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Abstract—

This paper demonstrates the use of sonar imagery as an
automated pilot aid for localization of a remotely-operated
vehicle (ROV) with respect to an a priori bathymetric terrain
map. Specifically, a method is presented to correlate acoustic
shadows in sonar imagery with expected visibility images
generated from a bathymetry map, where acoustic shadows
are significant drops in the sonar image intensity. An expected
visibility image is generated for a given ROV position estimate
with respect to a stored terrain map by extracting a bathymetry
profile along the sonar scan plane and then evaluating a metric
termed “differential height” to quantify visibility probability in
the pixel space of the sonar image. Results from Monterey Bay
Aquarium Research Institute (MBARI) ROV field trials using a
Kongsberg mechanically-scanned imaging sonar are presented
that demonstrate localization using the proposed method.

I. INTRODUCTION

The ability to localize a remotely-operated vehicle (ROV)
accurately with respect to the seafloor terrain enables safer
operation and improved navigation to sites of interest. Typical
ROV positioning is accomplished through acoustic triangu-
lation of the ROV from the surface vessel, e.g. using an
ultra-short baseline (USBL) system. While this method of
ROV positioning may be suitable for some mission profiles,
it does not provide a terrain-relative position estimate of
the ROV, and as such is insufficient for missions requiring
accurate knowledge of ROV position relative to the seafloor.
A terrain-relative position estimate is particularly imporant
when the terrain map is inaccurately geo-referenced, as a
USBL latitude/longitude estimate does not account for geo-
referencing error. This motivates the development of a terrain-
relative position estimator leveraging sensors commonly found
on ROVs. In this work, imaging sonars are used.

Imaging sonars measure the intensity versus range for
sonar beams over a span of azimuth angles. At each azimuth
angle, the sonar transducer emits a pulse of acoustic energy
and listens for return pings, much like sidescan sonar sys-
tems. Imaging sonars can be broadly classified into multi-
beam and mechanically-scanned types. Multibeam imaging
sonars form separate beams with narrow azimuthal and wide
elevation beam-widths using a phased array of transducers.
Mechanically-scanned imaging sonars physically rotate the
sonar transducer in azimuth.

Sonar imagery is currently used by ROV pilots to infer

Figure 1: ROV operational motivation for the proposed sonar
image-based localization.

map-relative position from features in the sonar image. While
ROV pilots are skilled at this task, time and effort would be
spared if it were automated. Furthermore, an automated pro-
cess could explore a broader range of possible ROV position
hypotheses to account for larger map geo-referencing errors.
Figure 1 provides a schematic depiction of the operational
motivation for this work.

Using sonar imagery as a quantitative navigation aid re-
quires a measurement model to generate an expected sensor
signal as a function of the vehicle pose and map, which
can then be correlated with a measured sensor signal to
estimate position. Forming a measurement model for sonar
image intensity is difficult, as intensity returns are complex
functions of grazing angle, terrain surface composition, and
water properties [1]. Further, there are gains and filters applied
to the raw signal internal to the sensor which are often, as is
the case with this work, unknown to the operator. As such,
predicting the intensity signal accurately requires more than
a vehicle pose estimate and bathymetry map alone. Acoustic
shadows, which are significant drops in sonar image intensity,
however, are determined primarily by line-of-sight occlusion
due to the geometry of ensonified terrain relative to the sonar
transducer, and are subsequently well-suited to bathymetry-
based correlation techniques.



This paper proposes a method to correlate acoustic shadows
in sonar imagery with expected signals generated from a
bathymetry map, and presents results from field trials that
demonstrate position localization using the proposed approach.
Section II briefly describes related prior work, particularly
with respect to the use of sonar imagery for navigation.
Section III provides technical detail of the approach proposed
in this paper, specifically with regard to acoustic shadow
labeling in the measured sonar image, expected visibility
image generation, and position estimate weighting. Section
IV presents results from field trials obtained in collaboration
with the Monterey Bay Aquarium Research Institute (MBARI),
where the proposed method was used to provide terrain-relative
localization estimates for an ROV equipped with a Kongsberg
mechanically-scanned imaging sonar.

II. RELATED WORK

Sonar imagery has been successfully utilized previously
for underwater localization, however most methods differ from
the approach presented in this paper in that they are based on
correlating sonar image to sonar image as opposed to sonar
image to bathymetry. These image-to-image methods typically
correlate using computer-vision image features, and require
a flat seafloor assumption. The flat seafloor assumption is
employed due to the inherent ambiguity in extrapolating spatial
information from sonar imagery; specifically, the azimuth and
range of a given intensity return are known for sonar imagery,
but the elevation angle is unknown.

In [2] a method is proposed to detect and match landmarks
in sidescan imagery by level set evolution on Haralick feature
maps, where the nature of the landmark registration is similar
in nature to visual feature matching. The work of Fallon et al.
[3] matched sidescan image features across multiple sidescan
images and fused the spatial matching with acoustic ranging
from a surface vessel for navigation drift mitigation. More
recently, the work of King et al [4] explored the extension of
computer vision feature technology to sidescan image registra-
tion, with results showing successful loop closure registration.

In a similar vein, sonar imagery has been used in AUV
Simulataneous Localization and Mapping (SLAM) solutions in
the context of landmark detection and matching for improved
navigation. In [5], distinctive features are identified in sidescan
sonar imagery, and matched across images to estimate and
track landmark positions. These landmark correspondences are
used to improve the navigation estimate in order to project a
more smooth and consistent sidescan map.

The work presented in this paper differs from these past
works in that the presented method produces a navigation esti-
mate with respect to an a priori terrain map, rather than relative
to previous sonar images. Further, in this work there is no need
for a flat bottom assumption in order to disambiguate the sonar
intensity returns; expected visibility images are generated from
a bathymetry map and projected into the sonar image range-
azimuth domain, which is an unambiguous mapping.

This approach was first described by the authors in [6].
Two methods were presented: (1) XOR-based correlation using
an expected shadow signal based strictly on line-of-sight
occlusion, and (2) correlation using expected visibility images
estimated from the relative heights of terrain with respect to

line-of-sight from the sonar transducer, termed “differential
height”. The differential height method was shown to yield
superior navigation performance, and is the basis for the work
presented in this paper.

III. METHOD

The estimation method presented in this paper correlates
acoustic shadows in measured sonar imagery with expected
visibility images. Acoustic shadows are large drops in return
intensity in the sonar image. While sonar intensity returns
from low-reflectance terrain surfaces, e.g. featureless mud,
can be low, geometric acoustic shadows have been observed
to generate significantly lower return intensities. As such,
shadow-based correlation is well suited to bathymetry-based
localization.

Measured shadows are assigned hard labels according
to sonar image intensity. This is accomplished via inten-
sity thresholding, and/or a region-growing shadow labeling
method. Further morphological operations may be performed
on the binary shadow signal in order to clean it. Section III-A
provides the details on shadow labeling.

The expected visibility image is probabilistic, and is gener-
ated by calculation of a metric termed “differential height”. For
a given position estimate, a bathymetry profile of terrain points
for each azimuth scan plane of the sonar image is extracted
from the stored terrain map. A differential height value is
calculated for each terrain point, which is a measure of how
visible/occluded the terrain point is. A visibility probability for
each terrain point is calculated from its differential height value
and then projected into the range-azimuth space of the sonar
image. Finally, each pixel in the expected visibility image is
assigned a visibility probability through linear interpolation.
The details of the differential height correlation method are
presented in Section III-B.

ROV position hypotheses are populated in a non-parametric
Point Mass Filter (PMF), and an expected visibility image for
each hypothesis is correlated with the measured shadow image
in order to yield a terrain-relative position estimate. Details of
the filtering approach are presented in Section III-C.

A. Acoustic Shadow Labeling in the Measured Sonar Image

Acoustic shadows in the measured sonar image are as-
signed a hard label as follows:

M [u, v] =

{
0 measured shadow
1 otherwise

(1)

where M is the measured binary image, and (u, v) is the pixel
index in the image.

The primary method of labeling shadows is the application
of binary thresholding on sonar image intensity. Image pixels
below the threshold intensity values are labeled as shadow.

If the ROV operator is not satisfied by the thresheld shadow
labels, a region-growing shadow labeling capability has been
developed to assist labeling. The recursive region-growing
algorithm takes as input a seed shadow location specified by
the user, i.e. ROV operator. A mean intensity for the shadow
region is initialized to the seed pixel intensity. The algorithm



recursively steps outward to the four neighboring pixels and
checks two conditions: (1) if the intensity is within a threshold
τ1 of the seed intensity, and (2) if the intensity is within a
threshold τ2 of the mean shadow region intensity. If a pixel
passes these two conditions, the mean intensity for the region
is updated, and the algorithm recursively steps to the untested
neighbors of this new shadow pixel. Pseudocode for the region-
growing algorithm is given below:

Algorithm 1 Region-growing acoustic shadow labeling

Input: Sonar intensity image I , seed pixel (us, vs)
Output: Binary shadow image M
Initialize:
M [u, v]← 1 ∀(u, v)pixels
α← I[us, vs] where α ≡ mean shadow intensity
β ← 1 where β ≡ count of shadow pixels in region
Call:
M ← regionGrower(I,M, us, vs, α, α, β)

function regionGrower(I,M, u, v, γ, α, β)
if |I[u, v]− γ| ≤ τ1 ∧ |I[u, v]− α| ≤ τ2 then

β ← β + 1
α← ((β − 1)α+ I[u, v])/β
M [u, v]← 0
for all (uN , vN ) ∈ neighbor set of pixel(u, v) do

M ← regionGrower(I,M, uN , vN , I[u, v], α, β)
end for

end if
return M

In order to provide the capability to further clean the
shadow detection process, morphological image processing is
employed. The overall effect of the morphological process is to
eliminate speckle noise in shadow regions. The image is first
eroded, which consists of sliding a structuring element (disk or
square) over the image and performing a logical AND of the
pixel values over the structuring element. This has the positive
effect of closing shadow holes, with the negative effect of
growing shadow region boundaries. The image is then dilated
to compensate for shadow boundary growth, which is the same
process as erosion but with a logical OR instead of AND.
Figure 2 presents a measured shadow image before and after
morphological image processing.

B. Expected Visibility Image from Differential Height

An expected visibility image quantifies shadow/visibility
confidence of the ensonified bathymetry for a given position
estimate. This expected image is generated using the “differ-
ential height” metric. The key idea behind differential height
is that some expected shadow assignments are more likely
than others. For example, an expected acoustic shadow due
to grazing should be trusted less than an acoustic shadow
expected behind a large mound. As such, this measure accounts
for measurement uncertainty due to variations in terrain, and
implicitly accounts for uncertainty due to the noise of the
sensor model.

The differential height value for terrain point m in the
transducer ψ-azimuth scan plane of pose estimate i, δziψ,m,

(a) (b)

Figure 2: Measured shadow image before and after morphological
image processing. (a) Raw shadow image. (b) Shadow image after
morphological image processing.

reflects how occluded or visible the terrain point is. Specifi-
cally, the differential height for terrain point m is the distance
that m is above or below its occluding line-of-sight, where the
occluding line-of-sight is from the transducer to the terrain
point j that most occludes m in the scan plane. This is
illustrated in Figure 3.

Figure 3: Differential height diagram. Shown is the differential
height δzm of a visible terrain point m above the occluding
line-of-sight from terrain point j. Terrain points are shown in
green.

If terrain point m is occluded according to line-of-sight
from the sonar transducer, δziψ,m is negative. Similarly, if the
point is visible according to line-of-sight, δziψ,m is positive.
Equation 2 provides the definition of differential height.

δziψ,m = min
j

(xm
zj
xj
− zm),∀j = 1, 2, . . . ,m− 1 (2)

Differential heights are translated into probabilities by pass-
ing them through a sigmoid function, given by the following
relation:

piψ,m = 0.5 + λ
δziψ,m − µ√

γ2 + (δziψ,m − µ)2
(3)



where piψ,m is the visibility probability for terrain point m,
µ shifts the mean differential height, and γ and λ adjust
the sigmoid shape. For the results presented in this work,
λ = 0.4, µ = −0.2m, γ = 0.3m. These parameters were
estimated by fitting the sigmoid function to measured visibility
probabilities in sonar imagery. Shifting the mean accounts
for the observed behavior that expected shadows are overly
predicted by pure line-of-sight when compared to measured
shadows. Further, having λ less than the full possible value
of 0.5 accounts for measurement uncertainty as a means to
prevent filter overconfidence, as detailed in [7]. Figure 4
provides a plot of the sigmoid given by Equation 3.

Figure 4: Sigmoid function given by Equation 3 with param-
eters λ = 0.4, µ = −0.2m, γ = 0.3m

Once visibility probabities have been calculated for terrain
points in the scan planes of position estimate i, these values are
projected into the range-azimuth space of the sonar image, and
linearly interpolated in order to yield the expected visibility
image P [u, v]i for each sonar image pixel (u, v).

C. Multi-resolution Non-parametric Filtering

This work is intended for use with non-parametric position
estimation filters. Examples of such filters include particle
filters and point mass filters (PMFs), both of which are exten-
sively used in underwater navigation solutions, and detailed in
[8]. This work focuses on the output of a single measurement
update for a PMF.

The PMF estimated state is 2-D North and East vehicle
position x = [xN , xE ]T . The orientation of the vehicle (pitch,
roll, heading) is estimated by the ROV inertial navigation
system (INS), and altitude provided by either an altimeter or
the doppler velocity logger (DVL).

A multi-resolution filtering approach is employed to effi-
ciently estimate ROV position. Initially, a coarse grid of dis-
crete state hypotheses is instantiated about the USBL-estimated
ROV position at 4m resolution. Each discrete position hypoth-
esis in the PMF is assigned a normalized measurement weight
w(i,j) according to Equations 4,5.

w
(i,j)
0 =

∏
(u,v)∈C

M [u, v]P [u, v](i,j)︸ ︷︷ ︸
measured visible

+(1−M [u, v])
(
1− P [u, v](i,j)

)︸ ︷︷ ︸
measured shadow

(4)

w(i,j) =
w

(i,j)
0∑

i

∑
j
w

(i,j)
0

(5)

where C is the “correlation region” of the sonar image. The
correlation region contains the pixels that will be used in
the weighting calculation, and is chosen a priori to exclude
regions of the image that contain false shadows due to ROV
geometry. Additionally, pixels near the radius equivalent to the
ROV depth are automatically excluded (using the vehicle depth
measurement), as the water surface generates intensity returns
not based on the bathymetry (see Dataset 2 in Section IV).

Higher resolution grid cells are instantiated about PMF
cells with weight above a threshold. The population of fine-
resolution grid cells is done through a 4-neighbor connected
scheme, shown pictorally in Figure 5. The red circles are
the fine-resolution grid cells and the blue crosses the coarse-
resolution cells.

Figure 5: Connected 4-neighbor fine-resolution PMF grid cell
population scheme. Blue crosses are coarse-resolution grid
cells. Red circles are fine-resolution grid cells

For this work, the refined grid has a spatial resolution of
1m. This value was chosen as a compromise between accuracy
and computational burden. Figure 6 presents the trend for
number of grid cells to evaluate in the connected 4-neighbor
population scheme for one cell of interest as a function of the
ratio of fine-grid resolution to coarse-grid resolution.

Figure 6: Connected 4-neighbor computation trend for one
coarse-grid cell subdivision as a function of the ratio of fine-
grid resolution to coarse-grid resolution.

A filter mean and covariance matrix are estimated by Equations
6,7. While the primary data output of the estimation filter is
the MLE position, the mean and covariance are helpful for the
evaluation of filter confidence.



x̂ =

NN∑
i=1

NE∑
j=1

[
xN (i)

xE(j)

]
w(i,j) (6)

Σx =

NN∑
i=1

NE∑
j=1

([
xN (i)

xE(j)

]
− x̂
)([

xN (i)

xE(j)

]
− x̂
)T

w(i,j) (7)

IV. EXPERIMENTAL RESULTS

Results were obtained using field data from Monterey Bay
Aquarium Research Institute (MBARI) ROV runs that demon-
strate the feasibility of sonar imagery as a quantitative terrain-
relative navigation sensor. Data from two ROVs were collected,
with each ROV outfitted with a Kongsberg mechanically-
scanned imaging sonar located on the vehicle top, as shown in
Figure 7. The sonar images obtained have a maximum range
of 100m. A 1m-resolution digital elevation map (DEM) of the
terrain was used for each dataset.

Figure 7: MBARI DocRicketts ROV with a Kongsberg
mechanically-scanned imaging sonar circled in red. Image
courtesy of mbari.org.

Three ROV datasets were collected in the Monterey Bay
for testing the proposed shadow-based correlation method. For
each dataset, a scanning sonar image was collected while the
ROV remained motionless. Each dataset was tested with a
different means of shadow labeling. The shadows in Dataset
1 were manually selected and grown with the region-growing
algorithm from Section III-A to simulate the possible use with
an ROV pilot interface. The shadows in Dataset 2 were labeled
through intensity thresholding with some region-growing aug-
mentation. The shadows in Dataset 3 were labeled solely by
intensity thresholding.

The expected visibility images were generated with iden-
tical sigmoid parameters for all data sets as specified in
Section III-B. The coarse-resolution grid was 96m by 96m
with 4m spacing. The coarse-resolution filter weight threshold
for evaluation at higher resolution (1m) was set to 0.05.

Table I presents statistics on the three dataset estimators.
The estimate mean and covariance estimates were calculated
using the fine-resolution grid weights exclusively. This was
reasonable for these data, as the cells subdivided to yield the
fine-resolution grid cells contained the following percentages

of the coarse-resolution grid position estimate weights for the
datasets: (Dataset 1) 99.97%, (Dataset 2) 97.15%, and (Dataset
3) 97.76%. Note the meter-level uncertainties of the filter
estimates. Though there is a lack of truth data, the alignment of
the MLE expected visibility images with the measured shadow
images presented in the remainder of this section strongly
indicate the accuracy of the MLE position estimation. As
presented in Table I, the MLE positions for the three datasets
are offset from the USBL-estimated positions on the order of
30-40m for the three datasets.

Set xmle rmle xmean rmean σ1, σ2
1 4, 35 35.2 4.0, 34.8 35.0 0.5, 0.4
2 2, 39 39.0 1.4, 39.4 39.4 1.5, 0.7
3 11, 26 28.2 10.7, 27.4 29.4 2.6, 0.5

Table I: Dataset estimator statistics. All values are in meters.
For each set, vector quantities xmle, xmean and scalar ranges
rmle, rmean are measured from the USBL-estimated ROV
position for that set. Vector quantities xmle, xmean are in local
East, North coordinates. The 1σ covariance ellipse semi-major
and semi-minor lengths are given by σ1, σ2.

Dataset 1 captures the imaging of a large boulder at a deep
site (roughly 2900m depth). The measured shadow image was
labeled by the region-growing algorithm presented in Section
III-A, as there are a small number of clearly identifiable shad-
ows, requiring only a few user clicks to identify the shadows.
Figure 8 presents the correlation results. The values given are
normalized measurement weights as calculated by Equations
4,5. The strong correlation spike in both the coarse- and fine-
resolution evaluations is a solid validation of the proposed
method, though this result is in many ways a “control” test,
as the position estimation should be greatly aided by the large
boulder feature surrounded by relatively flat terrain.

Figure 9 shows the expected visibility image for the Dataset
1 MLE position estimate, the measured shadows, and the
alignment image for the measured and expected images. In the
expected visibility image, blue indicate stronger confidence in
shadow, with red indicating higher confidence in visibility. A
key result from Figure 9 is that the MLE expected visibility
image is well-aligned qualitatively with the measured sonar
image, as shown in the alignment plot. The alignment plot
was generated by thresholding the expected visibility image at
0.5 to form a binary expected image; red in the alignment plot
indicates visibility agreement between measured and expected
images, green indicates shadow agreement, and blue indicates
disagreement. The grey hatched region is the non-correlation
region, i.e. the complement to the correlation region discussed
in Section III-C.

Dataset 2 was collected at shallower depth (86m) in Por-
tuguese Ledge in the Monterey Bay. The measured shadow
image was labeled mainly by intensity thresholding augmented
by region-growing. Figure 10 presents the correlation results.
Note the strong unimodal peaks in both the coarse- and fine-
grid results, with the correlation peak well-behaved about the
MLE estimate. The uncertainty ellipse is slightly larger than
that of the Dataset 1 estimator, which is to be expected due to
the ensonified terrain geometry.



Figure 11 shows the expected visibility image for the
Dataset 2 MLE position estimate, the measured shadows, and
the alignment image. Once again, there is strong agreement
between the measured and expected shadow regions, specifi-
cally between the large shadow region on the right side of the
image, and the smaller rock-created shadow region on the left.
Note that the correlation region was specified differently for
Dataset 2 as compared to Dataset 1. This is due to two factors:
(1) a different ROV was used, so the false shadows caused by
ROV geometry differ, and (2) the water surface creates false
intensity returns and noise due to the shallow depth of the
ROV in Dataset 2. The outer ring of non-correlation region
pixels is due to the water surface returns.

Dataset 3 was collected in an area with ripples in the
terrain. The measured shadow image was labeled by intensity
thresholding alone. Figure 12 presents the correlation results.
In the coarse-grid PMF estimation there is a unimodal peak as
in Datasets 1 and 2. However, in the fine-resolution estimation
there are two distinct peaks. Multimodality in navigation filters
is not uncommon, and given the nonlinear measurement model
should be expected in some cases, dependent on the ter-
rain/shadow information content. The multimodality accounts
for the larger 1σ confidence ellipse for Dataset 3 as opposed to
Datasets 1 and 2. Envisioning a matured system, the expected
visibility images for both peaks could be supplied to the end
user (e.g. ROV pilot) in order to best inform him or her of the
potential ROV positions. That the MLE peak has roughly twice
the estimate weight as the secondary peak would additionally
be useful to the end user.

Figure 13 shows the expected visibility image for the
Dataset 3 MLE position estimate, measured shadows, and
the alignment image. There is strong agreement in the large
shadow region at the top of the image. This shadow is created
by a geometric occlusion from the (slight) drop-off of a shelf.
There is some disagreement in the smaller ripple shadows. This
disagreement could stem from a number of factors, including
changes in the terrain from when the bathymetry map was
created (sand ripples can change). The key result from Figure
13 is that the MLE visibility image is well-aligned qualitatively
with the measured sonar image, particularly in the large
geometric shadow at the top. A strength of quantifying shadow
confidence through the differential height method is that the
minor shadow disagreements are weighted less than more
significant shadow region agreements/disagreements, which
are more stable to terrain variation and map inaccuracies.

The calculation of an MLE position for each dataset allows
observation of the mapped terrain features that led to the
sonar image features (shadows). Figure 14 shows terrain maps
and the MLE expected visibility image for each dataset. The
Dataset 1 boulder is clearly a large feature, but the large
shadows in the Datasets 2 and 3 MLE visibility images
are caused by relatively slight shelf-like terrain features and
smaller rock/ripple features. This highlights the fact that at
low ROV altitudes, even relatively minor terrain features can
lead to prominent sonar shadows.

V. CONCLUSION

This paper described a method to correlate acoustic shad-
ows in sonar imagery with expected visibility images generated
from a bathymetry map for localization of a remotely-operated
vehicle. The proposed approach could serve as a naviga-
tion augmentation to current ROV ship-based USBL acoustic
positioning, and could specifically provide a terrain-relative
estimate of ROV position that is inherently not afforded by
USBL. Field trials obtained in collaboration with the Monterey
Bay Aquarium Research Institute (MBARI) were presented
that demonstrate localization using the proposed method.
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(a) Coarse-grid Top View

(b) Coarse-grid Perspective View

(c) Fine-grid Top View

(d) Fine-grid Perspective View

Figure 8: Coarse- and fine-grid PMF correlation results for Dataset
1 (boulder). Correlation results are normalized measurement weights
for each position hypothesis. In (c) the magenta point is the MLE
position, the cyan point is the mean position, and the blue ellipse is
the 1σ confidence ellipse.

(a) Measured Sonar Image

(b) Measured Shadow Binary Image

(c) MLE Visibility Probability Image

(d) MLE Alignment of Expected and
Measured Images

Figure 9: Dataset 1 measured sonar image, measured shadow image,
PMF MLE expected visibility probability image, and alignment
image. Note that in the MLE visibility image, blue indicates higher
confidence in shadow, red indicates higher confidence in visibility. In
the alignment plot, red indicates agreement between measured and
expected visibility, green indicates agreement between measured and
expected shadows, and blue indicates disagreement.



(a) Coarse-grid Top View

(b) Coarse-grid Perspective View

(c) Fine-grid Top View

(d) Fine-grid Perspective View

Figure 10: Coarse- and fine-grid PMF correlation results for Dataset
2 (Portuguese Ledge). Correlation results are normalized measure-
ment weights for each position hypothesis. In (c) the magenta point
is the MLE position, the cyan point is the mean position, and the
blue ellipse is the 1σ confidence ellipse.

(a) Measured Sonar Image

(b) Measured Shadow Binary Image

(c) MLE Visibility Probability Image

(d) MLE Alignment of Expected and
Measured Images

Figure 11: Dataset 2 measured sonar image, measured shadow im-
age, PMF MLE expected visibility probability image, and alignment
image. Note that in the MLE visibility image, blue indicates higher
confidence in shadow, red indicates higher confidence in visibility. In
the alignment plot, red indicates agreement between measured and
expected visibility, green indicates agreement between measured and
expected shadows, and blue indicates disagreement.



(a) Coarse-grid Top View

(b) Coarse-grid Perspective View

(c) Fine-grid Top View

(d) Fine-grid Perspective View

Figure 12: Coarse- and fine-grid PMF correlation results for Dataset
3 (ripple field). Correlation results are normalized measurement
weights for each position hypothesis. In (c) the magenta point is
the MLE position, the cyan point is the mean position, and the blue
ellipse is the 1σ confidence ellipse.

(a) Measured Sonar Image

(b) Measured Shadow Binary Image

(c) MLE Visibility Probability Image

(d) MLE Alignment of Expected and
Measured Images

Figure 13: Dataset 3 measured sonar image, measured shadow im-
age, PMF MLE expected visibility probability image, and alignment
image. Note that in the MLE visibility image, blue indicates higher
confidence in shadow, red indicates higher confidence in visibility. In
the alignment plot, red indicates agreement between measured and
expected visibility, green indicates agreement between measured and
expected shadows, and blue indicates disagreement.



(a) Dataset 1

(b) Dataset 2

(c) Dataset 3

Figure 14: Identification of map feature correspondence to expected sonar shadow features based on estimated MLE positions for Datasets
1,2, and 3. The red dot on each map is the MLE position. The red arrow on each map is the vehicle heading estimate obtained from the ROV
INS. The purple arrow connects prominent features on the map to prominent features in the MLE expected visibility image.


