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Abstract—We present an approach to mapping synaptic models
onto neuromorphic hardware using Time-Encoding and Decoding
Machines. This framework allows us to transform a spiking soma-
circuit into an analog-to-digital converter (ADC), one for each
synapse circuit. We verify that the measurements obtained with
these ‘virtual’ ADCs closely match those obtained with an on-
chip ADC. Using the massively parallel measurement capability
that these virtual ADCs afford us, we demonstrate the first large-
scale calibration of synapse circuits’ dynamic parameters. This
advance opens the door to programming neuromorphic chips on
the more intuitive level of dimensionless models, rather than by
setting raw voltage biases, as is currently done.

I. MAPPING DIMENSIONLESS MODELS ONTO SILICON

Neuromorphic engineers have adopted a model-driven ap-
proach to current-mode circuit design [1]. Given a dimension-
less differential equation modeling the behavior of interest, a
subthreshold CMOS circuit is designed in which the model’s
state-variable is represented by a current. While this model-
driven approach greatly simplifies many aspects of system
design and operation, it also introduces a heavy reliance on
calibration.

Calibration is necessary because of the large variation in
behavior—caused by transistor mismatch—between different
copies of the same circuit. On the level of dimensionless
models, these variations cause circuits with the same applied
biases to exhibit behavior corresponding to different values of
the model’s parameters. The relationships between individual
circuit’s biases and the model parameters are captured by map-
ping parameters extracted for each circuit during calibration.
Spiking soma circuits have been calibrated by exploiting the
relationship between the model parameters and the neuron’s
steady-state spike-rate, derived using techniques from dynam-
ical systems theory [2]. However, no such relationship exists
for the dynamic parameters of a synapse circuit, thus a new
calibration technique is needed.

We present a new approach to calibration that uses Time-
Encoding and Decoding machines to endow each synapse
circuit with a ‘virtual’ analog-to-digital converter. In our ap-
proach, each synapse circuit’s output waveform is captured in
a massively parallel fashion, greatly reducing the time required
to calibrate the chip. In this paper, we present a refined analysis
of the synapse circuit (Section II), a summary of the time-
encoding and decoding paradigm and its adaptation to our
hardware (Section III), and results obtained from calibrating
the dynamic parameters of over 2,000 of Neurogrid’s synapse
circuits [3], [4] (Section IV).
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Fig. 1: Synapse circuit with biasing circuitry (gray). MC1 and MC2
model spike-triggered release and reuptake of neurotransmitter, re-
spectively. MR1-3 model receptor-binding and unbinding: MR1 dis-
charges Cg to a limit set by MR2 and MR3 recharges it back up to Vdd.
MR4 produces a current, Ig , that is proportional to the postsynaptic
conductance. Cp is a parasitic capacitance that affects the postsynaptic
conductance’s time-constant and initial value.

II. SYNAPSE CIRCUIT

The synapse circuit models the release and reuptake of
neurotransmitter, triggered by the arrival of a spike (Fig. 1).
Its dynamics are described by

τ ġ + g = gsatxtrise(t) + g0δ(t) (1)

where τ is the synaptic time-constant, gsat is the maximum
conductance, xtrise(t) is a unit-input pulse with duration trise
triggered by a spike, δ(t), and g0 is an artifact of the parasitic
capacitance. We show how this artifact arises and also demon-
strate that xtrise(t) has a step-like rising-edge and a sigmoidal
trailing-edge through a refinement of previous analyses [3].

To demonstrate how the synapse circuit implements (1), we
derive expressions for the two currents that discharge Cg . We
start with Ip, the current across Cp, the capacitor between
MR1’s gate and well. This current, which flows between Vg
and Vx, is given by Ip = Cp

d
dt (Vg − Vx). Since Vx is

the voltage across Cx, which is discharged by the arrival
of a spike and recharged by Ipe, we have (Cx + Cp)V̇x =
Ipe − (Cx + Cp)Vddδ(t). Substituting this expression into the
previous equation yields

Ip = CpV̇g − pcIpe + CpVddδ(t) (2)



where pc = Cp/(Cx +Cp). Next, we derive an expression for
Iin(t), the current conducted by MR2. Applying the translinear
principle [5] to MR2’s forward and reverse currents yields
an expression that is valid in both the ohmic and saturation
regimes
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where we define Vgsat = Vdd − UT
κ log(IgsatIlpf/I

2
0 ), which

equals MR2’s gate-voltage. UT is the thermal voltage, κ is the
subthreshold-slope coefficient, and I0 is the leakage current of
a transistor.

Combining these currents with the current Ilpf, which
recharges Cg , we obtain

CgV̇g = Ilpf − Iin(t)− Ip (5)

Substituting (2), (4), and V̇g = −(UT /κIg)İg , yields
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after multiplying both sides by −Ig/Ilpf. Next, we note that
Vx(t) =

Ipe

Cx+Cp
t and we define the model-parameter trise to

be the time at which Vx(trise) = Vgsat. Thus we obtain
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1
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) + Qcδ(t) (7)

after dividing both sides by 1 + pcIpe/Ilpf and defining τ =
(Cg+Cp)UT /(κ(Ilpf +pcIpe)) and Qc = (Ig(0

+)−Ig(0−))τ .
We obtain Ig(0

+) = Ig(0
−) exp(

κCpVdd
(Cg+Cp)UT

) by integrating
(6) an infinitesimal time past t = 0.

To convert (7) into dimensionless form, we divide both sides
by a normalization current, chosen to be the bias Ilk of the
soma circuit [3], which yields (1) with g = Ig/Ilk, gsat =
Igsat/Ilk, g0 = Qc/Ilk, and

xtrise(t) =
1

1 + pc
Ipe

Ilpf
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κVgsat
UT

(
t
trise

−1
) (8)

The solution to (1) is given by

g(t) = u(t)e−
t
τ ∗ (gsatxtrise(t) + g0δ(t)) (9)

where u(t) is the unit-step function (Fig. 2). We fit the model
given by (9) to the synapse-circuits’ measured outputs to
calibrate these circuits.

III. VIRTUAL ANALOG-TO-DIGITAL CONVERTERS

To measure the synaptic waveforms, we employ Time-
Encoding and Time-Decoding Machines: a class of asyn-
chronous, nonuniform sampling techniques introduced by
Lazar and Toth [6]. Using these methods, we recover the

10 ms

Fig. 2: Synapse circuit’s ideal waveforms. a x(t)’s duration increases
and its trailing-edge’s slope becomes less steep as trise increases. b
g(t)’s rising phase lengthens and its peak value increases as trise
increases. c g(t)’s rising and falling phases becomes less steep and
its peak value decreases as τ increases. d g(t)’s discontinuity (at
t = 0) and peak value increase as g0 increases. In a-d, the default
values are trise = 30 ms, τ = 30 ms, g0 = 0, and Vgsat = 1.1 V.

synapse circuit’s output from the spike-trains of a soma circuit.
In this way, we endow each synapse circuit with a ‘virtual’
analog-to-digital converter (ADC) that can be operated in
parallel due to the high-throughput spike-routing architecture
of the chip [7].

A. Time-Encoding and Time-Decoding

To time-encode a signal, it is fed into a spike-generator,
which encodes the signal-amplitude as a sequence of spike-
times. These spike-times are time-decoded to recover the
input signal using an algorithm that minimizes a smoothness
criterion subject to a set of linear constraints. These constraints
on the input signal are derived from the observed sequence of
spike-times and the differential equations governing the spike-
generator’s state-variable [8]. Recoveries are highly accurate
given certain Nyquist-like constraints on the input-signal’s
bandwidth relative to the spike-generator’s spike-rate [6], [9].

We now derive a set of linear constraints on the input signal.
The first step is to reparameterize the spike-generator by its
phase along its limit cycle [10], defined as

θ = t mod T (10)

where T is the limit-cycle’s period. The utility of this repa-
rameterization is evident when we consider the system’s
response to weak perturbations. Such a perturbation, g(t), only
manifests as an advance or delay of the phase along the limit
cycle [11]. This perturbed phase θ̃ is described by

dθ̃

dt
= 1 + Z(θ̃, b)g(t) (11)

where Z(θ) is the spike-generator’s infinitesimal Phase Re-
sponse Curve (PRC). It describes the phase change that an



Fig. 3: a, b Dependence of QIF neuron’s phase-response Z(θ, g)
and steady-state spike-rate H(g) on its input conductance g; T (g) is
the corresponding period. in a, erev = 7, x0 = 4, and τsoma = 4 ms;
in b, erev = 2, x0 = 3, and τsoma = 5 ms.

impulse evokes as a function of the phase at which the impulse
was received. The conditional form, Z(θ, b), captures how the
PRC changes as a function of the input level b.

If g(t) is not weak, we re-write it as a weak deviation v(t)
from a constant value gk that corresponds to g(t)’s mean over
the interspike interval [tk, tk+1]. That is

g(t) = v(t) +

M−2∑
k=0

1[tk,tk+1](t)gk (12)

where M is the number of spikes. We obtain gk by in-
verting the spike-generator’s transfer-function, H(g). Defining
H−1(f) to be the input value g that causes the spike-
generator to spike at rate f , we estimate ĝk = H−1(fk) where
fk = 1/(tk+1 − tk) is the instantaneous spike-rate. For small
interspike intervals and g(t) of sufficiently low bandwidth,
v(t) is weak enough that (11) is valid.

The next step is to use (11) to obtain a linear constraint on
the input-signal’s value g(t) during each interspike interval.
Replacing g(t) in (11) with v(t), and b with gk, and integrating
over the interspike interval [tk, tk+1] yields∫ tk+1

tk

dθ̃ =

∫ tk+1

tk

1 + Z(θ̃, ĝk)v(t)dt (13)

We note that, over each interspike interval, θ̃ begins at zero
and ends at Tk, the instantaneous period of the spike-generator.
Following [8], we make the approximation Z(θ̃, ĝk) ≈
Z(t, ĝk) and re-express v(t) in terms of g(t) and gk. Thus,

Tk = tk+1 − tk +

∫ tk+1

tk

Z(t, ĝk)(g(t)− ĝk)dt (14)

We define the constant χk =
∫ tk+1

tk
Z(t, ĝk)ĝkdt, and note that

Tk = (tk+1 − tk), since we estimated ĝk from the perturbed
period. This yields a linear constraint on g(t):

1

χk

∫ tk+1

tk

Z(t, ĝk)g(t)dt = 1 (15)

Finally, we cast the set of constraints given by (15) into
matrix form. We define Z[i; ĝk] and g[i], for 0 ≤ i < N , to be
Z(t, ĝk) and g(t) discretized over the interval [0, tmax] with a

timestep ∆. We define the matrix A ∈ RM×N whose (k, i)th

element is given by

aki =
1

χk
1
[
tk
∆ ,

tk+1
∆ ]

[i]Z[i; ĝk]∆ (16)

With these definitions, (15) is expressed by Ag = 1, where
g has elements g[i] and 1 has elements 1. This equation has
many solutions because, in general, M < N . Among these
solutions, we choose the one that satisfies

minimize
g

∫ tmax

0

∥∥∥∥∂2g∂t2
∥∥∥∥2 dt, subject to Ag = 1 (17)

thereby minimizing a second-order smoothness constraint [9].

B. QIF Neuron’s Phase-Response Curve

In order to obtain A (see (16)) for our soma circuit, we de-
rive its PRC, Z(θ, g), and measure its transfer function, H(g),
which maps constant synaptic inputs to steady-state spike-
rates. The soma circuit implements a leaky quadratic-integrate-
and-fire (QIF) model with conductance-based synapses. Its
membrane voltage v(t) is governed by

τsoma
dv

dt
= 1

2v
2 − v + g(t)(erev − v) + x0 (18)

where τsoma is its membrane’s time-constant, g(t) is its
synapse’s conductance, erev is this conductance’s reversal
potential, and x0 is a constant-current input.

To compute the PRC, we apply the adjoint method [12] to
(18) and derive the analytical expression

Z(θ, g) = 2
c2 (erev − a) cos2(βθ − γ)− c

2 sin(2βθ − γ) (19)

where a = 1 + g, c =
√

2erevx0 − a2, β = 2
cτsoma

, and γ =

tan−1(a/c) (Fig. 3a). To obtain the values of erev, x0, and τsoma
for each soma circuit, we use calibrated mapping parameters
obtained through a previously described procedure [2].

To measure H(g) for a particular soma circuit, we send
spikes from the PC to its synapse-circuit at a rate sufficiently
high to saturate its synapse circuit’s output at its maximum
value gsat. We sweep gsat over a wide range and record the
soma’s spike-rate for each value of gsat (Fig. 3b).1

To validate the recovery algorithm, we compare its re-
coveries of g(t) with measurements taken with an on-chip
ADC (Fig. 4). We observe a close match between these two
measurements.2

IV. CALIBRATION PROCEDURE AND RESULTS

To calibrate the synapse-circuit’s dynamic parameters, we
relate them to their respective biases:

trise =
CtriseVgsat

Ipe + I1
and τ =

Qτ
Ilpf + pcIpe + I2

(20)

1Although H(g) can be computed analytically [3], it is more accurate to
measure it empirically as hourly temperature variation can cause the actual
H(g) curve to deviate from its ideal form.

2The recovered waveforms exhibit ripples due to quantization of the spike-
times (50 µs resolution).



Fig. 4: The synapse-circuit’s conductance g(t) measured with the
on-chip ADC (dashed lines) and recovered with Time-Encoding and
Decoding machines (solid lines) for several values of trise and τ . The
default parameters values are trise = 42.7 ms and τ = 24.0 ms
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Fig. 5: Distributions of calibrated mapping parameters for 2,264
synapse circuits (12 outliers not shown). The mapping parameters’
magnitudes are determined by arbitrary DAC units.

where we define the mapping parameters Ctrise = Cx + Cp,
Qτ = (Cg + Cp)UT /κ, pc = Cp/(Cx + Cp), I1 and I2. The
latter two are leakage currents in parallel with Ipe and Ilpf,
respectively. We substitute (20) into (9) to relate the synapse-
circuit’s output g(t) to its mapping parameters

g(t) =

 1

1 + pc
Ipe

Ilpf

1

1 + e
κVgsat
UT

(
Ipe+I1
CtriseVgsat

t−1
) + g0δ(t)


∗ u(t)e−

Ilpf+pcIpe+I2
Qτ

t (21)

We fit this expression to recoveries of g(t)—obtained using
Time-Encoding and Decoding Machines—for many combina-
tions of the biases Ipe and Ilpf.3 These fits yielded values for
Ctrise, Qτ , pc, I1, I2, and g0 for 2,264 synapse circuits (Fig.
5).

With calibrated mapping parameters in hand, we can now
program each synapse circuit on the more intuitive level of
its dimensionless model’s parameters (Fig. 6). Given desired
values of trise and τ for each synapse circuit, we substitute
its mapping parameters into (20), solve for the corresponding
values of the biases Ipe and Ilpf, and program its digital-
to-analog converter (DAC) accordingly. In cases where a
single DAC is shared by a population of synapse circuits,
as in Neurogrid, we use the median values of the mapping
parameters’ distributions [4].

3For each set of values of Ipe and Ilpf, a spike is sent from the PC to the
synapse circuit, which causes the soma circuit to generate spikes. We time-
decode these spikes to recover g(t). In order to ensure accurate recovery,
we set the soma’s parameters (x0, erev, and τsoma) such that its free-running
spike-rate is approximately 200 Hz. We also set gsat so as to operate on
the monotonically-increasing segment of the soma-circuit’s transfer function
H(g) (see Fig. 3).

Fig. 6: Calibration results: Expected (dashed lines) and measured
(solid lines) synaptic conductances closely match, validating that
mapping parameters were accurately calibrated. The fitted values
were 1.01trise and 1.03τ , an accuracy of 1 to 3%.

V. SUMMARY

We presented a fast, accurate method for calibrating synapse
circuits’ dynamic parameters. In our approach, we use a soma
circuit to time-encode a synapse circuit’s output. We then time-
decode the soma circuit’s spike-train to recover the synapse
circuit’s output. The recoveries closely matched measurements
obtained using the on-chip ADC, and enabled us to acquire
synapse waveforms in a massively parallel fashion. We fit
these recovered waveforms to a refined model of the synapse
circuit’s behavior (9). The mapping parameters obtained with
this calibration procedure yield accurate predictions of the
synapse-circuit’s behavior.
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