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Abstract— We present a silicon neuron with a dynamic, ac-
tive leak that enables precise spike-timing with respect to a
time-varying input signal. Our neuron models the mammalian
bushy cell, which enhances the phase-locking of its acoustically
driven inputs. Our model enhances phase-locking by up to 38%
(quantified by vector strength) across a 60 dB range of acoustic
intensities, and up to 22% over a passive leak. Its conductance-
based log-domain design yields a compact and efficient circuit,
fabricated in 0.25 µm CMOS, that is an ideal timing-enhancing
component for neuromorphic speech recognition systems.

I. IMPROVING SPEECH RECOGNITION SYSTEMS

Automatic speech recognition (ASR) has been sought by
engineers for more than 50 years [1]. Unlike human speech
recognition, which degrades gracefully under progressively
deteriorating acoustic conditions, ASR systems are sensitive
to variance in the sound source and to background noise. In
contrast, human listeners improve recognition in noisy envi-
ronments by incorporating knowledge of a speaker’s location,
or the pitch of his or her voice (i.e., active listening and
the cocktail party problem [2]). To do so, they exploit the
speech waveform’s fine temporal structure [3], discarded by
ASR preprocessors, which instead extract the instantaneous
energy (but not phase) of numerous frequency channels across
the spectrum [1]. By not only including, but enhancing timing
information during preprocessing, ASR systems may access
the plethora of sound-cues that humans rely on.

Custom-designed hardware models of the auditory periphery
are well suited to perform ASR preprocessing—they are power
efficient yet can evaluate biologically-inspired computations
in real-time. Several silicon cochleas have been created that
frequency-decompose sound by modeling the observed me-
chanical behavior of the inner ear [4,5]. Furthermore, inspired
by the biological auditory periphery, circuit designers have
mimicked the analog-to-digital conversion that transpires at
the auditory nerve (AN) by coding the cochlear output as a
spike rate [6,7].

In addition to using a spike-rate code to represent the
spectral energy of sound (as decomposed along the length
of the basilar membrane), the mammalian AN represents the
phase of an acoustic waveform with spike timing. Sound local-
ization computations that compare phase differences between
the two ears require 10 µs timing accuracy, which exceeds the
precision of individual AN fibers. Indeed, AN spike timing (as
well as other acoustic features) is enhanced in the mammalian
cochlear nucleus (CN) [8]. In the cat, Joris et al. recorded
from CN cells, and found that, for frequencies less than 1 kHz,
globular bushy cells’ spike timing was more precise than their
AN inputs, with a sparse code of a single spike per cycle [9].
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Fig. 1. Bushy cell circuit. Vm, the membrane voltage, drives gH ,
the hyperpolarization-activated mixed-cation conductance; gKLT, the low-
threshold potassium conductance; and gNa, the spike-generating sodium
conductance. REQ, the spike request, is acknowledged by ACK, which
drives gK, the spike-resetting potassium conductance. ANFi, the auditory
nerve input, drives gSYN , the synaptic conductance. ICL, the current-clamp
transistor, is an excitatory input controlled off chip. Currents produced by
these conductances are integrated on Vint, which can be isolated from Vm

by VCL, the voltage-clamp circuitry. The low-pass filter building block is
outlined (LPF).

The only VLSI model of a CN neuron used a “moderately
high” leak and a fast refractory period to realize a bushy
cell-like response (spikes aligned at the onset of sound) [10].
With a fixed leak, however, only a narrow range of stimulus
intensities elicit this response—below which the neuron fails
to respond due to excessive inhibition and above which the
neuron spikes repetitively during the on-phase of a stimulus
cycle. In contrast, when a biological bushy cells is stimulated
with intense sound its active conductances dynamically limit
repetitive action-potentials (until the bombardment of synaptic
input relaxes during the off-phase of the stimulus cycle).
Physiologists identified a large potassium conductance that
activates near rest, gKLT [11], which has been shown to
enhance phase-locking [12]. We show here that gKLT is also
responsible for intensity adaptation.

Taking a neuromorphic approach to achieving spike-timing
enhancement, we have implemented a silicon model of the
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globular bushy cell that includes gKLT. In Section II, we de-
scribe our bushy cell circuit. In Section III, we characterize the
circuit with static and time-varying stimuli, then demonstrate
that gKLT enables our bushy cell circuit to phase-lock to an
acoustic stimulus over a wide intensity range. In Section IV,
we summarize our results and their implications for extracting
both sound source pitch and location for ASR.

II. NEURON IMPLEMENTATION

The heart of our silicon bushy cell is a log-domain low pass
filter (LPF) whose output controls four active conductances
(Fig. 1). We represent the cell’s membrane voltage as the
current flowing through a subthreshold pMOS device operating
in saturation (Imem ∝ eκ(Vdd−Vm)/uT). Our simplified imple-
mentation of the conductance equation ((Cmem uT/κ

IgKLT+IgH
)dImem

dt
+

Imem ∝ IgSYN+IgNa+IgH
IgKLT+IgH/IHrel

) assumes the relatively fast spike-
generating and resetting conductances (gNa and gK) do not
contribute appreciably to the membrane time-constant.

Each active conductance contributes to the cell’s response.
The fast-activating sodium conductance (gNa ∝ I2

mem) is re-
sponsible for generating spikes; the moderately fast-activating
potassium conductance that has a low activation-threshold
(gKLT ∝ Imem/IKslp) is responsible for enhancing timing;
and the slow, hyperpolarization-activated conductance (gH ∝
IHdiv/Imem) is responsible for setting the resting potential
while decreasing the membrane time-constant. The propor-
tionality constants (gains) are set by the bias voltages NaThr,
Kslp , and Hdiv , respectively. Additionally, the fast-activating
potassium conductance (gK) is included to reset the neuron
after it spikes.

These active conductances’ dependence on Imem is re-
alized using translinear (subthreshold CMOS) circuits, and
their dynamics with LPFs, except for gNa, which responds
instantaneously; it simply uses positive feedback circuitry [13].
gH and gKLT use variants of the LPF with a translinear
input stage that implements the equations above, and limiting
transistors that set the maximum conductance. By driving
the integration node (Vint) with current sources, both gH

(scaled) and gKLT dynamically control the membrane time-
constant. Additionally, gH sets the resting level through a
source follower.

We designed each conductance’s subcircuit to be flexible
yet compact. For gKLT’s dependence on Imem , Kslp and Ksat

adjust the gain and the saturation level, respectively. We well-
connected the Vm-driven transistor to neutralize kappa (≈ 0.6
in this process), which would otherwise cause a square root-
like increase in gKLT at low Imem levels. For gH’s dependence,
Hdiv effectively shifts the value of Vm where limiting occurs.
Hrel balances gH’s relative contributions to the neuron’s time-
constant and resting level. For gNa’s dependence, NaThr shifts
the gain and onset (i.e., spiking threshold). These biases
enabled us to readily match the biological g-v curves.

Our silicon bushy cell can be driven by voltage-clamp,
current-clamp, or silicon AN synapses. To voltage-clamp the
cell, we tie Vm directly to an off-chip voltage source after
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Fig. 2. Modeling bushy cell conductances. Activation curves for three
conductances in the biological bushy cell (top) and in our silicon bushy cell
(bottom). Bias settings: Kslp = 2.3 V; Ksat = 2.0 V; Hdiv = 1.4 V;
Hsat = 1.775 V; Hrel = 2.1 V; Nathr = 1.0 V; Vdd = 2.5 V.

isolating it from the active conductances’ integration node
(Vint) by turning the voltage-clamp transistor off (VCL). To
current-clamp the cell, we apply an off-chip voltage that
represents the log of the input current to Vint through a source-
follower (ICL). To apply synaptic input, we route 0.1 ms
pulses to the thirteen excitatory inputs (ANFi).

Over one thousand copies of our silicon bushy cell were
included in a 4410-neuron CN chip that we designed, sub-
mitted, and tested. With 544,692 transistors in 11.33 mm2,
it was fabricated in TSMC’s 0.25 µm CMOS process. In
addition to 1080 bushy cells (15% of the cat’s population), the
chip includes four other CN cell types that enhance different
acoustic features [8]. AN and CN spikes are communicated
digitally using the Address Event Representation (AER) [14],
and routed to and from a desktop computer via an AER-
USB2.0 link. Individual currents (Fig. 1, *) are measured using
a scanner and scaled to compensate for a pad gain of 1000
(estimated).

III. NEURON CHARACTERIZATION

A. Conductance-Voltage Curves

Using voltage-clamp, we tuned our silicon bushy cell’s
active conductances to qualitatively match those observed bio-
logically. Rothman and Manis [15] formulated g-v curves after
characterizing many bushy cells in vitro (Fig. 2 top). In steady-
state, their model bushy cell rests at −66 mV. At potentials
hyperpolarized to rest only gH is active. At potentials slightly
depolarized from rest, gKLT, the “low-threshold” conductance,
activates and eventually saturates as the spike-generating gNa

becomes active. Our silicon bushy cell’s g-I curves match the
biological ones (Fig. 2 bottom); it rests at Imem ≈ 12 nA.

We model gKLT and gH with static time-constants, whereas
Rothman and Manis use a bell-shaped voltage dependence. In
their model, gKLT’s time-constant ranges from 1.5 to 6.4 ms,
peaking near rest. They did not measure the time-constant of
gH, but in another CN neuron (octopus cell) it ranges from 30
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to 175 ms [16]. Measuring the time-constants of each silicon
conductance in voltage-clamp, we set gKLT’s to 3 ms (Kτ =
2.29 V) and gH’s to 80 ms (Hτ = 2.4 V).

Together, gKLT and gH dynamically set the neuron’s mem-
brane time-constant, yielding a 1 ms time-constant at rest in
Rothman and Manis’s model. Measuring the membrane time-
constant in current-clamp by injecting a small excitatory pulse
that does not significantly activate gKLT, we set our bushy
cell’s membrane time-constant to 1.2 ms at rest by scaling
gKLT and gH’s g-I curves.

To probe the role of gKLT, we compare results when
the conductance is enabled, disabled, and substituted with a
(large) passive leak. The disabled setting converts gKLT to a
fast spike-reset conductance by reducing its input sensitivity
(Kslp = 2.0 V) and time-constant (Kτ = 2.0 V) while
increasing its maximum output (Ksat = 1.0 V). We simulate
a passive leak by increasing gH (Hrel = 2.5 V), in addition to
disabling gKLT.

B. Response to current injection

Our silicon bushy cell follows time-varying current-clamp
input with both Imem and its spike timing (Fig. 3 top). Similar
to the current-clamp response observed experimentally, the
membrane responds quickly to a large step input (membrane
time-constant of a millisecond), fires a solitary spike, then
quickly settles to an elevated level. At the offset of the current
step, the membrane rapidly dips below the resting level and
then settles back within 20 ms.

The fast response and solitary onset spike are a result of
shunting inhibition by gKLT. As Imem rises, gKLT activates
and shunts the input current preventing spiking. However,
due to a delay, a solitary spike can occur when gNa elicits
positive-feedback before gKLT sufficiently kicks in. We chose
a current-clamp level just sufficient to elicit spikes, which
occur approximately every other cycle.

When gKLT is disabled, neither Imem nor spike-times follow
the input (Fig. 3 middle). As the stimulus turns on and off,
Imem rises and decays slowly. Over multiple cycles, Imem

integrates up, eventually reaching spike threshold at a random
stimulus phase. We see little relation between stimulus phase
and spike-times with gKLT disabled.

When a passive leak replaces gKLT, Imem again follows
the input, though spike-times are not relegated to the stimulus
onset (Fig. 3 bottom). Imem rapidly settles to a level dictated
by the difference between leak and input currents, unless the
input surpasses the leak, which causes Imem to integrate to
spike threshold. As the leak does not increase with increasing
Imem , it cannot limit multiple-spikes during the on-phase of
the stimulus. In this case we chose an input level sightly above
threshold, which elicits rapid and repetitive spiking throughout
the on-phase.

C. Response to synaptic input

With gKLT enabled, our silicon bushy cell accurately follows
the phase of a pure-tone acoustic stimulus (Fig. 4 left). To test
our model’s response to sound, we generated stochastic AN
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Fig. 3. gKLT enhances temporal response to injected current. top With gKLT

enabled, Imem follows the 10 Hz square wave’s on (370 nA) and off (0 nA)
transitions; spikes (o) are relegated to the on transitions. middle With gKLT
disabled, Imem is slow to react, has an elevated resting level, and integrates
charge over successive current pulses; spikes occur with no apparent phase
relation to the stimulus waveform. In this case, we reduced the square wave’s
amplitude to 28 nA to obtain a similar spike-rate. bottom With a passive leak,
Imem follows the input, has a resting level of zero, and spikes only during
the on-phase. At this input level (1.69 µA), slightly above threshold, spikes
occur throughout the on-phase.

spike trains based on a computational model of the guinea-
pig cochlea-AN complex [17]. Our bushy cell is innervated
by thirteen AN fibers that exhibit a range of spontaneous
rates, from 0.5 to 150 Hz. We applied 100 presentations of
AN spikes, generated in response to a 25 ms, 250 Hz tone, at
70 dB SPL (with 25 ms between presentations).

Compared to its aggregate AN inputs, the bushy cell fires
far fewer spikes overall, has a higher proportion of spikes
at sound onset, and fires more precisely in phase with the
acoustic stimulus. These characteristics are in line with what
we observed when exciting the bushy cell with a square-wave
current input: gKLT limits spikes to the onset of a strong stimu-
lus and prevents multiple spikes during stimulation (decreasing
the overall spike rate).

We quantify phase-locking ability by the magnitude of the
normalized vector sum of the spike phases (vector strength,
VS) [9]. A VS of one corresponds to perfect phase-locking,
where the neuron fires at exactly the same phase on every
cycle. A VS of zero corresponds to no phase-locking, where
the neuron fires at random phases. The bushy cell exhibits bet-
ter phase locking (VS = 0.95) than its AN inputs (aggregate
VS = 0.82) at 70 dB SPL. In contrast, the bushy cell’s VS
decreases to 0.90 with a passive leak.

The benefits of gKLT (over a passive leak) are most apparent
at high intensity levels (Fig 4. right). At 110 dB SPL, gKLT

makes a dramatic difference: It limits multiple spikes and
increases phase-locking (VS = 0.97) despite a decrease in
AN phase-locking (VS = 0.60). The passive-leak neuron, on
the other hand, fired multiple times per cycle and decreased
its phase-locking (VS = 0.75). The superior phase-locking
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Fig. 4. gKLT enhances temporal response to synaptic inputs. Spike rasters (100 trials) and phase histograms in response to 250 Hz pure tone (red) at 70
and 110 dB SPL (left and right panels, respectively): top simulated AN fibers (all thirteen are collapsed into a single spike train in each trial); middle silicon
bushy cell with gKLT; bottom silicon bushy cell with a passive leak. Phase histograms are computed from spikes occuring after 10 ms, and are normalized
and shifted to be maximal at 0.5 cycles.
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Fig. 5. gKLT enhances phase-locking over a wide range of intensities. Vector
strength values for the aggregate AN, our silicon bushy cell with gKLT, and
with gKLT replaced by a passive leak.

achieved with gKLT occurs from 60 to 120 dB SPL (Fig. 5).

IV. CONCLUSION

We have implemented a silicon model of a bushy cell,
including four active conductances, whose dependence on
membrane voltage qualitatively matches those of the biological
bushy cell. gKLT enables the bushy cell to enhance timing
over a range of 60 dB SPL. With a passive leak, timing
enhancement degrades as intensity increases. Our gKLT cir-
cuit is efficient and compact: It operates with sub-threshold
currents using a log-domain low pass filter comprised of only
six transistors. By endowing silicon neurons in an auditory
preprocessor with this conductance, they will provide precise
timing cues for extracting sound source pitch and location, in-
creasing the robustness of ASR systems in real-world acoustic
environments.
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