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Abstract —We describe a scalable architecture for the implementation of
neural networks that produces regular and dense designs. A combination of
low power consumption and enhanced performance is achieved by using
analog current-mode MOS circuits operating in subthreshold conduction.

We have designed and fabricated a bidirectional associative memory in
3-pm bulk CMOS. The chip has 46 neurons arranged in three layers—
a hidden layer and two input/output layers. There are 448 repeatedly
programmable connections. This chip performs two-way associative search
for stored vector pairs and has optimal storage efficiency of one hardware
bit per information bit. The synaptic elements have bipolar current out-
puts. These currents are integrated using the interconnect capacitance to
determine the activation of the thresholding neurons. The unit synaptic
current /, is externally programmable. Recall rates of 100 000 vectors per
second have been obtained with I, = 0.5 pA.

I. INTRODUCTION

IOLOGICAL information processing systems outper-
form modern digital machines in problems that re-
quire processing large amounts of fuzzy, noisy, real world
data, such as pattern recognition and classification. The
shortcomings of conventional approaches have forced
computer scientists and engineers to borrow paradigms
from biology to solve problems in sensory perception and
machine intelligence. In addition to handling noisy and
even novel inputs, neuromorphic systems have two other
desirable features: fault tolerance and massive parallelism.
The smart memories project, using an elegant five-tran-
sistor memory cell design {1}, and work by Jones et al. [2]
emphasized digital VLSI content addressable memories for
specialized computing engines. Also, parallel programming
languages, such as Linda [3], use associative look-up to
create and coordinate processes. However, no digital im-
plementation of an associative processing system can cap-
ture the central idea of a physical system that is able to
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store and process information like the brain [4]. Neural
paradigms for associative memories have been proposed
and investigated in the past [S], [6]. The computational
capability of these models has been demonstrated with
problems in pattern recognition, vector quantization, nov-
elty filtering, and optimization [S]-[7].

The Hopfield neural model was implemented in VLSI
by Sivilotti et al. [8]. This was the first successful single-chip
implementation of a programmable neural circuit for an
associative memory. This chip and subsequent projects
showed how digital-oriented MOS VLSI processes can be
used to implement large scale analog systems [9], [10].
Power dissipation levels compatible with very large scale
integration are achieved by operating the devices in the
subthreshold conduction region.

In this paper we present an analog VLSI architecture for
associative memories that uses current signals and native
device physics to implement area-efficient computational
primitives. In the next section we describe the heteroasso-
ciative neural network we developed to make optimal use
of digital memory. This model is equivalent to Kosko’s
bidirectional associative memory (BAM) [11] and includes
the Hopfield net as a special case. Our model differs in
that it has a hidden layer that uses a unary representation
to store the vector pairings. As a result, only one-bit
weights are needed. We show that this three-layer model
has optimal storage efficiency of one hardware bit per
information bit.

In Section IIT we review subthreshold MOSFET behav-
ior and current mirrors, the primary computational ele-
ments in current-mode (CM) circuits. Section IV intro-
duces our synthetic neural subcircuits. Simple CM circuits
that perform the functions of thresholding neurons, non-
thresholding neurons and synapses are described. In the
following section (Section 1V) we present an architecture
that uses these circuits, in a regular structure, to implement
the three layer BAM model. By using transistors as cou-
pling elements and circuits with current inputs the prob-
lems of fan-in and fan-out are solved in a natural way. As
a result, our architecture is scalable. Preliminary test re-
sults obtained from fabricated chips are presented.
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Fig. 1. Three-layer BAM model. A middle-layer neuron (hidden unit) is
assigned to each association stored.

II. ASSOCIATIVE MEMORY MODELS

Let X = (xy, %5, x,)7 and Y= (yy, Y.+, y)" 1ED-
resent the states of two neuron layers, of size n and m,
respectively.! Ideally, a heteroassociative neural network
operates as follows:

In the store mode, the current state of each layer is
stored, forming the association (A4, B).

In the recall mode, the network converges to the stored
state (A, B) nearest to its initial state (X, Y).

These neurons receive inputs from neurons in another
layer through synapses. A neuron’s activation is the linear
sum of these inputs weighted by the synaptic efficacies.
We make the following distinctions:

® A thresholding neuron has two discrete states, x =
+1, determined by the sign of its activation, v, that

is x = sgn(v).
® A non-thresholding neuron’s output equals its activa-
tion.

The network we introduce is both bidirectional and sym-
metric.

® In a bidirectional network, neurons in the A field
determine the states of those in the B field, and vice
versa.

® In a symmetric network, if the input to neuron i

from neuron j is weighted by w;, then w; =w;.

2.1. Three-Layer Bidirectional Associative Memory

This model, shown in Fig. 1, has two input/output
layers (F, and Fy), with n and m thresholding neurons
respectively, and a hidden layer (F,) with s non-
thresholding neurons. A similar, but strictly feedforward
network, was studied by Baum et al. [12]). This network
stores up to s associations, labeled by the index set {,
which are programmed as follows:

A hidden unit is assigned to each association. For asso-
ciation (A4°, B®) the weights between the chosen hidden
unit (also labeled with the superscript p) and neurons in
F, and Fj are simply set to the corresponding component

'Column vectors will be denoted by capital letters and their compo-
nents by small letters with appropriate subscripts.
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of 4° or B*. Thus for F;; w,=w,=af, and for Fg;
W, =W, = bF.

During recall, the states of neurons in either F, or Fp
are initialized. All the neurons are then allowed to update
their states by thresholding their activation. We shall show
that if the stored vectors satisfy certain conditions the
vector pair closest to the initial state is recalled. Formally,
if the F, neurons are initialized to A4, then the recalled
association (A%, B°) has the property

ATA° = max ATA?.
peﬂ
To show this, observe that the activation, v;, of the jth
neuron in Fy is

n
Uj = Z ijup = Z wjp Z wplai'
pEQ pe i=1

i =pP =g
Since Wi, b,- and w,, = af, we have

b= )> bf Y afa;= )y bjPATAP, )

pel i=1 peE
Rewriting this equation as
— T, Tyqp
v=bAA°+ ) brA'A
pER, p*o

we find that y, = sgn(v;) = b; if

1) The inner-product A74° between the input vector 4

and the target vector A4° is positive, and

2) The sum of the inner-products between the input

vector and the other stored vectors is less than
ATA4".

Under these conditions the jth neuron’s state becomes
b7 and the closest vector B° is recalled. Feeding B® back
through the network yields 4° if the above conditions hold
for the B vectors as well. The condition A74°> 0 guaran-
tees that the complement of the target vector is not re-
called. If these conditions fail to hold, the recalled vector
will be a combination of the stored vectors.

2.2. Equivalent Networks

In this section we show that this three layer network is
equivalent to Kosko’s two-layer BAM [11].

Indeed, a two-layer BAM with »n neurons in F, and m
neurons in Fy has an n X m connection matrix M( = [m,;])
which is the sum of outer-products AB”

m;;= Y afbf

pEQ

)
During recall, the activation of the jth neuron in Fy is
()
Using (2) and reversing the order of summation, we find

n n
Uj= Z ai Z a;’bj": Z bjp Z a,a,‘-’

i=1 peQ pe =1
which is (1).
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Kosko proved that every real matrix M is a bidirection-
ally stable associative memory [11]. Therefore, the three-
layer BAM also has convergent trajectories for any set of
stored vectors.

From (2), it should be obvious that if 4° = B* for all p,
the connection matrix is symmetric as in a Hopfield net [6]
with n neurons. We compare the hardware requirements of
these networks, including the Hopfield net in Section 2.3.

2.3. Efficient Implementation

Of these three models, the three-layer BAM has the
highest storage and computational efficiency, making it the
best candidate for VLSI.

An nXxXn two-layer BAM has n? weights whereas a
Hopfield net with the same number of neurons has nearly
four times as many weights, 2n(2n —1) to be exact. In
these matrix memories, the weights have integer values,
|m;;| < s (see (2)), where s is the number of associations
stored. These weights require log, s bits and a sign bit. On
the other hand, an nXn three-layer BAM has 2an+s
neurons and 2ns bipolar weights, each represented by a
single bit. Thus the s vector pairs (2X n bits each) are
stored using the optimal number of bits. Note that, in
practice, 2s hidden layer neurons and 4ns synapses are
required to handle bidirectional information flow (refer to
Section IV).

From these expressions, we can compute the number of
memory cells required and consequently the storage ineffi-
ciency (hardware bits per information bit). We use s =2n
for the Hopfield net and s=n for the BAM networks.
Thus s is the maximum number of orthogonal vectors that
may be stored and recalled correctly. Results for n =32
are shown in Table 1. The three-layer BAM uses the least
memory cells because it stores one information bit per
hardware bit. It should be pointed out that this analysis
would be different if the weights could be stored and
manipulated in analog form.

To compare computational requirements, we count how
many computing elements are needed to compute activa-
tion for each neuron. We assume a computing element
(CE) can perform a multiplication and an addition. In
other words, each connection in the network is physically
realized by a CE. An nXn two-layer BAM requires n
CE’s per neuron, and a 2»n neuron Hopfield net requires
(2n —1) CE’s, while a three-layer BAM requires s CE’s,
plus (ns/m) CE’s for the hidden layer; a total of 2s for
n=m. Though the three-layer BAM is only half as effi-
cient as the two-layer BAM, it requires no additional
circuitry to manipulate the weights. On the contrary, stored
binary representations for the weights in the other net-
works must be adjusted by

mi;=m;; + a,bj
(see (2)) for each new association (A, B). This demands an
extra CE per connection. Clearly, our choice to implement
the three-layer BAM was influenced by the lack of a
compact nonvolatile analog storage element in VLSI tech-
nology.
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TABLE 1
COMPARISON OF ASSOCIATIVE MEMORY MODELS
Hopfield Net | 2-Layer BAM | 9-Layer BAM

Neurons 64 64 128
Synapses 4032 2048 4096
Memory (Kbits) 28 6 2
Inefficiency 7 3 1
CE’s 64 32 64

III. Low-Powgr CM MOS CIRCUITS

Neuroprocessors require high degrees of connectivity,
that is, large fan-in and fan-out. Our architecture uses
transconductances as coupling elements to achieve large
fan-out. These transconductances are simply MOS transis-
tors. Voltage inputs are applied to the isolated gate of the
transistor to obtain low conductance current outputs at the
drain. The fan-in problem is solved by using neurons with
current inputs and obtaining the sum of all these currents
on a single input line.

Although our circuits operate with very small subthresh-
old currents, we achieve reasonable speeds by keeping
voltage swings small. For a given current signal level, both
voltage swings and propagation delays are inversely pro-
portional to the input conductance. Thus by taking advan-
tage of the high transconductance of MOS FET’s in sub-
threshold conduction [9], [13] we obtain a good
power/speed tradeoff. Dynamic power dissipation and
supply noise are reduced as a result of the smaller voltage
swings. This eliminates parasitic charging and discharging
currents and allows smaller signals to be used, thereby
cutting quiescent dissipation. This approach yields rela-
tively fast analog circuits with power dissipation levels
compatible with wafer scale integration.

3.1. Subthreshold MOSFET Operation

We operate the MOS transistor in the “off” region,
characterized by V,, <V,, for low power dissipation. This
is referred to as the weak-inversion or subthreshold conduc-
tion region. The transfer characteristics (obtained using a
testing system developed at Hopkins [14]) are shown in
Fig. 2. Notice that the drain current I, is exponentially
dependent on the gate voltage V,; and bulk (local sub-
strate) voltage V¢ over nearly six decades. In the satura-
tion region, the drain current is given by

w
Iy = (I)Ioe('/zs/” Yo/ N/ Ur s Vas > Viasa =4Ur. (4)

where,

W, L effective channel width and length, respectively,

I, process dependent parameter,

Y,m  measure the ineffectiveness of the gate and sub-
strate potentials in reducing the barrier. The
values Yy =1.9 and 7 = 3.4 for the characteristics
shown are typical for a digital oriented CMOS
process.

Ur(=kT/q) thermal voltage—26 mV at room tem-
perature.
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Fig. 2. Subthreshold characteristics for an N-type MOS transistor. The
variation of the channel current with the substrate voltage is included
to point out that the MOS transistor is a four terminal device.
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Fig. 3. Computation with current mirrors. (a) Replication. (b) Scaling.
Although scaling can be achieved by choosing suitable W and L, this is
avoided. Current scaling is accomplished using the appropriate number
of equal-size devices in parallel.

The current changes by a decade for a 120 mV change in
Vs or a 280 mV change in Vy.
An empirical relationship for the drain conductance is

I d sat
=— 5
gdsat VE) + I/d R ( )
where V, is the Early voltage, typically about 55 V. This
relation captures the slope of the output characteristic
caused by the dependence of L on V, [15].
From (4) the transconductance is

_ aldsat Idsal

&= v T U

Bs

(6)

These equations sacrifice accuracy for simplicity; they
are only meant for rough design calculations. As written,
they apply to n-type transistors, signs should be reversed
to obtain equations for the p-type.
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Fig. 4. Transfer characteristics of a minimum size current mirror cir-
cuit. Good mirroring is obtained for currents over five decades. As long
as the devices operate in the subthreshold, mirroring is temperature
independent.
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Synapse

Bias Circutt

Non-thresholding neuron

Synapse

Fig. 5.
grammable transconductances and the capacitance in t
neuron is that of the interconnect line.

A simple synthetic neural circuit. The synal;:sqs are fprk?—
e input of the

3.2. Current Mirrors

A diode-connected transistor (drain and gate shorted)
serves as a current-to-voltage converter, generating an out-
put voltage that is applied to identical transistors to pro-
duce copies of the input current (see Fig. 3(a)). These
transistors mirror the input current when they are operat-
ing in the saturation region. However, variations in sub-
strate voltage, geometry, or doping can produce variations
in the output current [16]. A current mirror is the simplest
example of a CM circuit. It is our primary computational
element. In addition to replicating currents, the mirroring
operation is used to invert and to scale currents (see Fig.
3(b)). We have experimentally verified subthreshold mirror
operation over several decades of current (see Fig. 4). N-
and P-current mirrors can be cascaded because their input
and output currents have compatible directions and the
input conductance, g, is much larger than the output
conductance, g,,, (refer to (6) and (5)).

IV. SYNTHETIC NEURAL CIRCUITS

Fig. 5 shows a simple synthetic neural circuit. Two types
of neurons are shown—a thresholding and a nonthreshold-
ing neuron. These neurons communicate with each other
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Fig. 6. (a) The symbol for a synapse and (b) its actual implementation.
All transistors in the synapse are minimum size (3 pm X6 pm).

through synapses as indicated. The neurons apply voltages
to the synapses which, in turn, feed currents to the neu-
rons. The half-filled disk symbol for the synapses was
chosen to reflect this. Input voltages are applied to the
dark half of the disk while the output current is obtained
on the line separating the two hemispheres. The input line
of a neuron may run through several synapses; the synap-
tic currents simply sum together. The bias circuit allows
the current levels to be externally programmed. We now
outline the operation of each of these elements and de-
scribe their circuit realizations.

4.1. Thresholding Neurons

Thresholding neurons a; are simply MOS inverters.
They receive bipolar current inputs from the synapses.
These currents are integrated over time by the interconnect
capacitance, thus the voltage on the capacitance represents
activation. Neurons switch to the +1 state (or the —1
state) when this voltage exceeds (falls below) the inverter’s
threshold (V,,, =V;4/2), and remain in the same state
when the net input current is zero. Thresholding neurons
drive the synapses through the bias circuit.

4.2. Synapses
The output current of a synapse is given by
I, =cl, (7)

out

where ¢ = +1 is the state of the synapse. The input current
I, may have either direction. Thus the synapse performs a
(four-quadrant) multiplication by a one-bit weight. The
circuit used is shown in Fig. 6(b). Instead of supplying the
input current I, directly to the synapses it is encoded as a
pair of voltages V;, and V. These voltages are applied to
the gates of transistors M, and M,. ¥, is set to obtain a

1]

drain current of I —I;, in M; while V; biases M, to

1
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Its —Ix l
Vx

(b

Fig. 7. Circuit diagrams for (a) the non-thresholding neuron and (b) the
bias circuit. The output transistors are not minimum size.

supply I+ I,. I, is simply a dc shift introduced to
guarantee that the currents in M; and M, are unidirec-
tional. It is removed at the output by M, which is biased
(using V) to sink I,. This scheme allows I;; to be
replicated in several synapses using the same lines.

The state ¢ of the synapse is represented by a voltage at
GND(—1) or at V,4(+1) in the memory cell. In the
former case, M, is on and M, is off so that M, and M,
together supply Ip- — I, to the output node. In the latter
case, the reverse is true, hence M, and M, supply Ipc + [,
Clearly, if M, subtracts I, the desired operation is ob-
tained (7).

To compute inner-products bit-wise comparisons (multi-
plications) are required. The desired output from the
synapses 18
(8)
where a and c are the states of the thresholding neuron
and the synapse, respectively. This demands that the bias
circuit set the voltage inputs such that Ip.=1I, and I, =
I,. The inner-product is obtained in units of I, =1 by
summing the output currents from all the synapses in-
volved.

On the other hand, for the weighted sums required to
compute activation, the desired output is

I, =cl, (9)
where I is the input current to the nonthresholding neu-
ron. This demands that I,, = I, and I, = Iy, where I is

the full-scale current. The input voltages must be set
accordingly by the nonthresholding neuron.

1, =cal,

4.3. Bias Circuit

Given the state a of the thresholding neuron and an

externally programmed current level 7, the bias circuit,

shown in Fig. 7(b), generates the required voltages for the
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Fig. 8. Three-layer BAM chip architecture. The BAM cell is replicated to produce networks of any size.

synapses. Its outputs ¥, and V; drive the inputs V;, and
Vi, respectively. The circuit operates as follows: The
current in My is set to I, by feedback through M, which
senses and corrects any current imbalance. The outputs are
switched between V,, and the voltage at the gate of M,
using the multiplexer formed by M;,—M,;. If a is high
(+1 state), V, is tied to V4 while V; equals the voltage at
the gate of M,. If a is low (—1 state), the reverse is true.
Transistors My—M,, are sized-up devices which have the
necessary fan-out capability. By setting I, = 21, and Vy,q
to sink I, through M, the desired synapse operation (see
(8)) is obtained.

4.4. Nonthresholding Neuron

Nonthresholding neurons accept a bipolar input current
I, and generate the output voltages ¥V, and ¥; which drive
the synapses. The circuit used is shown in Fig. 7(a). This
circuit is similar in operation to the bias circuit. It gener-
ates ¥, which is applied to the input V,, of the synapse. V,
biases M, to source I;,— I, mirroring the current in M.
An identical circuit is fed — I, to obtain V. which biases
M, (in the synapse) to source I+ I,. With V.o set to
sink I, in M; the desired output relationship (9) is ob-
tained.

These functions have been implemented with a few
devices using simple circuit configurations. This, plus the
fact that all transistors in the synapses are minimum-size
(3 pm X 6 pm), makes their accuracy highly dependent on
the fabrication process, i.e., variations of g,,, 84 and ;.
The bias circuits and nonthresholding neurons use sized-up
output devices with the appropriate fan-out capabilities.
The rationale behind this approach is that by studying the
short-comings of these simple circuits we can justify any

additional complexity and thereby develop an efficient
design methodology.

V. IMPLEMENTATION

5.1. Architecture

Our architecture is based on a regular array of BAM
cells. Each BAM cell consists of two synapses and a
one-bit memory cell. This pair of synapses provides two-
way communication (bidirectionality) between neurons in
the input/output layers and the middle layer. The bit
stored in the memory cell determines the state of both
synapses (symmetry). Fig. 8 shows a 3X3 BAM that stores
up to four associations (one vector pair per row). This
figure illustrates how neurons in the three layers communi-
cate through the BAM cells. The input and output lines of
the thresholding neurons at the top run vertically, while
those of the nonthresholding neurons in the middle run
horizontally. In general, communication in 2 BAM with n
neurons in each input/output layer and 2s middle-layer
neurons is supported by two n X s BAM cell arrays. Obvi-
ously, the number of neurons in the input/output layers
need not be the same.

For every association programmed, a vector is stored in
each BAM array at the same row. These vector pairs,
(A®, B), are stored in the BAM cells as follows:

Bit a? (or b?) of vector A°(B®) is stored in the BAM cell
at row p and column a,(d)).

In the recall mode, the input vector is presented to one
side, for example the 4-side, and the WA signal is asserted.
This initializes the state of the A-neurons (refer to Fig. 8).
At the same time, the feedback is decoupled, allowing the
A-neurons to launch the network toward the desired stable
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state. After WA is de-asserted, the network relaxes. To see
that the operation is indeed as defined in (1) observe that
the vectors in the BAM cells are compared in parallel with
the input vector by the synapses. Each output synapse?
does a bit-to-bit comparison, sourcing current onto (or
sinking current from) a summing-line if there is a match
(mismatch). (See (8). These currents sum to give the inner-
products that are fed to the non-thresholding neurons, that
is
n
u=y aal,
i=1
The input synapses on the B-side now output (9):
I =bfuP.

Summing these currents and substituting the expression
obtained for #®, with I, =1, we obtain neuron j’s activa-
tion as

n
v; = Y bfuP = Y by Y ata,
peEQ peQ i=1
which is simply (1). Activation is computed similarly for
the A4-neurons. When both WA and WB are de-asserted
this process occurs simultaneously in both directions.

5.2. Performance

In this section we discuss the effects of dynamics on
recall rates and describe a chip implemented using the
architecture described. The fabrication and testing of these
chips is also discussed.

To determine how fast the network relaxes, consider the
large-signal response of a current mirror:

I

out I in

I.

o _ ; : 10
Iy  (Iy—Ip)e #VC+1, 8nla YUr (10)

where C is the input-line capacitance. This yields an
output current rise time of

t,=4.4C/g, =44yCU /I, = 44yU, /S (11)

where S = I, /C,, is the rate at which each synapse charges
its local capacitance C,,,, =100 fF. Thus for I, = 0.5 p A we
find =5V /us and 1, =46 ns.

The delay is obtained from (10) as

ty=yUrin(I,/1,-1)/S (12)

With I,, =10 pA (full-scale current) and I, =1 fA we find
t, = 0.24 ps. These results predict about 0.3 us delay when
the output synapses drive the nonthresholding neurons.

The bias circuits, the nonthresholding neurons and the
input synapses drive purely capacitive loads; each global
line has about 5 pF capacitance. The speed is limited
primarily by the input synapses which must drive the
inputs of the inverters (thresholding neurons) from ¥, or
GND to V,,,. Assuming a current drive of 10 pA, these
stages together have a delay of about 2.2 ps. Thus signals

‘ZWe refer to synapses on the outputs of the thresholding neurons in
this fashion and those on their inputs as input synapses.
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propagate from one input/output layer to the other and
back in about 5 us.

Observe that, for a given synaptic current level, ¢, does
not depend on the size of the network. ¢, is much larger
than z, because g,, decreases with the input current. It can
be reduced by decreasing the ratio I, /1, Performance
may be further improved by using a more sophisticated
nonthresholding neuron whose time response depends only
on its local parasitic capacitance and not that of the global
interconnects. Such a “neuron” has been designed and will
be used in another version of the chip.

In our prototype, both unit and full-scale currents are
externally programmed. This option was added, at a small
expense in area, to allow us to investigate the power /speed
trade-off. In a future version, unit and full-scale currents
could be generated using on chip bias generators.

The chips were fabricated by MOSIS [17] (production
run M83I-IMOGENE) in 3 pm p-well CMOS technology.
A microphotograph of the die is shown in Fig. 9. The die
size is 2.3 mm X 3.4 mm with 4.8 mm? of useful area and
7200 transistors. Functional units were obtained on the
first run. There are 32 thresholding input/output neurons
(sixteen on either side), 14 non-thresholding neurons and
seven 32-bit shift registers to store the vector pairs. A
16-bit input/output and control bus runs across the top of
the chip. In the store mode, the bus is used to load data
into the shift registers. The new data are stored in the top
register while old data shift downward to the next row. In
the recall mode the states of thresholding neurons on
either side are initialized and read through the bus. Out of
20 dice received, 1 die was rejected during visual inspec-
tion and ten have been bonded and found to be functional.
We have been able to store three nonorthogonal vectors,
and successfully recall both the vectors and their comple-
ments from either side. With unit and full-scale currents of
0.5 and 9.5 pA, respectively, the network relaxes in less
than 10 ps. The chip is able to perform error correction
and recall on corrupted data. Complete test results will be
duly reported.

VI. CONCLUSIONS

We have designed and fabricated a dense, repeatedly
programmable, neural model for a heteroassociative mem-
ory. We obtain high density by using local storage at the
expense of fault-tolerance. However, we can store two or
three copies of each vector and still use less digital memory
than a distributed matrix scheme. Higher order neural
networks may be implemented by modifying the non-
thresholding neurons.

CM circuits operating in the subthreshold region are
used to achieve large fan-in and fan-out and low power
dissipation. A scalable architecture results from employing
coupling elements in a highly regular structure and avoid-
ing the use of resistors. The speed of our network is limited
by the ability of each synapse to charge /discharge its local
parasitic load and not by the size of the network. By
keeping voltage swings small we obtain fast operation.
Using current inputs allows the interconnects to perform
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Fig. 9. Die microphotograph. The degree of regularity and density obtainable with this architecture is evident.

useful computation, and thus permits more efficient use of
the silicon. It is evident from the die microphotograph that
the BAM cell size is limited by the pitch of the second
level metal lines. Therefore, to obtain higher functionality
we must utilize the wiring even more. Such schemes have
been developed and are included in the next generation of
associative processors.

The system described in this paper has evolved around a
simple principle: “Communication is Computation.” Per-
haps that is how biological information processing systems
circumvent the bottlenecks of traditional computing.
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