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Abstract—This paper presents the results from
recent field trials in Monterey Bay, CA which
demonstrate the use of Terrain-Relative Navigation
(TRN) to perform return-to-site missions using a
53cm diameter Dorado-class Autonomous Under-
water Vehicle (AUV). For these tests, a series of
targets were identified on a bathymetry map that
were recognizable features (e.g. large boulders and
outcroppings), and a trajectory was constructed for
the AUV to fly over those targets (i.e. the latitudes
and longitudes as defined on the map). Multiple mis-
sions were flown using a real-time TRN algorithm to
identify and correct for georeferencing errors in the
bathymetry map. The results were repeatable. They
demonstrated that there was a 20m georeferencing
error in the map. Without TRN, the targets were
missed. With TRN, the AUV flew directly over the
targets. Performance was independently validated
using acoustic imagery from an on-board mapping
multibeam sonar. These field results are presented
and described. The TRN algorithm is also discussed.

I. INTRODUCTION

Two return-to-site missions for an Autonomous
Underwater Vehicle (AUV) motivate this paper.
The first is a mission to discover and then monitor
sites in the deep ocean for change. The second is to
map and then monitor sites on a free-drifting ice-
berg in the Antarctic. Developing the technology
to complete both of these missions is supported
under a NASA ASTEP grant #NNX11AR62G as
part of an effort to enable robotic exploration for
life in extreme environments.

The focus of the work reported here is on the
navigation problem. Specifically, the goal is to
develop and demonstrate a technique that does not
exploit any infrastructure (such as GPS or long-
baseline arrays) and is able to function in envi-

ronments in which traditional inertial navigation
aids may not be sufficient.

The approach developed here is Terrain-Relative
Navigation (TRN). In this approach the primary
source of position information is a 3-D map of the
terrain. Given this map, terrain profiles constructed
from range measurements made by the vehicle
during flight can be correlated against the map
to determine a location. For the AUV missions
dealt with in this paper, that map is a pre-existing
bathymetric map of the area. For missions such as
a return to site on an iceberg, that map must first
be created.

Creating the maps for TRN can be done as
either an off-line or on-line Simultaneous Local-
ization and Mapping problem (SLAM). In an off-
line approach, an AUV flies a pattern over the ter-
rain collecting the multibeam sonar data needed to
construct the map (i.e. a 3-D representation). For
deep-sea missions this could be a “lawnmower”
pattern over an area of the seafloor. For iceberg
missions, this could be a series of circumnavi-
gations at multiple depths. Note that control of
the AUV during this stage relies on reactive and
pre-programmed behaviors. After collecting those
data, the map is constructed in an off-line, batch
optimization. This is the method typically used to
construct current seafloor bathymetry maps using
an AUV.

In an on-line SLAM approach, the above two
steps are fused into a single process and the AUV
control can become a function of its location
in the map. Depending on the mission, either
approach can be appropriate. For missions where
the mapping data can be collected safely using
reactive control strategies, the off-line approach is
appropriate. When this is not possible, an on-line
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approach may be more appropriate.
Current work focused on developing maps of

free-drifting icebergs using an off-line SLAM
method is reported in Kimball [1] and Hammond
[2].

II. TERRAIN-RELATIVE NAVIGATION

Terrain-Relative Navigation (TRN) is a tech-
nique that enables an AUV to estimate its position
with respect to an existing map of a terrain (e.g.
bathymetric map of the seafloor or 3-D reconstruc-
tion of an iceberg). The method is based on corre-
lating a set of range measurements obtained as the
vehicle flies over the terrain against their expected
values as defined by the map. The method can be
used to eliminate drift in an on-board inertial navi-
gation solution, offering an alternative to surfacing
for a GPS fix. It can also be used to provide a
direct measurement of the AUV’s position in map
coordinates instead of inertial coordinates (latitude
and longitude). This latter option is the motivation
for this work. It enables return-to-site missions that
are robust to map georegistration errors as well as
to any drop-outs or drift in the inertial navigation
solution.

Several groups have explored the use of
acoustic-based TRN for AUV applications in ad-
dition to the work reported here. Most of that
work, however, has focused on using TRN as an
inertial navigation aid rather than for return-to-
site missions. Examples include demonstrations on
the Swedish AUV62f [3] [4] and on the HUGIN
AUV [5] [6]. The work that is most similar is by
Anonsen and Hagen [5] in which sea trials are
reported that demonstrated an estimate of inertial
position accurate to within 5m over a 5 hour run
with the HUGIN AUV.

Basic TRN algorithm:

The form of the TRN estimator developed here
is a particle filter. This type of estimator was
chosen because of its inherent ability to deal with
multimodal likelihood distributions while still pro-
viding high resolution in the converged solution.
Effectively, it is real-time Monte-Carlo approach
that propagates a series of hypotheses (i.e. position
estimates) and selects as truth a weighted estimate

which best matches the measured sonar ranges
over time.

A conceptual block diagram describing its im-
plementation and operation is presented in Figure
1.
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Fig. 1. Block diagram of the TRN algorithm including the
NIS innovations check

The core of the algorithm is a collection of
particles, each of which represents an hypothesis
of the AUV’s position (the particle cloud). At each
time step a process update and a measurement
update are performed for every particle. In the
process update, the position estimate associated
with each particle is moved by the measured
change reported by the Inertial Navigation System
(INS) plus noise. That is

xi(n) = xi(n− 1) + ∆xINS + w (1)

where xi is the location propagated in the ith

particle (Northings, Eastings and depth); xINS
is the location reported by the INS; ∆xINS =
xINS(n)− xINS(n− 1) and w = N (0, σ2INS).

In the measurement update, the measured terrain
profile (e.g. from the DVL or sonar beam lengths),
is compared against the profile determined from
the map and the location of each particle’s position
estimate, xi, is updated. This correlation is done
using a likelihood function. The standard function
typically used in the literature is

L(x)typ = η exp

(
−(z − ẑ)2

2(σ2map + σ2sensor)

)
(2)

where z are the measured beam ranges and ẑ are
the ranges predicted at that assumed map location.
For this calculation, the map is assumed to have an
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error that is N (0, σ2map); the range measurements
are assumed to have an error that is N (0, σ2sensor);
and η is a normalizing factor.

Computing L(x) for every particle results in a
likelihood distribution which is used to compute
weights on each of the particles, Wi. Weights are
increased on particles with high likelihood (i.e. the
measured profile agrees with the map at position
xi) and decreased on particles with low likelihood.
Given these weights, a best estimate of the AUV’s
position with respect to the map is computed as
a weighted average of the xi. Also computed is a
covariance associated with that position (σ2).

The particle cloud is initialized to cover a large
area of the terrain in order ensure that the true
location of the AUV is included. However, as
time progresses, resampling of the cloud allows
particles associated with rejected hypotheses to
be repositioned in regions determined to be more
likely locations. This enables the estimator to im-
prove the resolution of its final, converged answer.

At every time step, a map offset is calculated as

∆xmap = x̂− xINS . (3)

where x̂ is the best estimate of the AUV’s position
in the map frame.

Finally, if the covariance associated with the
estimate is low, the estimator is assumed to be
converged and the current map offset is added
to the INS position to yield the best estimate of
the AUV’s position. If the covariance is high, the
calculated map offset is ignored and the last good
value is used for the update.

The filter implemented for the tests described
here used 10,000 particles and updated the esti-
mate of map offset every 3 seconds. The accuracy
achieved with this method has been approximately
2 to 3m in previous field trials when using 1-m
level bathymetry maps. Further details on the basic
TRN estimator can be found in [7] and [8].

TRN algorithm enhancements:

Two augmentations have been made to the TRN
algorithm described above in order to improve
its robustness. Both have been implemented in
response to behaviors observed in previous field
trials.

The first augmentation was the addition of a
reasonableness check based on the innovations in
the filter. This test was added because the filter
could occasionally be in a converged state at an
incorrect location yet have a high confidence (i.e.
small σ) and tight particle cloud. For example, this
could occur when crossing discontinuities in the
map (e.g. artifacts associated with creating a large
map from multiple submaps). If undetected, this
situation could cause the filter to become “lost”
and unable to re-converge.

To detect and correct for this situation, a Nor-
malized Innovation Squared (NIS) test has been
implemented. The test monitors the innovations
sequence and declares a fault if the covariance of
the normalized innovations exceeds a threshold.
When this occurs, the filter is reinitialized. Details
are provided in [9].

The second augmentation was a modification to
the likelihood function used in the correlation step,
L(x)typ. This modification was made in response
to the observation that TRN can occasionally con-
verge to an incorrect position estimate and assign
a high probability of confidence to that answer
when operating over benign terrain. The reason
for this incorrect convergence is a result of the
way in which TRN estimators are implemented
using particle filters. Several ad hoc solutions
are available in the literature, but [10] presents
a first-principles approach to a solution. Simply
stated, the standard likelihood function, L(x)typ,
implicitly assumes that the noise/uncertainty in
the map is small with respect to the amount of
variability in the terrain. However, this condition
is not satisfied when the terrain is benign (e.g. flat).
Hence, when flying over benign terrain, a different
likelihood function needs to be used.

The new likelihood function is

L(x)mod = L(x)αtyp (4)

where the paramenter, α, is calculated based on
the statistical properties of the local terrain map.
Details are presented in [10].

III. VEHICLE DESCRIPTION

The AUV used for testing and development is
a variant of MBARI’s standard mapping vehicle.
It is a Dorado/Bluefin 21” (54 cm) diameter type,
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Fig. 2. The MBARI modified Mapping AUV used for the
return-to-site tests

which has a cylindrical midsection and a truncated
hemispherical nose.

For these tests, a mapping sonar (Reson 7125)
was mounted in a down-look configuration and
perpendicular to the direction of travel. This sonar
was included to enable an independent verification
of the performance of the navigation solution.
Two Imagenex 837A multibeam sonars were also
included, but only used for obstacle avoidance.
One was mounted in a down-look configuration
and parallel to the direction of travel. The other
was mounted in a forward-look configuration and
parallel to the direction of travel.

The beam ranges used in the TRN estimator
were taken only from the DVL for these tests.
Any or all of the multibeam sonars could also
be included, but the goal was to demonstrate a
successful mission using a minimal sensor suite.

IV. FIELD TRIALS

In May 2014, a demonstration of a return-to-
site AUV mission was performed at Portuguese
Ledge in Monterey Bay, CA (Figure 3). This site
is approximately 800m in diameter and contains
a series of rock formations rising 30m above the
seafloor which are surrounded by a large area of
featureless terrain. This mix of informative and
uninformative terrain was ideal for testing the
TRN estimation logic under varying conditions.
Specifically, it made it possible to observe the
behavior of the logic both in its converged and un-
converged states as well as during the transitions
between the two.

	
  

Portuguese Ledge 
Test	
  site 

Fig. 3. Portuguese Ledge Test Site

Four runs comprised the test. Each was defined
by a waypoint at the end of three path segments,
and each waypoint was defined as a latitude-
longitude in an existing bathymetric map of the
site. Each run began at the Western most waypoint
and proceeded East, South and then North. A
nominal trackline is presented in Figure 4. Note
that each commanded path was similar, but not
identical.

Importantly, the map used to define the way-
points for this mission had a known georeferencing
error of approximately 20m.

Fig. 4. The commanded trackline specified on the original
map

TRN performance:

TRN was active during all of these runs. That
is, a map offset was calculated in real time and
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Fig. 5. Corrected tracklines for the four tests. For each trackline, green indicates that the TRN estimator is converged and the
map offsets are being updated; red indicates that the estimator is not converged; and yellow indicates that estimator has modified
the likelihood function in response to reduced information in the terrain

used to correct the estimated location of the AUV
with respect to the map as described above. This
map-relative position was the signal used by the
tracking control system to control the AUV’s loca-
tion. Consequently, if the offset calculated by the
TRN logic was correct, the paths actually flown
would match the commanded paths when viewed
in the frame of the map.

Results for the four test runs are shown in
Figures 5, 6 and 7. Figure 5 presents the track-
lines displayed on the map after adjusting for the
georeferencing errors. These paths represent the
best estimate of the trajectories flown over the true
terrain. Figure 6 presents a zoomed in view of a
section of one of the paths. The dashed line is the
location of the commanded path without the TRN
adjustment applied. The solid line is the path after
the correction. The 20m offset between the two
sets of plots is clearly visible. (See Figure 11 for
additional views.)

Fig. 6. Zoomed in view showing the offset between the
commanded path before and after adjustment for Run #3

Figure 7 displays the map offset calculated by
the TRN logic for each of the four runs. Also
plotted is the 90% confidence band reported by
the logic for the Run #3. These results show both
the consistency of the estimated offset as well as
the accuracy of the confidence interval (i.e. σ).

As an independent check, data from the map-
ping sonar collected during this run was used
to generate a map of the terrain using the tools
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Fig. 7. Map offset calculated by the TRN algorithm in four
tests. The grey area is the 90% confidence bound calculated
during Run #3

available in the MBSystem software package. This
is an offline process that creates a map as well
as a best estimate of the AUV’s trajectories with

respect to this map based on measured multibeam
sonar and INS data The result of this process is
presented in Figure 8. A comparison of Figures 5
and 8 indicates qualitative agreement between the
real-time TRN results and those obtained using the
mapping sonar data. Figures 9 and 10 provide a
zoomed in view of the regions where the trajecto-
ries cross.

Additional insight into the operation of the TRN
estimator is also provided in Figure 5. The solid
line in the figure indicates the path computed by
the on-line estimator. When the line is green, the
filter is converged and the map offset calculated
by the estimator is updated continuously. When
the line is red, the TRN filter is not converged
and the last good map offset is used. This occurs
for the two trajectories that approach the first
waypoint over benign terrain from the South. (The
trajectories that approach from the North arrive
at the first waypoint converged since they have

Fig. 8. Map and trajectories calculated from multibeam sonar data using MB-System
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Fig. 9. Zoomed in view of the trajectories calculated from
the multibeam sonar data

Fig. 10. Zoomed in view of the trajectories calculated by the
TRN estimator

travelled over feature rich terrain.)
When the line is yellow, the estimator has

determined that there is reduced information in
the measurements (i.e. operating over benign ter-
rain). During this time, the filter propagates nor-
mally, but uses the modified correlation function,
L(x)mod, in the correlation.

Return-to-site performance:

The above results also demonstrate a success-
ful return-to-site. Specifically, the waypoints that
define the desired trajectory for Run #3 over the
map were chosen to cause the AUV to fly over the
lower corner of a boulder. This is indicated in the
upper part of Figure 11. The path actually flown
is shown in the lower part of the figure.

In the figure, the dashed black line indicates
where the requested trackline appears in the map
without accounting for georeferencing errors. This
is the path that would have been flown without
TRN. The 20m offset is clearly visible and, if
flown, the boulder would have been missed. The

solid line is the path flown using the TRN estimate
of map offset.

Note that the solid line appears to start by track-
ing the desired path. However, the TRN estimator
has not yet converged (red) in this region and the
AUV is unaware that the map is not correctly
georeferenced. When the estimator converges, the
estimate of the AUV’s position jumps North and
West to the true position on map. The control
system then drives this error to zero causing the
AUV to track the true commanded path.

V. CONCLUSION

The field tests presented here demonstrate the
feasibility of using Terrain-Relative Navigation
as an effective augmentation to estimating the
position of an AUV. The motivation for this work
was enabling return-to-site missions for an AUV,
for example, to monitor a site for change over
time. These missions require that an AUV visit
targets identified in the map’s frame rather than in
an inertial frame. That is, the navigation system
must be able to deal with (potentially large) map
georeferencing errors (or even a moving target
such as a free-drifting icebergs) as well as offsets
that may occur in the INS estimate of position
(e.g. drift). This capability could also be used as
an alternative to surfacing for GPS navigation fixes
to correct for the drift that naturally occurs in any
dead-reckoned navigation technique assuming the
map is adequately georeferenced.

In addition, these field tests demonstrate robust
performance of the TRN system when transi-
tioning between flight over information-rich and
benign (flat) terrains. Specifically, a modification
to the likelihood function used in the measurement
update improves the prediction of the uncertainty
in the position estimate while enabling smooth
transitions between the regions.
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Fig. 11. Upper view: The commanded path on the map. The target (lower edge of a boulder) is indicated by the red arrow
in the upper view. Lower View: Zoomed in view of the trajectory flown by the AUV. The dashed line is the location of the
commanded path before correction.
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