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Abstract—

This paper details the development of a probabilistic mea-
surement model for the use of sonar imagery as an auto-
mated pilot aid for localization of a remotely-operated vehicle
(ROV) with respect to an a priori bathymetric terrain map.
Specifically, acoustic shadows in sonar imagery are correlated
with expected visibility images generated from a bathymetry
map, where acoustic shadows are significant drops in the sonar
image intensity. An expected visibility image is generated for
a given ROV position estimate with respect to a stored terrain
map by extracting a bathymetry profile along the sonar scan
plane and then evaluating a metric termed “differential height”
to quantify visibility probability in the pixel space of the
sonar image. This paper provides the theoretical foundation
behind the approach presented in [1], and further details the
tuning of measurement model parameters using ROV sonar
image field data collected in collaboration with the Monterey
Bay Aquarium Research Institute (MBARI). The position
estimation results for one dataset from [1] is repeated in this
paper in order to demonstrate localization performance using
the proposed approach.

I. INTRODUCTION

The ability to localize a remotely-operated vehicle (ROV)
accurately with respect to the seafloor terrain enables safer
operation and improved navigation to sites of interest. Typical
ROV positioning is accomplished through acoustic triangu-
lation of the ROV from the surface vessel, e.g. using an
ultra-short baseline (USBL) system. While this method of
ROV positioning may be suitable for some mission profiles,
it does not provide a terrain-relative position estimate of
the ROV, and as such is insufficient for missions requiring
accurate knowledge of ROV position relative to the seafloor.
A terrain-relative position estimate is particularly imporant
when the terrain map is inaccurately geo-referenced, as a
USBL latitude/longitude estimate does not account for geo-
referencing error. This motivates the development of a terrain-
relative position estimator leveraging sensors commonly found
on ROVs. In this work, imaging sonars are used.

Imaging sonars measure the intensity versus range for
sonar beams over a span of azimuth angles. At each azimuth
angle, the sonar transducer emits a pulse of acoustic energy
and listens for return pings, much like sidescan sonar sys-
tems. Imaging sonars can be broadly classified into multi-
beam and mechanically-scanned types. Multibeam imaging

Figure 1: ROV operational motivation for the proposed sonar
image-based localization.

sonars form separate beams with narrow azimuthal and wide
elevation beam-widths using a phased array of transducers.
Mechanically-scanned imaging sonars physically rotate the
sonar transducer in azimuth. Figure 2 provides a diagram of
terrain ensonification and an illustration of the sonar image
range-azimuth space.

Sonar imagery is currently used by ROV pilots to infer
map-relative position from features in the sonar image. While
ROV pilots are skilled at this task, time and effort would be
spared if it were automated. Furthermore, an automated pro-
cess could explore a broader range of possible ROV position
hypotheses to account for larger map geo-referencing errors.
Figure 1 provides a schematic depiction of the operational
motivation for this work.

Using sonar imagery as a quantitative navigation aid re-
quires a measurement model to generate an expected sensor
signal as a function of the vehicle pose and map, which
can then be correlated with a measured sensor signal to
estimate position. Forming a measurement model for sonar
image intensity is complex, as intensity returns are functions
of grazing angle, terrain surface composition, and water prop-
erties [2]. Further, there are gains and filters applied to the raw
signal internal to the sensor which are often, as is the case
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Figure 2: Imaging sonar operation. (a) Sonar scan plane (green) for a
given azimuth angle ensonifies terrain profile (blue). (b) Sonar image
is in a range-azimuth space.

with this work, unknown to the operator. As such, predicting
the intensity signal accurately requires more than a vehicle
pose estimate and bathymetry map alone. However, acoustic
shadows, which are significant drops in sonar image intensity,
are determined primarily by line-of-sight occlusion due to the
geometry of ensonified terrain relative to the sonar transducer,
and are therefore well-suited to bathymetry-based correlation
techniques.

This paper details the development of a probabilistic mea-
surement model for correlation with acoustic shadows in sonar
imagery for ROV localization, and builds off of work presented
in [1]. In particular, this paper provides the theoretical foun-
dation for the approach presented in [1], along with details
on the tuning of measurement model parameters using ROV
sonar image field data. Section II briefly describes related prior
work, particularly with respect to the use of sonar imagery for
navigation. Section III provides an overview of the localiza-
tion method. Section IV presents details on the development
of a probabilistic measurement model for terrain visibility,
and Section V-A details the tuning of measurement model
parameters using ROV field data obtained in collaboration
with the Monterey Bay Aquarium Research Institute (MBARI).
The position estimation results for one dataset from [1] is
repeated in this paper in Section V-B in order to demonstrate
localization performance using the proposed approach.

II. RELATED WORK

Sonar imagery has been successfully utilized previously
for underwater localization, however most methods differ from
the approach presented in this paper in that they are based on
correlating sonar image to sonar image as opposed to sonar
image to bathymetry. These image-to-image methods typically
correlate using computer-vision image features, and require
a flat seafloor assumption. The flat seafloor assumption is
employed due to the inherent ambiguity in extrapolating spatial
information from sonar imagery; specifically, the azimuth and
range of a given intensity return are known for sonar imagery,
but the elevation angle is unknown.

Several examples of image-to-image methods exist. In [3] a
method is proposed to detect and match landmarks in sidescan
imagery by level set evolution on Haralick feature maps, where
the nature of the landmark registration is similar in nature to

visual feature matching. The work of Fallon et al. [4] matched
sidescan image features across multiple sidescan images and
fused the spatial matching with acoustic ranging from a surface
vessel for navigation drift mitigation. More recently, the work
of King et al [5] explored the extension of computer vision
feature technology to sidescan image registration, with results
showing successful loop closure registration.

In a similar vein, sonar imagery has been used in AUV
Simulataneous Localization and Mapping (SLAM) solutions in
the context of landmark detection and matching for improved
navigation. In [6], distinctive features are identified in sidescan
sonar imagery, and matched across images to estimate and
track landmark positions. These landmark correspondences are
used to improve the navigation estimate in order to project a
more smooth and consistent sidescan map.

The work presented in this paper differs from these past
works in that the presented method produces a navigation esti-
mate with respect to an a priori terrain map, rather than relative
to previous sonar images. Further, this work does not require
a flat bottom assumption in order to disambiguate the sonar
intensity returns; expected visibility images are generated from
a bathymetry map and projected into the sonar image range-
azimuth domain, which is an unambiguous mapping. In fact,
the approach presented in this paper works best for interesting
topography, i.e. non-flat terrain.

This approach was previously described by the authors
in [7], [1]. In [7] two methods were presented: (1) XOR-
based correlation using a deterministic expected shadow signal
based strictly on line-of-sight occlusion, and (2) correlation
using expected visibility images estimated from the relative
heights of terrain with respect to line-of-sight from the sonar
transducer, termed “differential height”. The differential height
method was shown to yield superior navigation performance,
and is the measurement model that is used for the localization
results presented in this paper. The primary contribution of this
paper from [1] is the expanded treatment of the probabilistic
measurement model development.

III. LOCALIZATION METHOD OVERVIEW

The estimation method presented in this paper correlates
acoustic shadows in measured sonar imagery with expected
visibility images generated using a probabilistic measurement
model. Acoustic shadows are large drops in return intensity
in the sonar image. While sonar intensity returns from low-
reflectance terrain surfaces, e.g. featureless mud, can be low,
geometric acoustic shadows have been observed to generate
significantly lower return intensities. As such, shadow-based
correlation is well suited to bathymetry-based localization.

Acoustic shadows in the measured sonar image are as-
signed a hard label according to image intensity:

M [u, v] =

{
0 measured shadow
1 otherwise

(1)

where M is the measured binary image, and (u, v) is the pixel
index in the image.

The primary method of labeling shadows is the application
of binary thresholding on sonar image intensity. That is, image



pixels below the threshold intensity values are labeled as
shadow.

This work is intended for use with non-parametric position
estimation filters. Examples of such filters include particle
filters and point mass filters (PMFs), both of which are exten-
sively used in underwater navigation solutions, and detailed in
[8]. This work focuses on the output of a single measurement
update for a PMF. The PMF estimated state is 2-D North and
East vehicle position x = [xN , xE ]T . The orientation of the
vehicle (pitch, roll, heading) is estimated by the ROV inertial
navigation system (INS), and altitude is provided by either an
altimeter or a doppler velocity logger (DVL).

The output of the PMF is measurement weights for discrete
state hypotheses, where a greater measurement weight w(i,j)

indicates that position x(i,j) is more likely. A multi-resolution
filtering approach is employed to efficiently estimate ROV
position. Initially, a coarse grid of discrete state hypotheses
is instantiated about the USBL-estimated ROV position at 4m
resolution. Each discrete position hypothesis x(i,j) in the PMF
is assigned a normalized measurement weight w(i,j) according
to Equations 2,3.

w
(i,j)
0 =

∏
(u,v)∈C

M [u, v]P [u, v](i,j)︸ ︷︷ ︸
measured visible

+(1−M [u, v])
(
1− P [u, v](i,j)

)︸ ︷︷ ︸
measured shadow

(2)

w(i,j) =
w

(i,j)
0∑

i

∑
j
w

(i,j)
0

(3)

where M is the measured binary image according to (1), and
P [u, v] is the output of the measurement model for the (u, v)
pixel of the image. Term C refers to the “correlation region”
of the sonar image, which is chosen a priori to exclude regions
of the image that contain shadows not due to the terrain (e.g.
due to ROV geometry).

Higher resolution (1m) grid cells are instantiated about
PMF cells with measurement weight above a threshold, and
measurement weights are calculated for these higher resolution
cells. This multi-resolution PMF thus allows for 1m resolution
position estimation in likely areas only, rather than bearing the
cost of the 1m resolution estimation over the entire PMF search
area.

IV. MEASUREMENT MODEL

The measurement model is a function that outputs an
expected signal given a vehicle pose estimate and the bathy-
metric terrain map. An expected signal must be generated for
each position hypothesis in the PMF in order to calculate a
measurement weight for that hypothesis according to (2),(3).
As a first step in the measurement model process, and for a
given position estimate, a bathymetry profile of terrain points
for each azimuth scan plane of the sonar image is extracted
from the stored terrain map. Next, an expected signal for
each terrain point in the scan plane is calculated. In order
to be correlated with the measured image, the expected signal
is then projected into the range-azimuth space of the sonar
image. Finally, each pixel (u, v) in the expected signal image
is assigned a value through linear interpolation to yield the
expected image P from (2).

An expected signal can be deterministic or probabilistic.
The first expected signal implemented by the authors was a
deterministic binary signal based on line-of-sight occlusion,
where the expected signal for terrain point j in the scan plane
was given by:

Pj =

{
λ expected shadow
1− λ otherwise

(4)

where λ must be between 0 and 0.5, and was chosen to be
0.1.

In order to improve position estimation, the authors devel-
oped a probabilistic measurement model for terrain visibility
with the goal of accounting for uncertainty from map error
and unmodeled sonar physics. Section IV-A introduces the
visibility probability problem. A multivariate normal distribu-
tion (MVN) model for terrain visibility is detailed in Section
IV-B, which has a theoretical foundation under Gaussian
assumptions. However, the MVN model is shown to be com-
putationally intractable for real-world problems. A simplified
“differential height” (DH) model is introduced in Section IV-C
to model terrain visibility with limited computational overhead,
and in Section IV-D the DH model is shown to be descriptive
enough to closely model MVN probabilities for simulated
terrain profiles. Parameters of the DH model are then fit with
imaging sonar data from ROV field trials in Section V.

A. Visibility Probability Modeling

Terrain visibility probability is the likelihood that a terrain
point is visible to an observer. The terrain here is represented as
depths at discrete horizontal locations. For simplicity, consider
the case of a 1-D lateral dimension (x), and an observer is a
sonar transducer located at zero depth, shown in Figure 3.

Figure 3: Terrain and sonar observer diagram. Terrain points
in green are depths at discrete lateral locations, i.e. a digital
elevation map (DEM). A terrain point is specified by lateral
distance x and vertical distance z from the sonar transducer,
where elevation angle θ = arc tan(z, x).

The condition for occlusion of terrain point j caused by
terrain point i is given by:

zi
xi
<
zj
xj
, where i < j (5)

where the ratio zi/xi is related to the angle from the horizontal
to the line-of-sight vector from the sonar transducer to terrain
point i by the tangent function.



B. Multivariate Normal Distribution (MVN) Model

In order to properly model terrain visibility, the correlation
between terrain points must be modeled. If terrain points are
modeled as uncorrelated, for example as univariate Gaussian,
then the spatial sampling of the map strongly affects visibility
probabilities.

In order to account for correlation between terrain points,
terrain depths z̄ may be modeled as random variables drawn
from a multivariate normal distribution with known mean and
covariance. This distribution is conditioned on the map of
terrain depths ẑ, and is given by:

p(z̄|ẑ) =
p(ẑ|z̄)p(z̄)
p(ẑ)

= ηp(ẑ|z̄)p(z̄)

∼ N (µ̄,Σ)

for
Σ = (Σ−1map + Σ−1terrain)−1

µ̄ = Σ(Σ−1mapẑ + Σ−1terrainᾱ)

(6)

where the terrain prior p(z̄) and the map distribution given a
terrain p(ẑ|z̄) are assumed Gaussian as follows:

p(z̄) ∼ N (ᾱ,Σterrain)

p(ẑ|z̄) ∼ N (z̄,Σmap)
(7)

The terrain covariance matrix Σterrain for the prior terrain
distribution p(z̄) is estimated using tools common to the spatial
data analysis community [9]. It is assumed that terrain co-
variance is stationary, i.e. the covariance between two sample
points depends solely on the distance h between the points.
This assumption makes the covariance matrix calculable from
the covariogram C(h) of the terrain distribution:

(Σterrain)i,j = E[(zi − α)(zj − α)]

≈ C(h), for h = ||xi − xj ||
(8)

where a common mean value α is assumed for all terrain
locations. The covariogram of the terrain may be estimated
from a terrain map.

The map covariance matrix Σmap can be estimated ac-
cording to map error estimates. For example, if the creator
of a digital elevation map (DEM) specified that the standard
deviation of each DEM map cell depth is 0.1m, then under an
assumption of uncorrelation between the map errors between
cells map points, the diagonal elements of Σmap could be
specified as (Σmap)i,i = (0.1m)2.

The probability that point i is visible, denoted pi, can then
be expressed as:

pi = P (
z1
x1

>
zi
xi
,
z2
x2

>
zi
xi
, . . . ,

zi−1
xi−1

>
zi
xi

)

= P (−z1 < −
x1zi
xi

, . . . ,−zi−1 < −
xi−1zi
xi

)

=

∫ ∞
z?
i
=−∞

F?1:i−1(
x1z

?
i

x?i
,
x2z

?
i

xi
, . . . ,

xi−1z
?
i

xi
)f?i (z?i )dz?i

(9)

where F ?(z?1 , z
?
2 , . . . , z

?
N ) is the cumulative distribution

function (CDF) for the multivariate gaussian random vec-
tor z̄? ∼ N (−µ̄,Σ), and F ?1:i−1(z?1 , . . . , z

?
i−1) is the

CDF of the marginal gaussian random vector for variables
z?1 , z

?
2 , . . . , z

?
i−1. The probability density function f?i (z?i ) is

the marginal distribution for the variable z?i .

There are two key problems with practical implementation
of this multivariate normal model for estimation of terrain
visibility probabilities. The first, and less prohibitive issue, is
that the assumptions of the model, particularly with regard
to the assumptions of stationarity and a common mean nec-
essary for covariogram use, may not adequately model the
true terrain. The more prohibitive problem associated with
practical implementation of the multivariate normal model
is computational. The use of Equation 9 requires multiple
evaluations of a multivariate CDF, which scales in computation
time exponentially. This computational burden makes this
method of estimating terrain visibility probabilities intractable
for any number of points approaching a realistic map. Hence,
there is a need for a simplified model that can approximate
the terrain visibility probabilities given by Equation 9 with
substantially less computational burden.

C. Differential Height (DH) Model

A simplified model is needed for the approximation of
terrain visibility probabilities without the prohibitive compu-
tational burden of the multivariate normal model.

Toward this goal, a metric termed “differential height” was
defined in [1]. The differential height value for terrain point
m, δzm, reflects how occluded or visible the terrain point is.
Specifically, the differential height for terrain point m is the
distance that m is above or below its occluding line-of-sight,
where the occluding line-of-sight is from the transducer to the
terrain point j that most occludes m in the scan plane. This
is illustrated in Figure 4.

Figure 4: Differential height diagram. Shown is the differential
height δzm of a visible terrain point m above the occluding
line-of-sight from terrain point j. Terrain points are shown in
green.

If terrain point m is occluded according to line-of-sight
from the sonar transducer, δzm is negative. Similarly, if the



point is visible according to line-of-sight, δzm is positive.
Equation 10 provides the definition of differential height.

δzm = min
j

(xm
zj
xj
− zm),∀j = 1, 2, . . . ,m− 1 (10)

The differential height (DH) model can be viewed as a
“one-point” approximation to the MVN model for visibility
probability, where the visibility probability in the DH model is
estimated according to the most occluding point. This assumes
that the true underlying visibility probability for a given terrain
point can be adequately estimated solely by a metric derived
from its height relation to its most occluding point, rather than
with respect to all of the preceding terrain points in the terrain
profile (as the MVN assumes).

In order to translate differential heights into visibility
probabilities, differential height values are passed through a
sigmoid function. The choice of sigmoid function is based in
the desire for low visibility probability for low DH values,
high visibility probability for high DH values, and a smooth
transition region. The sigmoid function chosen is given by the
following relation:

pm =
1

2
+ λ

δzm − µ√
γ2 + (δzm − µ)2

(11)

where pm is visibility probability for terrain point m, µ shifts
the mean differential height, and γ and λ adjust the sigmoid
shape. Shifting the mean allows for the observed behavior
that expected shadows are overly predicted by pure line-of-
sight when compared to measured shadows. Setting λ less than
the full possible value of 1⁄2 accounts for measurement uncer-
tainty, e.g. unmodeled sonar physics, noise and disturbances.
Parameter γ adjusts the width of the transition region of the
sigmoid. Figure 5 shows the sigmoid given by Equation 11 for
λ = 0.4, µ = −0.2m, γ = 0.3m (values that are the outputs
of the parameter fit to field data detailed in Section V).

Figure 5: Sigmoid function given by Equation 11 with param-
eters λ = 0.4, µ = −0.2m, γ = 0.3m

D. DH Model Fit to the MVN Model

To examine the behavior of the DH model, and determine
if it is descriptive enough to adequately approximate the
multivariate normal distribution (MVN) model, its estimation

of visibility probabilities was compared to that of the MVN
model with simulated terrain profiles.

Each simulated profile was a 20-point linear terrain profile
z̄ sampled from the distribution N (ᾱ,Σterrain), where the
terrain prior mean ᾱ was a vector of equal depth values α,
and the values in Σterrain were given by (8) using a covariogram
given by the following exponential model commonly employed
in spatial data analysis:

C(h) =

{
s h = 0

(s− a)exp(− 3h
r ) h > 0

(12)

where s is called the “sill” by convention in the spatial analysis
literature, a is the “nugget” which specifies a discontinuous
drop in covariance at h = 0, and r is a specified parameter
that describes the level of correlation between terrain points.

The terrain map ẑ was drawn from the distribution
N (z̄,Σmap). The map covariance matrix was specified as
diagonal Σmap = σ2

mapI20x20.

In total, 500 20-point terrain/map profiles were simulated.
The parameters α, s, a, r and σmap were varied across profiles
in order to diversify the 500 simulated terrains/maps. For each
terrain/map profile i, MVN model visibility probabilities P ij
were calculated for each terrain point j according to (9).
Differential heights δzij were calculated for each of the map
points. For a given set of DH sigmoid parameters (λ, µ, γ) the
DH model visibility probability P̂ ij for profile i, point j can
be calculated by (11).

The parameters (λ, µ, γ) of the DH model were tuned to
best fit the MVN probabilities, in a least-squares sense, over
the 500 profiles according to the following optimization:

λ∗, µ∗, γ∗ = argmin
λ,µ,γ

500∑
i=1

20∑
j=2

(P ij − P̂ (λ, µ, γ)ij)
2

subject to 0 < λ <
1

2

(13)

The optimization yielded values λ∗ = 0.5, µ∗ = −0.1m, γ∗ =
0.2m. Figure 6 shows the results of the DH model fit for all
500 simulated 20-point terrain/map profiles.

Figure 7 provides the DH model fit to MVN probabilities
for the 20-point terrain profile with the median residual error
from the optimization given by (13). The middle plot of Figure
7 shows the differential height values for the map points, where
negative values reflect points that are occluded according to
deterministic line-of-sight in the map. The bottom plot shows
the MVN probabilities in red and the DH probabilities in
blue. The close alignment of the probabilities shows that the
DH model is sufficiently descriptive to closely describe the
probabilities given by the MVN model for this terrain profile,
while demanding significantly less computation.

V. DH MODEL PARAMETER FIT WITH ROV FIELD DATA

The differential height model fit to the MVN model
probabilities shown in Section IV-D is a good theoretical
step, but the ultimate use of such a model is for real-world



Figure 6: DH model fit to MVN model visibility probabilities
for 500 simulated 20-point terrain profiles. MVN probabilities
are red, DH model fitted probabilities are blue.

Figure 7: Terrain map, differential heights, and visibility prob-
abilities for the profile with the median residual error from
(13). (Top) Map from sonar transducer (sonar at zero depth,
zero lateral). (b) Differential heights. (c) Visibility probabilities
for the MVN (red) and DH (blue) models.

position localization. As such, the DH visibility probability
model should best fit the visibility probability distribution
for real data. For the case of underwater localization using
imaging sonar, given “true” vehicle locations with respect to
underwater terrain maps the DH model can be fit to measured
visibility probabilities, which means fitting the parameters of
the sigmoid function given by (11) that translates differential
heights into visibility probabilities.

Three ROV datasets were collected in the Monterey Bay,
in collaboration with the Monterey Bay Aquarium Research
Institute (MBARI). The ROVs were outfitted with a Kongsberg
mechanically-scanned imaging sonar located on top of the
vehicle, as shown in Figure 8. The sonar images obtained have
a maximum range of 100m. ROV attitude was measured by a
fiber-optic gyro, and altitude was measured by an altimeter. A
1m-resolution DEM was used as the bathymetry map.

Dataset 1 captures the imaging of a large boulder in a crater
surrounded by flat terrain at a deep site (roughly 2900m depth).
Dataset 2 was collected at shallower depth (86m) in Portuguese
Ledge in the Monterey Bay, which is a terrain region with
varied topography. Dataset 3 was collected in an area with
sand ripples at a deep site near the Dataset 1 location (roughly
2900m depth). For each dataset, a scanning sonar image was
collected while the ROV remained motionless.

Figure 8: MBARI DocRicketts ROV with a Kongsberg
mechanically-scanned imaging sonar circled in red. Image
courtesy of mbari.org.

Unfortunately, there was no truth data for these underwa-
ter datasets, and subsequently obtaining maximum likelihood
estimate (MLE) ROV positions using the Point Mass Filter
described in Section III was necessary for the DH model
parameter fitting; that is, the MLE positions served as assumed
“truth” positions. Using Equations 10, 11 for terrain visibility
probabilities, the MLE vehicle seafloor-relative position was
obtained for each of the three sonar imagery datasets. Initial
values of the sigmoid parameters were iterated until stable
MLE positions were found, i.e. the process began with hand-
tuned parameters. The differential height values of ensonified
terrain about these three MLE positions, along with measured
visibility probabilities from the three sonar images, were then
used as input to an optimization for sigmoid model parameter
estimation. Hence, the parameter identification and MLE esti-
mation were not uncorrelated. There is some circularity in the
parameter identification.

A. Parameter Fit via Nonlinear Least-Squares Optimization

The left images in Figure 9 are the measured sonar imagery,
thresheld on intensity to yield white pixels (visible) and
black pixels (shadow). The right images are differential height
images for the corresponding MLE locations, where tending
toward red indicates higher visibility differential height (more
positive), and blue indicates lower visibility differential height
(more negative). The large, dark blue regions in the lower parts
of the MLE images indicate non-correlation regions, where the
differential height values are masked-out in order to prevent
consideration of “false” shadows not caused by terrain. The
alignment of the measured shadow regions in the left plots
of Figure 9 with lower DH values (yellow to green and blue)
on the right plots, especially evident in the top two datasets,
indicates that these MLE positions are indeed near the true
vehicle locations.



Figure 9: Measured sonar shadow imagery and MLE differen-
tial height images. (Left) Measured sonar imagery, thresheld
on intensity to yield white pixels (visible) and black pixels
(shadow). (Right) differential height images for the corre-
sponding MLE locations, where tending toward red indicates
higher visibility differential height (more positive), and blue
indicates lower visibility differential height (more negative).

In order to carry out the sigmoid parameter optimization,
measured and modeled visibility probabilities were calculated
as a function of differential height. First, differential height
values were divided into N total bins. For each differential
height value in the three MLE differential height images its
corresponding DH bin was found, and then the corresponding
pixel value in the measured image found. If the pixel was
visible (white), then the bin count total and the measured count
total for the DH bin were updated, otherwise for a shadow pixel
(black) only the bin count total was updated, as depicted in
Figure 10.

Figure 10: Illustration of measured visibility probability calcu-
lation by differential height binning. Shadow pixels (black) and
visible pixel (white) for a given measured sonar shadow image
are added to the differential height bin for the corresponding
MLE differential height image.

The measured visibility probability for the DH value for

bin i, P i, and the modeled visibility probability for DH bin i
as a function of the sigmoid parameters (λ, µ, γ), P̂ i, are then
calculated by:

P i ≡ measured visibility probability for DH bin i

=

∑
Measured visible pixels for DH bin i∑

Measured pixels for DH bin i

P̂ (λ, µ, γ)i ≡ modeled visibility probability for DH bin i

=
1

2
+ λ

δzi − µ√
γ2 + (δzi − µ)2

(14)

The DH sigmoid parameter estimation is then formulated
as a weighted least-squares optimization:

λ∗, µ∗, γ∗ = argmin
λ,µ,γ

N∑
i=1

βi(P i − P̂ (λ, µ, γ)i)2

subject to 0 < λ <
1

2

(15)

where the weight βi for each DH bin i is set to be its normal-
ized pixel count, capped at some maximum value Qmax:

βi0 = min(
∑

Pixels for DH bin i, Qmax)

βi =
βi0∑
i β

i
0

(16)

The DH model sigmoid parameter values obtained
through the optimization of Equation 15 are (λ∗, µ∗, γ∗) =
(0.4,−0.2m, 0.3m). Figure 11 presents the results of the
optimization model fit, along with the associated DH bin
weights.

Figure 11: Results of the DH model sigmoid paramter fit.
The horizontal axis is differential height [m]. (Red) Measured
visibility probabilities. (Blue) Modeled visibility probabilities.
(Green) Optimization weights β, scaled on the plot such that
the maximum weight is one.



The red line in Figure 11 indicates the measured visbility
probabilites, while the blue line shows the modeled probability
for the starred (optimized) parameters. The green line shows
the weights β, where the weights are scaled for plotting
purposes such that the maximum weight is equal to one. Note
that the modeled probability fit does extremely well through
the transition region from low confidence to high confidence,
and acts as essentially a low pass filter on the low confidence
measured probabilities (for negative DH values). At higher DH
values, the measured probabilities dive lower than expected,
though this effect is de-weighted because there were relatively
few pixels observed for these DH values. The cause of this
drop in measured probabilities for higher DH values is likely
a result of noise in shadow labeling.

B. Localization Results

Using the DH model for terrain visibility probability de-
scribed in Section IV-C with the parameters fit in Section V,
ROV position estimation using the Point Mass Filter estimator
described in Section III was conducted for the three ROV sonar
imagery datasets. These data were previously reported in [1],
with localization performance summarized in Table I as was
reported in [1]. The new contribution of this paper is the detail
on the measurement model development used to generate these
localization data. The PMF correlation results for one dataset
(Dataset 2) from [1] are repeated below in order to demonstrate
the localization performance of the proposed approach.

Set xmle rmle xmean rmean σ1, σ2
1 4, 35 35.2 4.0, 34.8 35.0 0.5, 0.4
2 2, 39 39.0 1.4, 39.4 39.4 1.5, 0.7
3 11, 26 28.2 10.7, 27.4 29.4 2.6, 0.5

Table I: Dataset estimator statistics. All values are in meters.
For each set, vector quantities xmle, xmean and scalar ranges
rmle, rmean are measured from the USBL-estimated ROV
position for that set. Vector quantities xmle, xmean are in local
East, North coordinates. The 1σ covariance ellipse semi-major
and semi-minor lengths are given by σ1, σ2.

Figure 12 presents the PMF correlation results for the
Portuguese Ledge dataset (Dataset 2). The values given are
normalized measurement weights as calculated by Equations
2,3. The left two plots show the measurement weights for
the coarse-scale (4m) resolution of the broad search PMF as
described in Section III, where the right two plots show the
weights for the fine-scale (1m) resolution. Note the strong
unimodal peaks in both the coarse- and fine-grid results, with
the correlation peak well-behaved about the MLE estimate.

Figure 13 presents the measured sonar image, measured
binary shadow image, MLE visibility probability image calcu-
lated using the DH model, and alignment image for Dataset
2. In each binary shadow image, black indicates shadow. In
each MLE visibility probability image, blue indicate lower
confidence in visibility (i.e. stronger confidence in shadow),
with red indicating higher confidence in visibility. The align-
ment plot was generated by thresholding the expected visibility
image at 0.5 to form a binary expected image; red in the align-
ment plot indicates visibility agreement between measured and

MLE images, green indicates shadow agreement, and blue
indicates disagreement. The grey hatched region in the MLE
visibility probability image and the alignment image is the
non-correlation region, i.e. the complement to the correlation
region C discussed in Section III.

There is strong agreement between the measured and MLE
shadow regions, specifically between the large shadow region
on the right side of the image, and the smaller rock-created
shadow region on the left, as shown in Figure 13. In the ab-
sence of truth data for the ROV position, this strong alignment
between the measured imagery and the MLE imagery provides
a strong justification for the claim that the MLE position is
indeed near the true vehicle location.

VI. CONCLUSION

This paper detailed the development of a probabilistic mea-
surement model for the use of sonar imagery as an automated
pilot aid for localization of a remotely-operated vehicle (ROV)
with respect to an a priori bathymetric terrain map. The
proposed approach could serve as a navigation augmentation to
current ROV ship-based USBL acoustic positioning, and could
specifically provide a terrain-relative estimate of ROV position
that is inherently not afforded by USBL. The theoretical
foundation of the proposed approach was newly presented
in this paper, along with the tuning of measurement model
parameters using ROV sonar image field data.
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(a) Coarse-grid Top View

(b) Coarse-grid Perspective View

(c) Fine-grid Top View

(d) Fine-grid Perspective View

Figure 12: Coarse- and fine-grid PMF correlation results for Dataset
2 (Portuguese Ledge). Correlation results are normalized measure-
ment weights for each position hypothesis. In (c) the magenta point
is the MLE position, the cyan point is the mean position, and the
blue ellipse is the 1σ confidence ellipse.

(a) Measured Sonar

(b) Measured Shadow Binary

(c) MLE Visibility Probability

(d) MLE Alignment

Figure 13: Dataset 2 measured sonar image, measured shadow im-
age, PMF MLE expected visibility probability image, and alignment
image. Note that in the MLE visibility image, blue indicates higher
confidence in shadow, red indicates higher confidence in visibility. In
the alignment plot, red indicates agreement between measured and
expected visibility, green indicates agreement between measured and
expected shadows, and blue indicates disagreement.


