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Abstract
Alzheimer’s disease (AD) is the most prevalent dementia in the world. Its cause(s) are presently largely unknown. The most 
common explanation for AD, now, is the amyloid cascade hypothesis, which states that the cause of AD is senile plaque forma-
tion by the amyloid β peptide, and the formation of neurofibrillary tangles by hyperphosphorylated tau. A second, burgeoning 
theory by which to explain AD is based on the infection hypothesis. Much experimental and epidemiological data support 
the involvement of infections in the development of dementia. According to this mechanism, the infection either directly or 
via microbial virulence factors precedes the formation of amyloid β plaques. The amyloid β peptide, possessing antimicrobial 
properties, may be beneficial at an early stage of AD, but becomes detrimental with the progression of the disease, concomi-
tantly with alterations to the innate immune system at both the peripheral and central levels. Infection results in neuroinflam-
mation, leading to, and sustained by, systemic inflammation, causing eventual neurodegeneration, and the senescence of the 
immune cells. The sources of AD-involved microbes are various body microbiome communities from the gut, mouth, nose, 
and skin. The infection hypothesis of AD opens a vista to new therapeutic approaches, either by treating the infection itself or 
modulating the immune system, its senescence, or the body’s metabolism, either separately, in parallel, or in a multi-step way.
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Key Points 

Experimental and epidemiological data increasingly 
support the involvement of infections in the develop-
ment of Alzheimer’s disease (AD), with the sources of 
AD-involved microbes being various body microbiome 
communities from the gut, mouth, nose, and skin.

Infection results in neuroinflammation, leading to and 
sustained by systemic inflammation, causing neuro-
degeneration, and the senescence of the immune cells 
preceding the clinical manifestations.

The infection hypothesis and the Antimicrobial Protec-
tion Hypothesis of AD open the way to new therapeutic 
approaches.

1  Introduction

Presently, Alzheimer’s disease (AD) is one of the most 
important public health concerns [1]. It remains the most 
common cause of dementia in the world [1–4]. Despite 
huge scientific efforts and financial outlay, we still do not 
know what is the cause of this disease, which is perhaps 
more appropriately defined as a syndrome [5–7]. More than 
1000 clinical trials have failed, and all ongoing attempts to 
identify treatment do not seem to be promising [8–10]. The 
prevailing hypothesis to explain the pathomechanism(s) of 
AD puts the amyloid beta peptide (Aβ) at center stage and is 
defined as the beta amyloid cascade hypothesis [11–13]. All 
attempts to modulate by any means the concentration of Aβ 
in patients’ brains have resulted so far in a failure to improve 
the clinical status of patients suffering from any stage of AD. 
Thus, there is an urgent need to reconsider the causes of 
AD, which may and should lead us to the discovery of new 
innovative measures to prevent and treat AD [8–10]. A new 
hypothesis has emerged, which puts infection or microbial/
microbiome challenge in the forefront of AD [5, 14].
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AD is a chronic disease, and the pathophysiological pro-
cesses leading ultimately to its overt symptoms start decades 
before the clinical manifestations may appear, triggered by 
age-related changes [15, 16], such as immune system modifi-
cations, inflammaging (increased levels of proinflammatory 
cytokines without overt signs of any inflammation), increase 
in gut leakage, and microbiome shift (dysbiosis), as well as 
the appearance of senescent cells in the gut and the brain; all 
factors that favor the development of AD [5, 7]. This makes 
it very difficult to cure, but in the meantime, this may con-
vey hope as it can be prevented in the “incubation period” 
preceding the appearance of cognitive decline to avoid the 
full-blown disease, if appropriate predictive biomarkers can 
be discovered. It is, however, of interest that the develop-
ment from the emergence of the first clinical symptoms 
[mild cognitive impairment (MCI (MCI))] to full-blown 
AD takes about 10–15 years. This time may also be used 
to slow down the progression or even cure it if the cause(s) 
of AD could be found or if biomarkers could allow it to be 
efficiently tracked.

2 � What is the Prevailing Hypothesis 
and Why Is It Unsatisfactory?

Since the first description of AD by Alois Alzheimer, 
extracellular Aβ plaques and intracellular hyperphospho-
rylated tau deposition (called neurofibrillary tangles) unre-
lated or only indirectly related to the formation of Aβ have 
become the pathological hallmarks of AD [17, 18].

This gave rise to the amyloid hypothesis of AD which 
has been adopted by the majority of the AD scientific com-
munity. Everything in AD research, clinical trials and ulti-
mately in memory clinics has been oriented and driven by 
the Aβ hypothesis [12, 19, 20].

However, the lack of useful and productive progress 
toward mechanistic understanding of AD calls for a 
revaluation of the Aβ cascade hypothesis. The amyloid 
hypothesis states that the production of Aβ from its amy-
loid precursor protein (APP) in neurons and astrocytes by 
β-secretase (BACE) together with a presenilin-containing 
complex called γ-secretase is the primary cause of AD 
[21–23]. Thus, the formation of Aβ is the starting point 
that initiates all the other observed pathological phenom-
ena associated with AD and culminates in the deposition 
of amyloid plaques in the brain [13]. It also triggers the 
intracellular deposition of hyperphosphorylated tau. Both 
of these phenomena (formation of plaques and of neu-
rofibrillary tangles) result in neurodegeneration (synapse 
degeneration and then neuronal cell death) and, more 
importantly, neuroinflammation [24–30]. It has subse-
quently been found that AD has many different genetic 

risk (susceptibility) factors, such as ApoE-ε4, TREM-2, 
and TOMM40 [31–37].

However, as appealing as this hypothesis may appear, 
many observations made over decades have spoken against 
it. One of the most important, yet constantly overlooked 
details is that these hallmarks exist in the brain of 20–30% 
of non-demented healthy elderly, while in contrast, an 
almost identical proportion of patients suffering from AD 
do not have these hallmarks [5, 38]. Evidence suggesting 
a role for events preceding and precipitating deposition of 
Aβ-containing plaques emerged almost a decade ago from 
the laboratory of Dr. Rudolf Tanzi, who had demonstrated 
the antimicrobial properties of Aβ and first described it as 
an antimicrobial peptides (AMP) [39]. These crucial obser-
vations were later confirmed by other laboratories, which 
found that Aβ acts as an AMP against many different micro-
organisms [40, 41], which suggested the “Antimicrobial 
Protection Hypothesis” of AD. Moreover, several different 
microorganisms have been demonstrated in the brains of AD 
patients [42–53]. Nevertheless, the most important argument 
against the Aβ hypothesis of AD is, as already mentioned, 
the lack of success of almost all trials that directly targeted 
Aβ accumulation through vaccination or monoclonal anti-
bodies or its production by the BACE inhibitors [54, 55]. 
An additional finding supports the antimicrobial role of Aβ 
generated in the brain, as a decrease in Aβ production dur-
ing the clinical trials lead occasionally to the emergence of 
some type of infections in the brain [56]. Thus, based on 
these facts, the infection hypothesis of AD pathogenesis was 
developed, slowly conceptualized, and finally clearly pub-
lished in a recent editorial [14]; see Fig. 1. Other possible 
hypotheses of mechanisms leading to AD have also been 
advanced [57–59].

3 � Other Existing Theories

It should be mentioned that over the years a few researchers 
have promoted different ideas about AD etiology. Among 
them was the vascular hypothesis, which appeared in the 
1990  s [59]. A study in nuns (The Nun Study) demon-
strated that even if, pathologically, amyloid plaques could 
be detected in the brain, the clinical diagnosis of AD was 
established only when these lesions were accompanied by 
atherosclerotic lesions in the brain, regardless of the age of 
the nun [60]. Later, it was shown that ischemia and shear 
stress were also able to generate the production of Aβ [61, 
62]. These ideas led to the integration of vascular problems 
and associated diseases (e.g., hypertension) as risk factors 
for AD [63, 64].

Another theory, the mitochondrial cascade hypoth-
esis, authored by Swerdlow et  al. [65], proposed that 
mitochondrial dysfunction resulting from aging, genetic 

Author's personal copy



Infection Hypothesis of AD and Therapeutic Options

predisposition, or environmental factors results in the pro-
duction of reactive oxygen species (ROS) that damage brain 
cell functions, resulting in typical AD pathology. The mito-
chondrial cascade hypothesis, similarly to the Aβ hypothesis, 
cannot stand alone as a causative factor for neurodegenera-
tion, but requires internal or external stresses acting on vari-
ous brain cells, such as neurons, microglia, and astrocytes. 
All infections stimulate ROS production and may interact 
directly with mitochondria, perturbing mitochondrial DNA 
(mtDNA) and mitochondrial homeostasis (fission, fusion, 
and mitophagy), leading to mitochondrial dysfunction [58]. 
Thus, this hypothesis can be easily integrated into the infec-
tion hypothesis.

4 � What Evidence Supports The Infection 
Hypothesis for AD?

There are numerous epidemiological and experimental dis-
coveries that support that AD may be an infectious disease. 
Already, many years ago, epidemiological evidence has 
linked the treatment of rheumatoid arthritis (RA) to the pre-
vention of AD. McGeer et al. [66] showed that RA patients 
who are receiving anti-inflammatory treatment develop AD 
much less often than others. This observation was confirmed 

by an updated meta-analysis of cohort studies [82]. Sixteen 
cohort studies, including 236,022 participants, published 
between 1995 and 2016, were included in this systematic 
review. Current evidence suggests that nonsteroidal anti-
inflammatory drug (NSAID) exposure might be signifi-
cantly associated with reduced risk of AD, but again, the 
need for prospective studies with individual NSAIDs is 
badly needed. Initially, this protection was suggested to be 
linked to the decrease in the neurotoxic effect of Aβ-induced 
neuroinflammation [67, 68]. However, more recently, RA 
was linked to the mouth bacterial pathogen Porphyromonas 
gingivalis [69–73]. Thus, the question may arise of whether 
the treatment of RA inflammation, which indirectly also 
decreased AD progression by reducing neuroinflammation, 
could somehow treat the common root, namely an infectious 
origin.

Epidemiologically, the first and strongest evidence 
was brought to the community by dentists [74–77]. They 
observed that people who suffer from periodontitis develop 
AD much more often than those who do not present this 
alteration in the mouth [78, 79]. Since these epidemiological 
observations, numerous experimental data have supported 
the link between periodontitis-induced systemic inflamma-
tion, oral dysbiosis, and altered immune response and AD 
[77, 80–89]. It should, however, be mentioned that some 
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Fig. 1   Possible intervention checkpoints according to the infection 
hypothesis. This figure depicts the various putative players in the 
development of AD, considering the infection hypothesis as well as 
the individual future targets for intervention. Aβ amyloid beta peptide, 

AD Alzheimer’s disease, APP amyloid precursor protein, BBB blood–
brain barrier, PRR pattern recognition receptors, ROS reactive oxygen 
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studies did not confirm these associations [90]. Increased 
AD incidence was linked to the presence of biofilms pro-
duced by the cornerstone bacteria P. gingivalis [80, 91]; 
however, recently, other bacteria were found to be involved, 
such as Treponema denticola and Tannerella forsythia [81]. 
The bacterial effect might be direct (bacteria entering the 
brain via the lingual nerve or the olfactory bulb) or indirect 
via their virulence products that stimulate the production of 
Aβ; the effect is the same: appearance in the brain of a struc-
ture resembling bacterial biofilm, called senile or Aβ plaques 
[75, 77, 78, 87, 92]. Indeed, it was recently postulated that 
amyloid plaques are biofilms [48]. This was recently sup-
ported by a study demonstrating the presence of one of the 
most important virulence factors of P. gingivalis, gingipain, 
in the brains of healthy and AD patients [52]. This latter 
group showed also [by quantitative polymerase chain reac-
tion (qPCR)] the presence of P. gingivalis in the brains of 
healthy subjects as well as in the brains of patients suffering 
from AD [52]. Our unpublished data also demonstrated by 
qPCR the presence of P. gingivalis in AD brains (manuscript 
in preparation).

Yet another bit of information associating the devel-
opment of AD with bacterial infections is the role of cal-
reticulin (CRT) and galectin-3 in the brain. The decreased 
expression of CRT in the neurons of AD patients was first 
demonstrated almost 2 decades ago [93]. CRT is a multi-
functional protein, which has since been associated with a 
chaperone function for APP; thus, the more CRT is present 
in the neuron, the more stable the APP becomes and less 
Aβ is produced resulting in its aggregates (plaques) [94]. 
On the other hand, CRT production is upregulated by Aβ 
oligomers, at least in vitro [95]. Serum levels of CRT are 
considered a negative biomarker of AD development and 
progression [96]. This may make sense, as CRT has been 
very recently shown to be secreted also by activated mac-
rophages and microglia and to act as an opsonin facilitating 
the phagocytosis of bacteria invading the brain (albeit so far 
only in a rat model) [97]. Thus, we could imagine/propose a 
scenario where an infection leads to production and release 
of Aβ, which aggregates and upregulates the production and 
secretion of CRT, which in turn binds/opsonizes bacteria for 
microglia-executed phagocytosis; thus, more intracerebral 
infection could lead to decreased levels of CRT (as it would 
be used up by opsonization and phagocytosis), which would 
favor AD.

Very recently a study in Taiwan showed that those suf-
fering from herpes simplex virus-1 (HSV-1) infection and 
treated with antiviral drugs had a reduced incidence of 
AD [98]. This retrospective cohort study from Taiwan 
showed the 10‐year incidence of dementia in a group 
of 8362 subjects aged 50 years or over who were newly 
diagnosed with HSV‐1 or HSV‐2 infection was 2.56‐fold 
greater than that in the control group (95% confidence 

interval 2.351–2.795; P < 0.001). More strikingly, anti‐
herpetic medication reduced the risk of developing 
dementia by approximately 91%. These results strongly 
support a potential causative link between HSV‐1 infection 
and AD, mainly in genetically susceptible subjects [36]. 
This observation suggests that AD is linked somehow to 
viral infections [53, 99–101]. However, this still does not 
clearly demonstrate whether HSV-1 is the cause or the 
consequence of AD, but highly suggests that HSV-1 may 
be also involved in its pathogenesis. Interestingly, dec-
ades ago, Itzhaki showed experimentally that HSV-1 DNA 
is present in the brain plaques of persons suffering from 
AD [43]. This indicated that viral infection may play a 
role in the development or progression of AD and that the 
secretion of Aβ may be a reactive phenomenon to control 
infection. It may have some AMP effect or may be a gen-
eral acute phase reaction to a strong stress as many other 
peptides in the organism during infection, such as LL-37, 
are affected [102, 103]. Very recently, the Lovheim group 
demonstrated an association between HSV-1 carriage and 
declining episodic memory function, only among ApoE-ε4 
carriers, while the other alleles such as ε2 and ε3 did not 
show such an association in cross-sectional and longitudi-
nal studies of a large population-based cohort [37]. Thus, 
the Lovheim group [36, 37] showed for the first time in a 
prospective epidemiological analysis that the host genetic 
background interacts with HSV-1 carriage to increase the 
risk for developing AD. The primary strengths of their 
studies include many cases with closely matched controls 
from the same population, combined with thorough clini-
cal AD diagnosis. These studies further confirm the inter-
action between ApoE-ε4 heterozygosity (APOE-ε2/ε4 or 
ε3/ε4) and HSV-1 carriage, which increased the risk of 
AD by approximately fivefold, whereas the presence of 
only one factor did not. A calculated genetic risk score 
(GRS), based on nine additional risk genes (ABCA7, 
BIN1, CD33, CLU, CR1, EPHA1, MS4A4E, NECTIN2, 
and PICALM), also correlated with anti–HSV-1 immu-
noglobulin G (IgG) for increased risk of subsequent AD. 
The present findings suggest that the ApoE-ε4 allele and 
other AD genetic risk factors might potentiate the risk of 
developing HSV-1–associated AD. Another very recent 
study in a cohort in Bordeaux, France, further confirmed 
these relationships between ApoE4 and HSV-1 being a 
strong risk factor for AD development [104]. Together, 
these data could provide new insights into the possible 
mechanisms by which the genetic treat of ApoE-ε4 associ-
ated with HSV-1 carriage may be involved in the develop-
ment of AD.

Almost at the same time, Miklossy and others have dem-
onstrated the presence of other microbes, such as the spi-
rochete Borrelia burgdorferi, in blood, cerebrospinal fluid, 
and brain tissue [105, 106]. They also hypothesized that this 
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bacterium may produce a biofilm that would constitute the 
amyloid plaque, protecting bacteria from various stress in 
the brain [107]. Balin et al. have demonstrated the exist-
ence of Chlamydia pneumoniae in plaques [50]. They later 
observed that systemic infection with C. pneumoniae in turn 
increased the occurrence of AD [51]. All these data have 
converged to promote and justify the development of the 
infection hypothesis, stating that accumulation of Aβ is not 
the primary cause of AD, but is itself the consequence of 
infection. Aβ would then play its pathogenic role as stated 
by the amyloid hypothesis [5, 108].

Subsequently, the demonstration of Treponema in plaques 
reinforced the infection hypothesis. In the sexually transmit-
ted infection syphilis, caused by Treponema pallidum, the 
tertiary stage is accompanied by a particular dementia sta-
tus [109], which occurs in most cases several decades after 
the primary infection [109]. This is a very important simili-
tude as this makes plausible the role of a bacterium of the 
genus Treponema in the pathogenesis of AD. Furthermore, 
another virus, HIV, has been associated with neurodegenera-
tive disorders [HIV-associated neurodegenerative disorder 
(HAND)] [110, 111]. A neurodegenerative disorder related 
to HIV infection has been reported to cause a severe form 
of dementia [112]. Since the efficacious treatment of HIV 
by combination antiretroviral therapy (cART), patients live 
much longer with the virus, reaching old age, and their neu-
rocognitive disorder has become much milder in its clinical 
manifestations [113–115]. In these patients, HAND resem-
bles AD more and more, even including the production of 
Aβ in response to the virus [116, 117]. Interestingly, HIV 
suppresses production of Aβ at early stages of the infection 
as a protection against the AMP role of Aβ, which reinforces 
its AMP role [118].

The latest microorganisms abundantly found post-mor-
tem in the brains of AD patients are pathogenic fungi [119]. 
The most important species were Candida albicans and the 
Malassezia sp. [120, 121]. We do not know how fungi may 
be involved in the development of AD, and this needs further 
investigations.

All this experimental evidence points toward the involve-
ment of microbes in the pathogenesis of AD [14] (Table 1). 
These results also indicate that it would be very difficult 
to identify one microorganism as the unique cause. It was 
suggested that AD is a polymicrobial disease [120, 122]. 
Nevertheless, one bacterium may be more important than 
the others, namely P. gingivalis. Its cornerstone role in peri-
odontitis, where it orchestrates the formation of biofilms, 
could be duplicated in AD. In support of this theory, a recent 
paper found the P. gingivalis virulence factors, gingipains, in 
the post-mortem brains of AD patients [52]. In summary, all 
of the experimental data gathered so far, suggest a potential 
causality between infections and AD [123].

Before further describing the putative pathomechanism 
that could explain how microorganisms may induce AD, we 
will describe the changes in the immune system that are 
a necessary corollary to allow infections to promote AD 
development, a process that may be the target for future 
treatments.

5 � The Innate and Adaptive Immune System 
in AD

The immune system has the role to defend the organism 
against external and internal challenges [124, 125]. In many 
circumstances, the immune system may be activated for a 
longer period than necessary when a challenge is maintained 
for a long time or is reactivated from time to time [126]. This 
means that inflammation that plays a beneficial role in acute 
infection may become chronic and detrimental to the host 
organism and even generate disease [126].

In the case of AD, neuroinflammation is a fundamental 
part of its pathogenesis [13, 16, 24, 127–130]. According 
to the amyloid hypothesis, neuroinflammation is generated 
and maintained chronically by Aβ [13]. In the infection 
hypothesis, it is the result of the penetration of the microbes 
or their products into the brain and is meant to help in the 
elimination of the infection, at least at the beginning of the 
pathogen invasion into the brain [15]. However, as infection 
becomes chronic, neuroinflammation also becomes chronic 
and destructive [40, 41]. Neuroinflammation in AD is char-
acterized by microglial and astrocyte activation, inflamma-
some activation via NLRP3, complement activation, and 
altered cytokine production shifted towards pro-inflamma-
tory cytokines such as interleukin (IL)-1β, tumor necrosis 
factor (TNF)-α, and IL-6 [131]. All of these characteristic 

Table 1   The most frequently involved microorganisms in Alzheimer’s 
disease

HHV human herpesvirus, HSV herpes simplex virus

Viruses
 HSV-1
 HIV
 HHV-6 and HHV-7

Bacteria
 Borrelia burgdorferi
 Treponema denticola
 Chlamydia pneumoniae
 Porphyromonas gingivalis

Fungi
 Candida albicans
 Malassezia furfur
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features of neuroinflammation may be found typically during 
infections as well [132].

Indeed, in AD, neuroinflammation is sustained mainly by 
the systemic and the local innate immune system. Systemati-
cally, the activated innate peripheral immune cells such as 
natural killer (NK) cells, neutrophils, and monocytes are, on 
the one hand, able to cross the blood–brain barrier (BBB) 
and create destruction in the brain directly or by their prod-
ucts, such as the pro-inflammatory cytokines or chemokines, 
which cross the BBB and act on resident brain immune 
innate cells, such as microglia and astrocytes, as demon-
strated in humans and in animal models of sepsis [133–137]. 
Furthermore, Bu et al. have shown in an association study 
that the systemic infectious burden measured by antimicro-
bial antibodies increased the risk of AD [138]. This study 
points again towards the polymicrobial nature of AD. Thus, 
peripheral infections, inflammation, and stress were linked 
to microglial activation via the NFκB/NLRP3 pathway via 
pro-inflammatory cytokines [139–141]. Together, these data 
suggest that systemic immune activation has central effects 
and vice versa [77, 82, 142].

The brain has a powerful innate system composed of 
microglia (brain macrophages), astrocytes, and even neu-
rons. They may destroy microorganisms or produce efficient 
antimicrobial peptides, the most important being the cathel-
icidin LL-37 [143–145]. Microglia, in response to stress, 
develop an inflammatory response (pathogen-associated 
molecular patterns or damage-associated molecular patterns) 
and secrete pro-inflammatory cytokines [146–148]. Impor-
tantly, microglia may also modulate astrocyte reactivity by 
IL-1α, TNF-α, and C1q, and such stimulated astrocytes may 
acquire a pro-inflammatory A1 phenotype [149, 150]. These 
“good” innate cells may be turned into “bad” cells by sev-
eral microbial products, including lipopolysaccharides (LPS) 
and gingipains, resulting in their loss of ability to eliminate 
invaders and decrease the Aβ burden, and in the activation of 
their senescence as well as in increasing their attack against 
neurons [89, 131, 151, 152]. In summary, under microbial 
pressure, the brain’s innate immune system deviates from a 
defensive to a killing role, resulting in neuroinflammation, 
senescence and neuronal death. Again, one trigger suspected 
to play a pathogenic role in AD is microbes and their prod-
ucts such as LPS.

The demonstration by Soscia et al. that Aβ is an AMP 
gave a new impetus to the infection hypothesis [39]. They 
tested Aβ against bacteria and fungi and found it more 
powerful than even LL-37. More recently, we and others 
have demonstrated that, like LL-37, Aβ may also inactivate 
viruses, including HSV-1 [41], influenza [153], and retrovi-
ruses [118]. It was also shown that when infected by HSV-
1, neurons were able to secrete substantial amounts of Aβ, 
which inhibited HSV-1 infection of other neurons [154]. 
This indicates that Aβ is not only a pathological peptide as 

supposed originally, but has a well-defined physiological 
role and is produced under very well-defined conditions. 
Moreover, Aβ was more powerful than interferon (IFN) 
type I. Recently, an interesting finding showed that Aβ may 
also have anticancer properties [155] as well as BBB repair 
properties [156]. The most important cells producing Aβ are 
neurons and astrocytes. This is not surprising as the latter 
together with microglia play a crucial role in the brain host 
defense either clearing waste or secreting defensins [157, 
158].

The role of Aβ as an AMP has since been tested in many 
animal and experimental models. It was shown in a murine 
model of Salmonella enterica and Salmonella typhimurium 
infection that endogenous as well as exogenous Aβ could 
prevent infection in the brain [159, 160]. These authors 
hypothesized that the mechanism of action of Aβ was by 
formation of amyloid aggregates (plaques) using the micro-
bial surface [161]. This led to the formulation of the Anti-
microbial Protection Hypothesis [162]. However, they never 
linked biofilm formation to plaque formation, as had been 
hypothesized by Miklossy [48]. Together these data again 
strongly support the notion that Aβ is a newly recognized 
member of the large AMP family combating infections in 
humans.

All these findings provide an answer to why evolution 
would promote, and even select for, an enzymatic system 
(β- and γ-secretase) if the result had no pro-survival value 
and, as believed, was only detrimental (leading to AD). Now, 
based on the convincing observations described above, we 
can say that generation of Aβ has a clear pro-survival role.

In fact, both secretases have multiple targets with dis-
tinct, different physiological roles, which likely evolved in 
early vertebrates many million years before APP and Aβ 
[163–165]. Also, the APP and its cleavage products seem 
to be multifunctional. Yet, based on their studies, Moore 
et al. venture to say, “Although not as deeply conserved 
as BACE1, the Aβ peptide has been conserved for at least 
430 million years. This indicates that Aβ, too, has essential 
functions that have thus far escaped discovery” [165], which 
indirectly supports our notion that antimicrobial effects of 
Aβ might be an (evolutionarily conserved) “bonus” feature.

The adaptive immune system also showed important 
changes in AD [166]. Naïve T cells decreased and CD8+ 
memory T cells increased. This situation is identical to what 
is observed during normal aging, but also in chronic infec-
tions, independent of age, such as cytomegalovirus (CMV) 
infections [167, 168]. This suggests that just like the innate 
immune system, the adaptive immune system is also chroni-
cally stimulated and its capacity to fight infections is not 
always efficient [169]. Thus, the immune system shows simi-
lar properties in AD patients to those found in many other 
chronic infectious diseases with, of course, specificities typi-
cal to its localization in the brain.
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Furthermore, this constant stimulation of the immune 
system via what is called inflammaging results in the 
exhaustion of the immune cells, resulting in an increase 
of cellular senescence, which is also evident in microglial 
cells [170]. This cellular senescence, via the senescence-
associated secretory phenotype (SASP), further supports and 
amplifies the notion of inflammaging [171–174]. SASP of 
microglia and astrocytes is sustained by the activation of 
two main intracellular inflammatory pathways that are inti-
mately linked with NFκB and the inflammasome pathways 
[175–177]. The NOD receptor pathway via NLRP3 medi-
ates the production of IL-1β, IL-18, and caspase-1, which 
increase in AD brains. Moreover, IL-1β has been shown to 
contribute to the permeability of the BBB, favoring the pas-
sage of microorganisms and their by-products [7, 178, 179]. 
These pathways may not only induce senescence but also 
what is called pyroptosis, which is an inflammation-trig-
gered programmed cell death, especially in microglia [180].

6 � What is the Pathomechanism 
that Microorganism(s) Use to Cause AD?

We suggest two overlapping pathways for microbes to 
induce AD.

The first involves direct migration of the microorganisms 
to the brain via either the lingual nerve or the olfactory bulb 
and crossing the permeabilized BBB, composed mainly of 
astrocytes, endothelial cells, and pericytes [181, 182]. For 
a long time, the brain was considered a privileged organ, as 
it was protected by a well sealed BBB; however, it has been 
shown that even in the early stages of AD, the BBB becomes 
more permeable [183]. This also may occur during the pro-
cess of aging [184] as well as during systemic inflammatory 
responses elicited by microbial infections such as viruses or 
bacteria, with or without direct brain infection [185, 186]. 
Microbes have evolved to be able to make the BBB perme-
able, partly by subverting pericytes and/or endothelial cells 
by inducing either their apoptosis or by using the comple-
ment system receptor 3 (CR3) to their advantage to make 
their way to the brain [187–189]. Neurons would respond 
by producing Aβ, to try to destroy the invading microbes 
[39–41]. In the meantime, the microglia and astrocytes are 
also stimulated and produce other antimicrobial peptides, 
pro-inflammatory cytokines, free radicals, and proteases 
to destroy the microorganism [158, 190, 191]. Moreover, 
the complement system is activated, and this favors phago-
cytosis [192]. Finally, the adaptive immune system is also 
activated either to produce cytotoxic effector CD8 + T cells 
or antibodies via B cells [193]. Thus, in a normal situation, 
the invading microorganism may be totally eliminated or 
imprisoned in biofilm, seen as plaques, which protect the 
microbial community from destruction [48]. This process 

may occur for decades preceding clinical manifestations of 
AD, and many reactivation or reinfection cycles may lead to 
chronic neuroinflammation and plaque deposition resulting 
in massive neuronal death.

Another non-mutually exclusive pathway may be the pas-
sage not of the entire microorganism but only its virulence 
factors, such as LPS, gingipains, extracellular RNAs, or pep-
tidyl arginine deiminase (PAD) enzymes [52, 86–89, 194, 
195] or other. These substances may occur permanently in 
the organism and originate from any of the microbial com-
munities/reservoirs of the organism, such as gut microbiome, 
mouth, or neurobiome [196–200]. These microbial prod-
ucts or metabolites may mediate their deleterious actions 
by being incorporated in extracellular vesicles (EVs) [201]. 
Indeed, many microorganisms, including P. gingivalis, are 
also able to release EVs containing gingipain and fimbriae, 
which modulates intestinal permeability as well as the func-
tion of the innate immune system, thus favoring an inflam-
matory status [88, 202, 203]. In this way these by-products 
will stimulate the immune system with the production of 
inflammatory mediators, which will chronically induce the 
same processes as the direct presence of the microorganism 
itself [89, 204].

As mentioned, these microbes or their virulence products 
may originate from various microbial reservoirs in the body 
including microorganisms that have reached the brain via the 
first pathomechanism. The most important microbial reser-
voir in humans is in the gut, which leads to the notion of the 
gut–brain axis. This means that there is a constant communi-
cation between the gut and the brain and vice versa through-
out life [205–208]. Indeed, the direct presence of microbes 
and/or their by-products has been demonstrated in the brains 
of AD patients, but interestingly also in the brains of healthy 
aged subjects, hence the notion of a “neurobiome” [52]. 
Studies of the gut microbiome in aged people showed a ten-
dency towards an increase in Gram-negative bacteria [209], 
which was also shown in MCI patients [210]. This becomes 
even more problematic when the immune system manifests 
some maladaptation with aging which permits the clinical 
development of AD through the translocation of microbes 
that are normally commensal (dysbiosis) [211–213] and 
are contained within the gut by the local immune system 
which has induced a tolerogenic state [214]. It has also been 
demonstrated that dysbiosis of the gut microbiome may pro-
mote various inflammatory disorders which have provoked 
microglial activation during the development of AD [211, 
215–217]. Thus, this suggests that the gut microbiome or 
better, its dysbiosis, is involved in regulating microglial acti-
vation and neuroinflammation in AD.

Another important axis for the development of AD could 
be the mouth–brain axis, involving mainly P. gingivalis [77, 
218]. P. gingivalis produces various virulence factors such 
as LPS, flagella, and toxic proteases called gingipains [219]. 
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The LPS may activate astrocytes and transform them to 
the proinflammatory A1 phenotype by stimulating Toll like 
receptor (TLR)-4 [220]. Gingipains have been found in the 
brains of healthy subjects and AD patients, and have been 
proposed to be involved in the pathophysiology of AD [52]. 
In periodontitis, these virulence factors, mainly gingipains 
(lysine-gingipain and arginine-gingipain A/B), have been 
shown to play a role in host colonization, inactivation of 
the host immune response, and iron and nutrient acquisi-
tion [221, 222]. Gingipains may also activate various innate 
receptors such as TREM1, TREM2, TLR-4, CR1, and 
NLRP3 [223–226], which may result in the activation of 
the inflammasome [227]. This activation in turn facilitates 
plaque formation and may amplify the inflammatory reac-
tion via release of ASC specks [228, 229]. Interestingly, the 
activation of this inflammasome results in pyroptosis which 
eliminates the cell infected by P. gingivalis and limits repli-
cation of this bacteria [230]. Furthermore, this phenomenon 
does not always require the presence of live P. gingivalis; 
released gingipains may penetrate cells and have similar 
effects [231, 232]. These processes involving the men-
tioned receptors, the inflammasome, and P. gingivalis or 
its gingipains will ultimately kill neurons and favor amyloid 
plaque deposition and IL-1β release. This will further help 
to permeabilize the BBB. Gingipains are also able to cleave 
IgG1 and IgG3, mainly by gingipain K, and in this way, the 
adaptive branch of the immune defense of the organism 
can be compromised [233, 234]. Another important viru-
lence factor of P. gingivalis is peptidylarginine deiminase 
(PPAD), which catalyzes the citrullination of both bacte-
rial and host proteins [235, 236]. PPAD helps P. gingivalis 
evade destruction by neutrophils by impairing phagocytosis 
and bacteria-induced NETosis [235]. Furthermore, when 
PPAD citrullinates cationic antimicrobial peptides such as 
LP9 and LL-37, it efficiently neutralizes them [237]. Gin-
gipains can also deactivate them by proteolytic degradation 
[238, 239], which may be followed by PPAD citrullination 
of exposed arginine residues. All of these products from P. 
gingivalis help it to evade elimination by both the innate 
and adaptive immune systems. It is of note that the direct 
role of P. gingivalis and its products in the development and 
progression of AD, even if they have been found in the brain 
of AD patients, will require further studies.

Inflammaging is sustained by an imbalance between 
the innate and adaptive immune systems together with the 
senescence of the cells constituting the central nervous sys-
tem (CNS), including neurons, microglia, and astrocytes. 
The concomitant processes of inflammaging, programmed 
cellular senescence, and dysbiosis further favor the leakage 
of the gut, resulting in the passage of bacteria (pathogenic 
and/or commensal) [238] and their products into the brain, 
including those which may contribute to AD, such as the 
curli [239].

One other recently described phenomenon which can 
lead to sustained neuroinflammation is the mechanism of 
“trained” innate immunity [240]. This process captures the 
constant inflammatory state seen in the innate immune sys-
tem during aging, AD, and other chronic diseases [126]. 
Once monocytes have been activated, any new unrelated 
stimulation will result in higher response from these cells 
[241]. This property of the innate immune system is remi-
niscent of memory in the adaptive immune system and can 
lead to maintenance of a basic, constant activation in cells 
like microglia, which will likely contribute to constant neu-
ronal destruction.

All these experimental results point to the fact that Aβ is 
deposited in the brain decades before the clinical manifesta-
tion of AD, suggesting that AD is related to chronic mutually 
sustaining inflammatory processes in the CNS and in the 
periphery as a result of a long-lasting antimicrobial response 
culminating in plaque deposition [15, 162, 242, 243].

Whatever the pathway that microorganisms employ to 
cause AD, better understanding of these processes could 
suggest new innovative strategies to prevent or intervene in 
the progression of AD.

7 � What are Possible Interventions Targeting 
the Prevention or Cure of AD?

The obvious treatments which come to mind are treatments 
by specific agents aimed at containing or direct elimina-
tion of the aforementioned microorganisms, such as antivi-
rals, antibacterials, and antifungal products. In the case of 
viruses, the most relevant would appear to be the antiviral 
drugs that penetrate the BBB and which are very effec-
tive even in herpes viral encephalitis, such as valacyclovir 
[101, 244, 245]. Unfortunately, although HSV-1 has been 
implicated in AD, we do not know if other viruses are also 
involved, and even for HSV-1, we do not know exactly when 
and how it may cause AD (and, as mentioned above, rather 
assume that the cause is prolonged and polymicrobial). It 
may be experimentally challenging to determine when, how, 
and at what dose to use such agents [100]. Nevertheless, 
each time that we have an infectious burst such as herpes 
labialis or herpes genitalis or zoster, we should treat the 
patients most vigorously, regardless of age. If we consider 
data from the Taiwanese study mentioned above, each of 
these treatments should decrease the incidence of AD. Other 
viruses may also be involved, and so we will have to discover 
antiviral agents that cross the BBB to control them.

Are there any direct trials targeting any stages of AD with 
antiviral treatment? In fact, there is one ongoing, one which 
has been just finished, and some may be actively planned 
[100]. This is due to the uncertainty of the viral mechanisms 
causing AD. Another factor is knowing at what time to treat. 

Author's personal copy



Infection Hypothesis of AD and Therapeutic Options

Considering the long “incubation period” of AD, it would 
be logical to treat any viral infection at any time it manifests 
itself, which would be of great advantage in decreasing the 
deleterious effect not only on the immunobiography/inflam-
maging, but also the viral contribution to the chronicity of 
such an accumulation of burden involving several infections. 
To avoid unnecessary treatment of non-susceptible individu-
als, one of the best periods would be when memory prob-
lems are starting to appear in the subjective memory com-
plaint (SMC) and MCI stages. In this way, we could assess 
whether this treatment would at least delay the progression 
towards AD. Logically, a pulse repeated intervention would 
be needed, but this again would have to be demonstrated. 
The advantage of valacyclovir and related drugs is that they 
have very few side effects even in elderly subjects. The epi-
demiological study from Taiwan seems to indicate that it 
could be a rewarding intervention. If successful in SMC or 
MCI, it could be envisaged at earlier times.

Devanand in his paper of 2018 [100] mentions a phase 
II, proof-of-concept, randomized, double-blind, placebo-
controlled, 18-month treatment trial of 130 patients (65 
valacyclovir, 65 placebo) with mild AD [Mini-Mental State 
Examination (MMSE) range 20–28] who tested positive for 
antibodies to HSV-1 or HSV-2. Valacyclovir dosage will be 
2–4 g daily. The dose range was stated safe and is known 
to lead to CNS penetration with high cerebrospinal fluid 
(CSF) levels, which should increase the chance of efficacy. 
The hypothesis was that, in comparison with patients treated 
with placebo, patients treated with valacyclovir would show 
a smaller decline on the Alzheimer’s Disease Assessment 
Scale–Cognition 11-item scale (ADAS-Cog11) (cognitive 
measure; 0–78 weeks) and the Alzheimer’s Disease Coop-
erative Study–Activities of Daily Living scale (ADCS-ADL) 
(function measure; 0–78 weeks). The authors state that if 
the trial is successful, they will continue with a phase III 
trial. Indeed, there is a trial registered as ClinicalTrials.gov 
Identifier NCT03282916. This trial plans to use valacyclo-
vir in MCI/AD patients to establish whether this treatment 
will restore or decrease cognitive functions. We should wait 
for the results of these trials to be published in forthcom-
ing years, probably in 2022. Another study, the VALZ-Pilot 
study (NCT02997982), investigated the effects of valaciclo-
vir treatment in individuals with AD or MCI of AD type. 
This study enrolled 36 persons for 4 weeks treatment then 
followed them for another 12 months. The study finished 
in March 2020, and no results are available yet. It will be 
interesting to have the results to plan larger phase III studies. 
A study (Apovir study) used Apovir (Apodemus AB, Solna), 
a combination of the experimental anti-enterovirus agent 
pleconaril, originally developed to treat the common cold, 
and the hepatitis C treatment ribavirin. This was reported at 
the Clinical Trials on Alzheimer’s Disease (CTAD) confer-
ence in Barcelona (2018) (https​://www.ctad-alzhe​imer.com/

files​/files​/CTAD%20ABS​TRACT​.pdf) as a phase 2a clinical 
trial including 69 people with mild AD given Apovir or pla-
cebo for 9 months. There was a very high dropout rate in the 
Apovir group because of side effects. However, the ADAS-
Cog improved slightly in patients taking Apovir versus pla-
cebo, by 3 points. This result was considered inconclusive, 
and the authors suggested that further studies were merited. 
These data were not yet published. Currently, there are no 
other ongoing clinical trials with antivirals for AD.

It is worthwhile to mention that several antibiotics have 
been tried to treat or at least to slow down the progression 
in prodromal as well as in mild to moderate AD [246]. The 
most used antibiotics in these clinical trials were doxycy-
cline, minocycline, and rifampin. In a clinical trial, Loeb 
et al. (2004) [246] used oral doxycycline at 200 mg and 
rifampin 300 mg daily for 3 months in prodromal and mild to 
moderate AD. The end point was Standardized Alzheimer’s 
Disease Assessment Scale cognitive subscale (SADAScog) 
score at 6 months. This trial concluded that there were no 
major adverse events, and therapy with doxycycline and 
rifampin may have a therapeutic role in patients with mild to 
moderate AD; however, the mechanism could not be estab-
lished, as it seemed unlikely to be due to the effect on C. 
pneumoniae. A few years later Molloy et al. [247] published 
the DARAD trial, which used doxycycline and rifampin 
for treatment of AD. This was a multicenter, blinded, ran-
domized, 2 × 2 factorial controlled trial set at 14 geriatric 
outpatient clinics in Canada for 12 months. This study did 
not confirm the results of Loeb et al. [246]; instead, there 
was a significant deterioration in SADAScog over time with 
both rifampin and doxycycline in comparison with placebo. 
Another recent clinical trial, with minocycline, reported by 
Howard et al. [248], used an experimental design of 1:1:1 
in a semifactorial design for patients to receive minocycline 
(400 mg/day or 200 mg/day) or placebo for 24 months. This 
clinical trial also found that minocycline did not delay the 
progress of cognitive or functional impairment in people 
with mild AD during a 2-year period and also found that 
400 mg of minocycline was poorly tolerated in this popula-
tion. These contradictory results can be explained by the fact 
that antibiotics target directly the infectious agents, which 
may not be present at the stage of the disease when they 
were used. The diferences in patient selection as well as 
the period of administration and various cognitive outcomes 
may also explain the apparent contradictions. Furthermore, 
as recently reported by Balducci and Forloni [249], doxy-
cycline, which crosses the BBB, has had compelling pre-
clinical results in mouse models of AD against Aβ oligomers 
and neuroinflammation. However, by targeting β-amyloid 
oligomers, as have many other trials, it may not be effica-
cious at the later stages of the disease. Another interesting 
question is the relationship between microbiota, AD, and 
dysbiosis. Recently, a review discussed this relationship 
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[250], raising the possibility that broad-spectrum antibiot-
ics can greatly affect the composition of the gut microbiota, 
reduce its biodiversity, and delay colonization for a long 
period after administration, which suggests that the action of 
antibiotics in AD could be wide and even opposite, depend-
ing on the type of antibiotic and on the specific role of the 
microbiome in AD pathogenesis. All these antibiotics also 
modulate the neuroinflammation; however, neuroinflamma-
tion may be somehow protective at some stages, by counter-
ing the microbial presence, rather than being only the cause 
for neurodegeneration [250]. More studies at different stages 
of AD are warranted to assess the exact role of antibiotics in 
the treatment of AD.

It is well known that P. gingivalis is almost impossible 
to eliminate by conventional antibiotics. Two other possi-
bilities exist which would neutralize the virulence factors of 
these microorganisms. In animal studies, recently developed 
small molecule inhibitors COR286, COR271, and COR388 
have been shown to protect animals from neurodegeneration, 
decrease the P. gingivalis load, and also decrease the burden 
of Aβ [52]. One small molecule is under clinical trial by Cor-
texyme to neutralize gingipains [52]. The second strategy 
involves vaccination of individuals with virulence factors 
[251–254]. Trials of vaccines to prevent or cure periodontitis 
are currently being considered [255]. We eagerly await the 
conclusion of these studies to see whether, by targeting the 
virulence factors, we can prevent or decrease the progression 
of AD. Of course, there are other virulence factors which 
could be targeted from any of the microorganisms. In the 
meantime, another possibility for treatment would be the use 
of peptoids (short peptidomimetics), which have been shown 
to be very effective antimicrobial substances in vitro and in 
mice [58, 256, 257]. Furthermore, in this line, the expression 
of natural antimicrobial peptides like LL-37 may be induced 
systemically [258, 259]. Recently, it was demonstrated to be 
effective against Staphylococcus aureus biofilms [260], and 
so it may also be useful against other biofilms, such as those 
created by P. gingivalis. The cytotoxic properties of LL-37 
may limit its effective use [261, 262]. Nevertheless, new 
engineered peptides and peptidomimetics may be developed.

However, it should also be noted that considering the 
polymicrobial nature of AD, one antimicrobial agent might 
not be enough to treat this disease. A combined multi-target 
designed treatment should be envisaged.

There may be other possible treatments. The immune sys-
tem may also be influenced by an anti-inflammatory treat-
ment in a pulse form in later life or as soon as any chronic 
inflammatory disease manifests itself in the organism. The 
modulation by probiotics may also be beneficial to maintain 
the health of various microbiomes in the organism. Recently, 
a large epidemiological study showed that Bacteroides spe-
cies were less represented in AD patients, suggesting that 
manipulation of the microbiota may be advantageous for AD 

[263]. Recently, a bioengineered curli was used as a restora-
tive therapy for the intestinal barrier [264]. Curli patterned 
on bacterial models may promote tolerance against certain 
bacteria in the intestinal tract. They act by inhibiting instead 
of stimulating the TLRs (TLR-2 and TLR-4) [265].

Furthermore, immunotherapy as in the case of cancer 
may also be possible. Indeed, microbes have also been 
shown to pervert T cell co-receptors to decrease immune 
activation and evade detection [266]. In this context, it is 
worthwhile to mention that P. gingivalis is able to subvert 
programmed cell death protein 1 (PD-1), to further escape 
the host immune response [267].

Of course, other general supportive therapies which may 
reinvigorate the immune system, making the microbiome 
healthier through nutrition, exercise, or the administration 
of ketone bodies, may be envisaged. Modulation of dysbiosis 
by any means may alleviate the burden of neuroinflammation 
and microglial activation. In this line, a very recent study by 
Nagpal et al. [268] used modified a Mediterranean-ketogenic 
diet (MMKD) to modulate the gut microbiome in subjects 
with MCI. Their data suggested that in MCI patients, the 
gut microbiome has specific characteristics and MMKD can 
modulate the gut microbiome and metabolites in association 
with AD biomarkers such as Aβ in the CSF [270]. However, 
these authors did not perform any cognitive tests, so their 
observations remain to be validated at the clinical level. 
Cunnane’s group investigated a medium-chain triglyceride 
ketogenic diet and showed improvement in the executive 
functions of MCI patients; however, its effect on the micro-
biome was not studied [269]. In vitro studies showed that 
exposure of human macrophages to short-chain fatty acid 
butyrate may increase macrophage antimicrobial activity 
through histone deacetylase 3 (HDAC3) inhibition [270]. 
In small studies in China targeting gut dysbiosis, GV-971 (a 
mixture of acidic linear oligosaccharides) reversed cognitive 
impairment by decreasing neuroinflammation [271].

If we consider the role of senescent cells and their secre-
tory phenotype (SASP) in the pathogenesis of AD related 
to infection, inflammation, and altered autophagy and 
mitophagy, one obvious treatment would be to eliminate 
these cells, as has already been suggested as an anti-aging 
treatment [272, 273]. Indeed, in this context, ciprofloxacin 
has been shown to modulate the accumulation of senescent 
DNA in SASP and, as such, played a senolytic role [274]. 
Further trials would be warranted to confirm this effect. 
Another molecule which may act as a senolytic is rapa-
mycin, which targets the inhibition of mTOR [275, 276]. 
Furthermore, recent studies have demonstrated that mTOR 
inhibition resulted in the restoration of the intestinal barrier 
damaged by P. gingivalis [277, 278]. Interestingly, lithium 
has been shown also to modulate mTOR and GSK3β, which 
protect the intestinal barrier by decreasing EC senescence 
as well as the integrity of the BBB [279]. In this way, 
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manipulation of mTOR may become a multi-effect treat-
ment eliminating senescent cells, restoring integrity of the 
gut barrier, and restoring the altered gut microbiota which 
occurs with aging [280].

Another molecule, azithromycin, an anti–P. gingivalis 
macrolide antibiotic, also has mTOR-modulating properties 
and has senolytic effects, and may be useful in AD treat-
ment [281, 282]. Concomitantly, other known antibiotics, 
such as minocycline and rifampicin, aside from inhibiting 
the NLRP3 pathway, may facilitate the removal of senescent 
cells [184, 283]. Thus, the use of antibiotics that double as 
senolytics links infection, inflammation, and cell senescence, 
which are accentuated by external and internal factors such 
as aging.

Thus, an obvious means to treat the infectious patho-
mechanism of AD would be the modulation of NLRP3 acti-
vation. This was shown in the case of fluoxetine, a selective 
serotonin reuptake inhibitor [284]. Indeed, a recent trial 
showed that fluoxetine has been able to decrease the pro-
gression from MCI to AD [285]. Along the same line of 
evidence, since defective mitochondria stimulate the NLRP3 
pathway, the elimination of these defective mitochondria by 
increasing mitophagy may also be an effective therapy. Inter-
estingly, some antibiotics, such as tetracycline, seemed to be 
able to increase mitophagy in AD [286]. Obviously, direct 
inflammasome inhibitory substances may also have a thera-
peutic role in AD. Among the most promising, as already 
mentioned, are short-chain fatty acids such as butyrate [287].

Another interesting therapeutic approach may stem from 
observations showing that glucagon-like peptide-1 (GLP-1) 
facilitates immune tolerance [288, 289] and may be upreg-
ulated by LPS stimulation. This generated the suggestion 
that GLP-1 may behave as an AMP [290]. Moreover, GLP-1 
seemed to inhibit the development of A1 inflammatory 
astrocytes [291]. This has led to a new trial in AD using a 
well-known drug used in type 2 diabetes, liraglutide, which 
is a GLP‐1 receptor agonist [292].

Yet another group of molecules which may be considered 
in AD therapy because they target the infection hypothesis at 
its origins are iron chelators [293]. Iron is essential for bacte-
rial growth; thus, its chelation may enhance body defenses 
and diminish the microbial load. Moreover, recently, iron 
has also been shown to contribute to cell senescence [294] 
via stimulation of the mTOR pathway and inhibition of 
mitophagy [295]. Thus, iron chelators such as deferoxamine 
are mTOR inhibitors [296]. A natural in vivo iron chelator, 
lactoferrin, has been shown to bind LPS and thus to deacti-
vate NLRP3 [297]. It has also been demonstrated to be an 
AMP with anti–P. gingivalis activity [298, 299]. So, lacto-
ferrin may become a powerful treatment for AD [300–303].

New developments may include small molecules that tar-
get mitochondria such as MitoQ, Mdicvi-1, and SS31, which 
have proved to be efficient in preventing mitochondrial 

dysfunction and restoring mitochondrial homeostasis in 
cell cultures and in experimental animals; however, their 
use alone or in combination in humans awaits clinical trials 
[304]. In addition to iron chelators, mito-modulators have 
also been proposed to counteract the dysfunction of mito-
chondria in AD that has possibly been induced by microbial 
by-products such as gingipains. The overproduction of ROS 
associated with infection and microglia stimulation may be 
targeted by endogenous antioxidants such as reduced glu-
tathione (GSH) [305] as well as by exogenous antioxidants, 
which are found in various nutrients as well as in diets such 
as the Mediterranean diet [306].

However, the most rewarding treatment would be pre-
vention. In this way, we can imagine that vaccines against 
the microorganisms that are involved may be developed. An 
agent capable of destroying biofilms would also be a major 
breakthrough to treat the mouth microbiome and as such 
prevent AD.

Figure 1 and Table 2 summarizes potential interventions.

8 � Can We Learn from “Why” to Find “How” 
to Prevent or Treat “When”?

While various interventions are possible, we still have not 
identified the reason(s) why a pathogen would migrate to 
the brain. Understanding the events leading to pathogenic 
migration and colonization of the brain should help develop 
prophylactic strategies to reduce AD onset.

The direct relationship between amyloid plaques and 
presence of pathogens in the brain has not been firmly 
established despite strong circumstantial evidence. We do 

Table 2   Potential interventions

Targeting microoganisms directly
 Antiviral agents
 Antibacterial agents (antibiotics)
 Antifungal agents

Immune-modulating treatment
 Vaccination
 Anti-inflammatory treatment
 Checkpoint inhibitors

Cell biological treatment
 Senolytics
 Antimicrobial peptides
 Iron chelators and mito-modulators

Supportive treatment
 Probiotics/prebiotics
 Ketone bodies
 Nutritional support
 Physical exercise
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know that amyloid plaques are also present in individu-
als without AD. Similarly, individuals with atheroscle-
rotic plaques are not all equally at risk of calcification 
and blood vessel disruption. This strongly suggests that 
pathogen migration to the brain may be independent of 
amyloid plaque formation per se.

Is it then possible to prevent this migration? Would that 
be enough to prevent the onset of AD? The contribution 
of ApoE isoforms in the susceptibility to AD can also be 
due to the fact ApoE4 facilitates entry to the brain [307]. 
Burgos et al. [308] have found that mice in a humanized 
mouse model expressing human ApoE4 have high levels of 
HSV-1 in the brain compared to ApoE3 humanized mice, 
while no difference was observed in viral load in other 
organs. A systematic study of other pathogens would be 
necessary to understand the array of pathogens that might 
gain increased access to the brain with the ApoE4 carrier.

Other mechanisms such as crossing the BBB have been 
put forward. Lachenmaier et al. [309] demonstrated that 
Toxoplasma gondii modulated gene expression of brain 
endothelial cells to promote its own migration through the 
BBB. They suggested that this enhanced migration could 
be via a “Trojan horse” mechanism with infected cells 
having a CD11b + CD11c ± phenotype. Another intrigu-
ing characteristic of T. gondii invasion of the brain was its 
propensity to develop low metabolic activity [310] upon 
entry into the CNS. This fine activity balance may also 
exist for a series of other pathogens located in the brain, 
but it may be disrupted during acute events.

Current concepts and data would imply that the brain 
of individuals without AD is free of pathogens. However, 
it appears that many or most individuals have microor-
ganisms in their brain, as revealed by the recent report 
of a brain symbiotic ecosystem where restricted types of 
microorganisms can survive without inducing pathology 
(neurobiome) [52].

Could this be the result of an efficient immune cell–path-
ogen interaction specific for the brain environment? The 
logical consequence would be that a trigger is needed to 
disrupt this fine equilibrium just as in the gut where the 
well-arranged balance between microbes and the intestine 
is periodically disrupted and results in dysbiosis.

It is largely unknown which acute stress or repetitive 
acute stresses may be responsible for the activation of the 
metabolic switch leading to pathogen proliferation and sub-
sequent sequelae. This will require intense research. A few 
possibilities exist: [1] brain inflammation associated with 
microvasculature defects; (2i) severe gut dysbiosis associ-
ated with leakage sensed in the brain; [3] acute infectious 
disease; and [4] major organ failure leading to transfer of 
biological reserves from the brain to the corresponding 
organ/system. Independent of the cause, understanding the 
brain symbiotic ecosystem (neurobiome/neurodysbiosis) and 

its regulation will enable better control of the events associ-
ated with AD onset.

9 � Searching for New Directions in Drug 
Discovery

The National Alzheimer’s Project Act by world leaders 
mandates a plan, which articulates the ultimate goal of pre-
venting or effectively treating AD by the year 2025 [311]. 
To propose a possible pathway, it is important to put into 
perspective past failures, discuss novel opportunities, and 
understand the feasibility of delivering a drug by 2025. 
Several decades of research on competing hypotheses for 
explaining the cause of AD [e.g., cholinergic [312], amyloid 
[313], tau [314], glucose synthase kinase 3 [315], inflam-
mation [316] ] led to the development of drugs that reached 
clinical trials but failed. Despite billions of euros spent 
worldwide on drug development and clinical trials based 
largely on animal modeling, these have repeatedly failed to 
translate into effective interventions [317]. Under these hard-
to-accept empirical observations, it is imperative to consider 
alternative hypotheses (e.g., the infection hypothesis), but 
also to consider drug development and research strategies 
that shy away from transgenic animal models that do not 
accurately reproduce human AD.

Indeed, recent technological leaps in stem cell research 
have led to the ground-breaking development of lab-grown 
human mini-brains, which reproduce the hallmarks of AD 
[318, 319]. This alternative model allows for testing of vari-
ous in vivo–based hypotheses and extract correct and com-
plex information. Combining these advances to the infection 
hypothesis of AD, as well as the Antimicrobial Protection 
Hypothesis of AD [160], provides clear targets and the frame-
work for novel AD drug designs. Indeed, since Aβ is a pow-
erful antimicrobial peptide that targets and neutralizes AD 
pathogens, it is reasonable to consider the development of a 
cocktail of novel and more powerful antimicrobial peptides 
based on the Aβ template. To achieve these ultimate goals, 
we envisage a multi-stage, closed-loop framework between 
in silico drug screening and drug testing in mini-brains as 
follows. First, data mining in existing databases (e.g., cAMP) 
and antimicrobial activity prediction via rational design [320] 
should generate analogs with improved activity. Second, 
state-of-the-art molecular simulations should be employed to 
determine the mechanism of action of Aβ against AD patho-
gens. Third, by combining information gained from step 1 
and 2, and with further determination of physical–chemi-
cal descriptors of the generated analogs and Aβ, these can 
be used to train and screen potential antimicrobial peptides 
candidates via advanced machine-learning drug discovery 
software.
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This final stage should involve testing against user-desired 
properties (e.g., half maximal inhibitory concentration 
(IC50)), as well as multiomics analysis. In this way, anti-
microbial peptides sequences can be ranked in terms of the 
desired property, and those of poorest quality are rejected, 
allowing a new population to be selected.

Note that biofilm experiments in neural tissue based on 
multiomics data from patients and deceased frozen brains 
can be recreated in mini-brains and tested. Moreover, mod-
ern high-throughput technologies enable rapid and efficient 
simultaneous acquisition of multiomics data in the course of 
a single experiment [321]. This is significant since it departs 
from traditional experimental studies, which are usually car-
ried out to isolate the effects of a single mechanism and not 
to investigate the interactions of many mechanisms. This 
leads to a set of results that seem conflicting; thus, it is dif-
ficult to interpret or understand the interactions of the under-
lying mechanisms leading to the pathogenesis of the disease.

The observables of such a modeling approach could in 
principle be integrated with a drug discovery process and 
therefore lead to a systematic and holistic screening of anti-
microbial peptides with high therapeutic efficacy against 
AD pathogens. Therefore, novel biological models and 
experimental approaches, as well as multiomics acquisition 
devices provide unique opportunities to study and acceler-
ate drug development in the context of novel hypotheses 
of AD by coupling it to advanced data analysis and state-
of-the-art in silico drug screening. Moreover, this proposed 
pathway has the potential to reduce the overall cost of drug 
development.

10 � Conclusion: Perspectives

It seems clear that it will be difficult to find one pathogen 
to explain the whole spectrum of AD in the spirit of the 
infection hypothesis. From the available data, it seems that 
we should think instead about a causative polymicrobial 
community which affects the immune/inflammatory reac-
tions in the brain and in the periphery, and which interacts 
with various factors such as genetics, environment, and age. 
Thus, more properly, AD may be considered a complex syn-
drome involving dysregulation of the brain’s immune sys-
tem. Obviously, future treatments (and/or prevention) of AD 
will not be one simple molecule but a multimodal complex 
treatment. This will combine most probably antimicrobial, 
senolytic, and anti-inflammatory agents with pro-mitophagy 
treatments. In this way, prevention and even treatment of AD 
will most probably become feasible. Many clinical investi-
gations and trials will be necessary before we can arrive at 
this stage.
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