sampling. It is the average value of results from specific
simulations, xi(r), over all nj(r) simulations of that route.
Inclusion of this term biases the route selection towards higher
value routes, similar to the greedy approach. The second UCB
term promotes exploration of routes that have been simulated
a low number of times, nj , when compared to the total number
of simulations performed, N . The exploration constant, c, is
the weighting parameter between those two objectives. As both
N and nj increase, the second term approaches 0. The goal
of the optimization is to find the route that maximizes V̄ as
the number of simulations increases.

2) Terminal Conditions: The optimization algorithm can be
run for a fixed length of time, fixed number of simulations or
until a ”suitable” route is found. While the first two terminal
conditions allow for temporal constraints on how long the
algorithm takes, the third terminal condition can be set so that
the algorithm terminates when a route is found to meet the
mission’s needs. This can be based on a minimum threshold
for a successful mission probability and a high amount of
certainty of this value. One downside of this terminal condition

is that there is no guarantee of such a route existing and
if it does exist, the number of simulations needed to find
it is unknown. Also, if the threshold condition is too low,
the algorithm may terminate earlier than needed returning a
less than optimal route. When any of the terminal conditions
are reached, the algorithm returns the route with the highest
estimated probability of success along with the measure of
certainty of the estimate.

IV. RESULTS

A. Setup-up

The results presented are for an example return-to-site
mission at Portuguese Ledge in Monterey Bay. The route is
intended to be flown at a constant depth between the start
and the goal waypoints locations shown in Figure 5. The
vehicle location is initialized uniformly random within a 100m
square box around the start location. The chosen optimization
performance metric is the probability of ending within 2m
horizontal distance of the goal waypoint. The set of waypoints
used in the optimization are sampled in a uniform grid as
shown in Figure 5. The optimization uses simplified dynamics,
control, and measurement models as inputs to a TRN particle
filter. The optimization termination criterion is a fixed number
of total simulations.

B. Discussion of Single Waypoint Results

The progression of the optimization for a single intermediate
waypoint route displayed in Figures 9, 10, and 11 demonstrates
the benefits of using an UCB. The 7 waypoints with the
highest estimated value are displayed on the map. After 1000
simulations, the percentage of simulations is spread fairly
evenly between all 143 possible intermediate waypoint routes
due to a high uncertainty in the value for each. After 4000
simulations, the optimization has started to narrow the search
down to one of two areas. Although they account for 5%
of the 143 potential routes in this example, the 7 highest
value routes were simulated 10% of the time at this point in
the optimization. At the conclusion of 16000 simulations, the
optimization converged the search to one of the waypoints in
the north west corner of the search area. These 7 top value runs
accounted for 15% of the simulations. Also, for comparison,
over 4x’s the number of simulations would be required for a
brute force search to achieve the same precision on optimal
route value.

The optimization returned the highest value route through
the north west corner as shown in Figure 12. A MC analysis
using 1000 runs for this route was compared to the straight line
route. The analysis used a higher fidelity simulation running
vehicle TRN code. The optimal single waypoint route has
a significantly higher success probability than the straight
route. This is evident both in the spread of the final position
errors in Figure 13 and the maximum circular error probability
in Figure 14. To achieve the same success probability, the
maximum acceptable error for the straight line path would
need to be increased to over 3m. Alternately, the single
waypoint route achieves an 80% success probability at this 3m



Fig. 9: Optimization at 1000 Simulations

Fig. 10: Optimization at 4000 Simulations

Fig. 11: Optimization at 16000 Simulations



Fig. 12: Resulting Optimal Path

(a) Straight Line Route (b) Optimal Route (1 WP)

Fig. 13: MC Analysis Results (1000 Simulations)

horizontal error. The additional route length allowed longer
travel over higher information terrain, improving the TRN
position estimate.

C. Expansion to Multiple Intermediate Waypoints

The probability for a maximum horizontal error of 2m can
also be improved in this example problem by expanding the
search to routes with two waypoints, as shown in Figures
15 and 16. While the method expands to higher number
of intermediate waypoints, the total number of all possible
waypoint combinations also greatly increases. This leads to
a higher number of simulations required for the optimiza-
tion. For this reason, this two waypoint optimization was
demonstrated using only a limited set of two waypoint routes.
Even with the limited set, the additional freedom of a second

Fig. 14: Final Maximum Horizontal Error Results Analysis

Fig. 15: Resulting Optimal Paths (2 Waypoints)

Fig. 16: Final Maximum Horizontal Error Results Analysis (2
Waypoints)

waypoint is able to achieve higher success probabilities than
the single waypoint route.

V. SUMMARY

A method was presented to plan optimal waypoint routes
for an AUV return-to-site mission using TRN by maximizing
the probability of being within a goal region around the
site of interest. The analytically intractable probability was
approximated and optimized through the use of MC simula-
tions. With the addition of an UCB, the algorithm reduced
the total number of simulations required when compared to a
brute force search. Routes were planned and analyzed using
computer simulations for a mission in Monterey Bay with sea
trials planned later this year to verify results. Although this
method was applied for two waypoint routes, future work is
being focused on improving the scalability of the algorithm
when expanding to multiple waypoint routes.
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