.COMPUTER-ASSISTED INSTRUCTION IN PROGRAMMING: AID

by

Jamesine PFriend and E. C. Atkinson

TECHNICAL REPCRT 164

January 25, 1971

PSYCHOLOGY SERTES

* Reproduction in Whole or in Part is Permitted for

any Purpose of the United States Government

CD 1971 by Jamesine Friend and R. C. Atkinson
All rights reserved
‘Printed in the United States of America

INSTTTUTE FOR MATHEMATICAL STUDIES TN THE SOCIAL SCIENCES
BTANFORD UNIVERSITY

STANFORD, CALIFORNIA

TAELE OF CONTENTS
Page .

I. Computer-assisted Instruection in Programming 1
II. Description of the Coufse, "Introduction to Programming: AID 4
IIT. Preliminary Results I
Iv. ,Computer.Programé and Coding Language.'._. -

APPENDICES | R
| A. tudent Manyal ; T 1
B. "ATD Documentation . .« « 4 & & & & v 4 & s 4 oo C 25
C. .Outline of AID IEeSs0Ns « v v w4 e ; e et e e e e . ,.34
D. Excerpts from the Coders' Mamual . . + . v « o « o« « o . 37

E. Sample Coded Problem . + = + s v o o o s o o o o« o o « « Hh

COMPUTER-ASSISTED INSTRUCTION IN PROGRAMMING: AID*
7 Jamésine Friend and R. €. Atkinson

_. Stanford Unlver31ty
Stanford California 9h305

I. Computer-agsisted Instructlon in Programmlng

Research in learnlng ‘theory and 1nstructlonal strategles hag received
a new impetus in recent years from . technological developments in the field
of computer design. 'Computerwassisted instruction, entirely unknown ten
years ago, is.evidenée of the rapid growth cf computer applications in
education and is already producing profound.effects in the individualization
of instruction. -Since.Janugry, 1963, the Institute for Mathematical Studies
in the Social Sciences has been Qonductihg extengive programs of research
and development in computer-assisted inétruction.

'In.l968, the Institute received fuﬁdingrfrom NASA to design and produce
a course in programming using compuﬁer—assisted instruction as the instruc-
tional medium. The course was to be tutorial in nature and sufficienfly
.self~contained so:that students could use it without being supervisged by an
experienced teacher of programming. Supplementary material, such as manuals
and a'syllabus of readings in computer sciences; was té be supplied as part
of the package. | o | _

The course wag to be sultable for use by NASA personnel; and the feasi-
bility of using the course as part of thelr training program was to be |
invesﬁigated, It was assumed that studenté would be at ébout the Jjuniocr
college level with no experience in mathematics beyond high scheol algebra
énd with no previous introduction to Qompﬁter pfogramming.
| Work on the development of the coﬁfse started in the summer of 1968.

A preliminary version of half of the course was completed by February, 1969,

and conslsted of a coding language, a set of 20 one-hour lessons written in

*This research was supported by NASA Research Grant NGR-05-020-24k.

‘the coding language, and a set of programs to interpret coded lessons and to
interact with students using standard teletypes as student stations.
In the spring of 1969, about 15 students took the course. Performance

data were collected (by hand) and summarized, and students were closely

observed and interviewed after each session. The curriculum materials and

necessary computer programs were revised and extended on the basis of data

- and observaticns of student reactions. The revised course is now complete
and in use by NASA personnel. Data are being collected and enalyzed.

The first deciéioh made in the development cf:an introductory course
in programming was what programming language to teach. Programming lénguages

designed expressly for teaching purposes were not consideréd,'siﬂce we felt

that users of the course would benefit more from learning a lsngusge with

dmmediate précticél ép@licatibn, even if the langusge was initially more
difficﬁit to learn; for this same réason‘we'felt that the language should
be one that is widely availablé rather then one that is implemented on only
a few computers, or only on computers produced by one manufacturer. Also,
we anticipated that most students would eventuslly be working in an engi--
neering or scientific environment and would have more need for an algebraic
~ language such as FORTRAK than for a liste processlng language such as LISP '
or a business-oriented language like COBOL.

The programmlng languages considered included FORTRAN,'ALGOLg'BASIC,
~and AID. TFor a first course, BASIC and ATD are both excellent choices, |
_‘because they are considerably simpler than either FORTRAN and ALGOL; never-
“theless, they contain all of the structure needed to illustrate the basic
principles of progremming. ATD* (Algebraic Interpretive Dialogue) is a
high-level. algebraic programming laﬁguage with extensive interactive (or

"conversational") abilitiés. This lenguage is an adaptation for the PDP-10 *

1
See PLP-10 AID Programmer's Reference Manual, Digital Equlpment Coxporation
Maynard, Massachusetts, 1968. :

computer of JOSS,2 a- language developed by RAND Corporaticn for use by
scientists, engineers, etec., who needed a powerful, easy-to-learn tool
capable of performing complex algebraic tasks.' A pumber of other minor
variants of JCGSS, such as CAL and FOCAL,Iare not implemented'on a variety

of computers. A complete description of AID‘will e found in the appendices.
'BASIC,3 which was deveioped at Dartmouth as an elementary algebraic language
for beginning students, is now widely implemented and is probably better
known than ATD {partly because all implementations use the same name),

BASIC is somewhat_ﬁore powerful than AID in its matrix ménipulation commeands ,
tut AID has more power in reéursively defined arithﬁetic funétions,' The
 greatest advantage of ATD over BASTC, FORTRAN, or COBOL is that AID is not

a compiler, but an interpreter with a large number of direct commands, which
the student can begin‘to:use.theifirst day rather than having tc delay hands-
on experience unfil aftef he has leérned the concept-éf a stored program and
the negessary formats. Thesé interactive éapabilities‘are g greatl asset to
a studenf'jﬁst learning a programming laﬁguage since they provide é kind of
immediate reinforcement.that cannot be supplied by é compiler;_ All in all,
it wes felt that ATD hed a slight edge as a beginner's lenglage, but the
final decidiﬁg_factor was that AID had already been implemented for the
PDP-10 computer we would bé using, whereas BASIC would not be available to
us for several months. Since that time, we_havé obtained & BASTC compiler
and have ccmpleted a high scthl course in BASIC using.the same structure

and programs developed for the AID course.

Z5ee Merk, S. L. and Armerding, G. W., The JOSS Primer. The RAND Corpora-
tion, Santa Monica, California, August, 1967; Shaw, J. S., JOSS: Experience
‘w1th an Experlmental Computing Seryice for Users at Remote Typewriter
Consoles. The RAND Corporation, Sante Monica, California, Mey, 1965.

3See Kemeny, John G. and Kurtz Thomas -E., BASIC, Dartmouth Cdllege Compu-

tation Center, 1968.

IT. Descriptioﬁ of the Course "Introduction to Programming:ATD™

The course consisfs of a set of 50 leseons, about one houxr in length,
plus summaries, reviews, tests, and extra-ciredit problems. A sfudent-manual,
which.includes instructions for operating the ingtruetional program and a '
gloseary of teﬁms used in the course, has been prepared and is included in
the eppeﬁdices of this report. The course is equivalent to a three-unit
Junior oollege course. - o ' '

The computer;assieted ingtruction and supplementery manual constitute

a completely self-contaired course. The lessons are tutorial in nature,
. that is, no prev1ous knowledge of oomputers or programming is necessary
The only prersquisite for the course is a2 good background in algebra, as
suppiied by three semesters of high school algebfa,'

Oomputer-assisted inetruction.is given to the students by means of
standard Model 33 teletypewriters, located in remote training centers,
which will communlcate with the PDP-10 computer located at Stanford by means
of ordinary telephone lines. The problems are typed on the student‘s tele-
type by the computer and the student responds by typing his answers on the -
same teletype. After the computer analyzes the student's response, the
student is informed as to whether his response was correct or 1ncorrect
then he is glven addltlonal instruction and asked tc respond again, or he
is given a different problem. _ -

The course does not require the supervieion of a trained teacher of
programming, but a one-day teachers' workshop should be given to acquaint
teachers with operating procedures and to provide them with an overview of
the content of the course.

Although the course is ordinarily used con a regularly scheduled basis
in a college environment or tralning center, it is alsc well suited for
individual use as an on-~the-jobh training course for people working in agsog-
lation with & computer facility. Use by individuals can be on a nonscheduled
basis or on a flexibly scheduled basis, since there are few time :eetrictione
on the use of the computer; some students might prefer to spend several hours
a day on the course, with the possibility that they could complete the course

within a few weeks rather than distributing their lessons over several months.

The 50 legsons cover the following fundamental concepts of programming. .
and the use of computers.’
(1) An interactive time-sharing executive system.
(2) An interpreter.
(3) Concept of a stored program.
(4) Debugging techniques.
(5) Labels and variables.
(6) Toops.
" (7) TInput and output.
(8) Computer storsge, including both core and disk.
(9) Subroutines.
(10) Recursive functions.
(ll} Iist sorting and table look-up routines. .
‘The student 1s reguired to write and debug at least 50 programs, several of
" which are major programs for solwing difficult algebraic problems. An out-
line of the course is found in the appendices.
Eech lesson covers one basic concept, varying in length from 50 to 200
problems and requiring about one hour for an average student to complete.
A lesson contains three sections; a core 1ésson, a summary, and a review.
Selecfed'lessons contain an zdditional extra-credit section. The core lesson
containg about 20 to 30 problems that present the concept and supplies some
practice problems. At the end of the core lésson there is an optional summary
of the lesson; the summary is typed in an 8 l/évx 11" format, which the
student can save as a permanent reference. TFollowing the summary, there is
an opticnal review section, which is divided into several parts, one for
each ides presented in the core'lesson, so that the student may review only
that part of the lesson that he did not compietely understand. The review
problems, like the problems in the core lesson, are tutorial, nct merely
additional practice and presént the ideas afresh from a different point of
view. After the review section, there maj be a short section of optional
extra-credit problems; these are usually programming problems, which are
much more difficult than ﬁhe programming problems given in either the reviéw
or the core lesson. Most of the extra-credit problems require considerable

thought and time, and the student is not expected to compiete them durlng

a current session, but méy, instead, submit them at any time before the end"
of the course. Extra-credit problems are not supplied with each lesson, but
there are at least SO.such problems . in the entire course, and the teacher
may wish to require some of these problems as homework assignments, or he
may use them as tests. _

After each group of five lessons, there i1s an optional self-test designed
to help the student evaluate his understanding of the éoncepts presented to
date, Since this test is designed for student's use and not for grading pur-
poses, nc report on student performance will be available to the teachers.
Following the self-test, there is a general overview lesscn that reminds- the
student of what has been taught and informs him which of the topics already
covered are essential to the subsequent material. During the overview lesson,
the student is given the opportunity to review entire lessons, or any indivi-
dual topics from preceding lessons. '

“The structure of the course is illustrated in Figure 2 by a block diggram
of a set of five lessons (with summariés, reviews and extra-credit probliems),
fclicwed by & self-test and an overview lesson.

Before discussing detalls of the instructional stratégy, we give a few
examples of student interaction with the instructionsl program, starting
with the first problems-in Lesson 1. On a student's first day, he is given
a student manual and seated at a teletype connected by telephone lines to
~the PIP-10 computer at Stanford. Folleowing the instructicns in the student
" manual (see'the manual in the appendices), he signs on and starts the in-
structional program, which automztically starts at Lesson 1, Prbblem 1, for
a new student. 'The program prints each problem in turn, then prints an
asterisk'to indicate to the student that he casn respond, and awalts. his
response before proceeding. In the following typical sequence, the student's

regponses are marked by an asterisk at the left.

L1-1: INTRODUCTION TO. PROGRAMMING
- BY JAMESINE E, FRIEND

IN THE FIRST LESSCN YOU WILL LEARN HOW TC USE THIS PROGRAM.

AFTER YOU TYPE YOUR ANSWERS YOU MUST PRESS THE RETURN KEYo
CAN YOU FIND THE RETURN KEY°

Lesson Lesson | - g LESSON
1 2 5
Summary | | Review | | Extra- Summary | | Review | | Extra-.
Iesgon Lesson | [Credit Lesson lesson | | Credit
1 -1 Problems 5 ' 5 Problems

Y

1

Self-
Test

Over--

{ view

One lesson block is shown, including 5 lessons (with Summaries, Reviews, and Extra-Credit
Problems), Self-Test, and Overview Lesson.

Student decizion points are marked '-ﬁr- .

Optional lessons are shown below the main line.

Figure 1. Structure of Coursé

*YES _ :
GOCD, DON'T FORGET TO ,PRESS THE EETURN XEY AFTER YOU TYPE YOUR ANSWERS.

L1-2: WRONG ANSWERS ARE NOT COUNTED. YOU ALWAYS GET ANOTHER CHANCE
IF YOUR ANSWER IS WRONG. ' o

WHAT DOES THE CCMPUTER PRINT WHEN IT IS EEADY FOR YOUR ANSWER?
A, AN EXCLAMATION POINT ! '
B, A QUESTION MARK *°
C. AN ASTERIBK #*

TYPE "4", "B", OR "¢", (DON'T FORGET THE RETURN KEY.)

*C
CORRECT

Li-3: IF MULTIPIE-CHOICE PROBLEMS HAVE MORE THAN ONE CORRECT ANSWER,
YOU MAY LIST THE COREECT CHOICES IN ANY CRIER.

SUPPCSE B, C, AND D ARE THE CORRECT CHOTCES FOR A PROBLEM. WHICH OF
THESE WOULD EE CORRECT WAYS TO ANSWER? -
A, D, B, C, A , '

2 5

ve e R wlis]
LW
Qg

-

P oW
Uutzjt:d

»

YOU HAVEN'T FOUND ALL OF THE ANSWERS YET. START AGAIN,

*BCD
CORRECT

Lesson 1, a short introduction to the teaching program, continues by
explaining to the student the varicus problem formats he will encounter in
the course and gives him an oppertunity to practice each of these formats.
The second lesson begins by teaching the student how fto start and stop the
ATD interpreter and how to use a few simple, direct commands to solve

arithmetic problems.

L2-1: : CLESSON 2
USING ATLD FOR ARITHMETIC

IN THIS COURSE YOU WILL USE TWO DIFFERENT PROGRAMS:
1. 'THE TEACHING PROGRAM, YOU ARE USING THE TEACHING PROGRAM NOW,
THE TEACHING PROGRAM WILL TEACH YCU TO WRITE PROGRAMS USING THE
ATD LANGUAGE.

2, THE ALD INTERPRETER. AFTER YOﬁ IEARN TO WRITE AID PROGRAMS, YOU
WILL USE THE ATD INTERPEETER TO TRY CUT YOUR PROGRAMS.

YOU WILL: ONLY BE ABLE TO USE ONE COF THE PROGRAMS AT A TIME SO YOU HAVE
70 KNOW HOW TO 3TOP A PROGRAM AND START ANCTHER. B

WHICH PROGRAM ARE YOU USING NOW?

- ¥THE TEACHING PRCGRAM
CORRECT

I2-2:

HOW TO START THE AID INTERPRETER:
FIRST, STOP THE TEACHING PROGRAM (TYPE CTRL-C).
SECOND, TYPE "I AID" AND THE RETURN KEY,

HOW 70 STOP THE AID INTERPRETER:
TYPE CTRL-C.

AFTER THE TEACHING PROGRAM IS STOPPED, WHAT SHOULD YOU TYPE TQ START
THE AID INTERPRETER?

*CIRL~C : Ce S
WRONG, TYPE A QUESTICN MAFK FOR A HINT OR CTRL-T FOR THE ANSWER.

*9 o
READ THE SECCND STEP UNDER "HOW TO START THE AID INTERPRETER,“_

*I, ATD
CORRECT

L2-~-3: WHICH COMMAND WILL STOP'THE ATD INTERPRETER?

CIRL~-H
" CTRL-T
CTRL-C
CTRL-G

FawpE

*C
COREECT

| After some practice in starting.and stopping the AID interpreter, the
TYPE command is intrcduced and the student practices using commands like
TYPE 15 + obg |
TYPE 76 - 3 + k2

ILesgon 2 algo introduces the symbols ¥ and / for multiplication’and divisioen.

.9

12-10: ATD SYMBOLS FOR ARTTHMETIC OPERATIONS:

ADDITTON
SUBTRACTION
MULTTPLICATION
DIVISION

~ ok 1+

WHTCH COMMANDS WILL CAUSE ATD TO MULTIPLY 3 by 4%

TYPE (3)(L)
TYPE 3 X 4
CTYPE 3 % 4
TYFE 3/4
TYPE 3%k

HOQw>

*A
WRONG

*C ;
”.YOU HAVEN'T FOUND ALIL OF THEM. START OVER.

B
CORRECT

' L2-11: WHICH COMMAND WILL CAUSE ATD TO MULTIPLY 25 BY 5 AND DIVIDE
BY 37 R - o '

TYPE 25 X 5/3
TYPE 25 * 5/3

TYPE 25(5/3)
NONE OF THE ABOVE

20w

E
CORRECT

At the end of each lesson, the student is asked if he wanis.a summary
" of the lesgson tc save as a permanent reference. The summaries are printed
in 8 1/2 x 11" format, so that they may be punched and put in a loose-leaf

note. book. The following summary of Lesson 2 -is typical.

SUMMARY OF IESSON 2
USING AID FOR ARITHMETTC

1. TO START THE ATD INTERPRETER, TYPE
‘ L AID

‘2. TO STOP THE ATD INTERPRETER, TYPE
' CTRL-C S . .

20

3. THE "TYPE" COMMAND
.. .STARTS WITH THE WORD "TYPE"
...THEN A SPACE
.« THEN AN ALGEBRATIC EXPRESSICN
.. .ENDS WITH A RETURN,

YOU TYPE: ATD ANSWERS:
TYPE 244 o4l = 6
TYPE h2/4h - hosh = 10.5
TYPE 6%1.2 6*l.2 = T.2

L, THE SYMBOLS FOR ARITHMETIC OPERATTIONS:
+ ADDTTTON
- SUEBTRACTION
¥ MULTIPLICATION

/ DIVISION

After the summary is printed (1f the student requests it); the student
is asked if he wants to review any of the concepts covered in the lesson.
The review, which is about the same length as the lesson, does not covér
topics sequentially as in The original presentatibn,”but_isjinﬁtead organ-
ized into independent sections, once for each concept éo that the student
may review only the parts of the lesson that he wishes; élsog‘the-student
is told which topies are important to énsuing lessons, so'tha{ he knows
where to concentrate his effort. Here, for example, are é few problems
from the review of Lesson 4 (note that the symbol t is used to dencte

exponentiaticn, i.e., 512 means 52).

Rly-1: _ REVIEW OF IESSON 4
' EXPONENTS AND SCTENTIFIC NOTATION

WHLCH OF THESE TOPICS DO YOU WANT TO EEVIEW NOW?
(EE SURE YOU KNOW THE STARRED TCPICS.)

*A, EXPONENTS
B. USING ¢ AND 1 AS EXPCNENTS
*C. ORDER OF ARTITHMETIC CPERATIONS
D. USING FRACTIONAL EXPONENTS TO FIND ROOTS
*E. NEGATIVE EXPONENTS
¥F, READING SCIENTIFIC NOTATION
G. WRITING SCIENTIFIC NOTATION
N. NOHNE

%

Al

Rhk-17: TIF AN EXPRESSION HAS EXPONENTTATION AND ALSO SOME OTHER OPERATION
SUCH AS MULTIPLICATION, DO THE EXPONENTIATION FIRST.

TC FIND THE VALUE OF

Lx542
DO 5%2 FIRST, THEN MULTIPLY BY k.
WHAT IS THE VALUE?

*100
CORRECT

Ri-18: DO EXPONENTIATION EEFORE ADDITION, SUBTRACTION MULTIPLICATION
OR DIVISION.

50 - T2
%3,
CORRECT

33 - 20
*¥11
WRONG

¥-11
WRONG

*7
CORRECT

In'general; students are expected o have had some previous worxrk with
- algebra, but it is not assumed that the level of skill is high, or that a
student will remember such concepts as the use of zero as an exponent, or
the definition of "positive"'és contrasted with "non-negative." All such
topics are reviewed at appropriaﬁe times for the student who needs a re-
fresher. For example, Lesson 15, which introduces the IF clause, reviews

relations between numbers in the context of introducing new symbols;

L15-1: LESSON 15
: RELATIONS, "IF" CLAUSES

SYMBOLS USED FOR RELATIONS:

FOR "LESS THAN"

FOR "GREATER THAN"

FOR "EQUALS"

FOR "NCT EQUALS"

TFOR "LESS THAN OR EQUALS"
 FOR "GREATER THAN OR EQUALS"

yi/l\:ﬂ:” VA

1z

TYPE THE SYMBOL FOR
"GREATER THAN OR EQUALS" #>=

CORRECT
"NOT EQUAL" *4
CORRECT
"LESS THAN" *<
CORRECT

L15-2: RELATTONS BETWEEN NUMBERS CAN BE SHOWN ON A NUMBER LINE.

-3 -2 -1 0 i 2 3 h

' -t
X Y Z
ANY NUMBER TO THE RIGHT OF 2 IS GREATER THAN 2.

ANSWER TRUE OR FAISE (T OR F):

X>2 *F
Y>2 XF
Z >2 ¥T
X>Y *F

ANY NUMBER TO THE LEFT OF 2 IS LESS THAN 2.
ANSWER T OR F:

Xx<2 *T
¥ <2 ¥
Z <2 ¥F
Z <X *F

After reviewing the relations between numbers, Lesson 15 proceeds to
teach the use of conditicnal commands using the slgebraic notation just

introduced.

115-10: WHICH MEANS " IS NON-NEGATTIVE'?

A, @>0
B. @>=0
C. @<0
D. @ <=0
N. NONE

L3

¥B
CORRECT

L15-11: NOW THAT YOU KNOW ABOUT THE RELATIONS = # < > <= AND >= T WILL .
SHOW YOU HOW TC USE THEM IN AID COMMANDS, : :

ANY ATD CCMMAND CAN EE MODIFIED BY AN "IF" CLAUSE.
EXAMPLES :
SET Z2 = 2 JF X < 10.
- TYPE X IF X < 0.
DO PART 5 IF M = N.

- COMPLETE THIS COMMAND SO THAT Y = Xt2 IF X IS POSITIVE.
S8BT ¥ = ¥12 IF X..,..0 '

*>
CORRECT

115-12: THE NEXT FEW PROBIEMS ARE ABOUT THESE COMMANLS,
22,1 SETY=X1IFX>O. '
22,15 SET Y = -XIF X <0.
22,2 SET Y =0TIF X = 0.
22.25 TYPE Y.
DO PART 22 FCR X = -3.15.

AFTER STEP 22.25 WHAT WILL AID ANSWER?

*-3.15
WRONG

®0
LOQK AT STEP 22.15. IF X IS NEGATIVE, WHAT TS THE VALUE O Y%

- *3.15
CORRE(CT

" Although there is considerable variaticn in the 36quence‘bf préblem,
types within a lesson and in the style of presenting new concepts, the
general gcheme is to review any recessary algebraic ideas, present new
sjmbols and new comménds, give sample programs using the new commands, and
then give programming problems that can be scolved by using the ideas Jjust
introduced. The following is an example of a programming problem from‘
Tesson 15.

"1k

L15-20: WRITE A PROGRAM THAT WILL PRINT "SAME" IF ALL THREE NUMBERS X,
Y AND 7 HAVE TIE.SAME SIGN. THE PROGRAM SHOULD PRINT ”DIFFERENT" IF THE
NUMBERS DO NOT ALL HAVE THE SAME SIGN,

EEFORE YOU START, TELL ME WHAT YOUR PROGRAM SHOULD PRINT ir X = —2 Y =3
AND 2 = 17

*DIFFERENT
CORRECT

WHAT SHOULD YOUR PROGRAM PRINT IF X = -2, ¥ = -3 AND Z = =17

¥DIFFERENT
WRONG

*SAME
COREECT

115-21: OK. GO AHEAD AND WRITE THE PRCGRAM TC FIND OUT IF THE 3 NUMBERS .
ALL HAVE THE SAME SIGN, TEST YOUR PROGRAM FOR THESE VALUES OF X, Y AND Z,

X=2 Y=3 . 2Z=15
X=2 ¥=3 Z=0
X=-5 Y=-3 Z=-1
X=-5 Y=-3 Z=0

At this point the student is expected to stop the teaching program and
to use the AID interpreter'to write and debug his program.. When he has
completed the program to his satisfaction, he starts the teaching pfogram

again.

WHAT ANSWER DID YOU GET FOR THE LAST PART?

*DIFFERENT
EXCELLENT

DID YOU USE ANY "DEMAND" COMMANDS IN YOUR PROGRAM?

*NO
YOU COULD HAVE SAVED YOURSELF SOME TYPING IF YOU HAD STARTED THE PROGRAM
WITH THESE COMMANDS: '

DEMAND X

DEMAND Y

DEMAND Z

The student mey regquest additional informatibn or suggestions about how
to write the programléithef'béforé or after he tries to produce the program.
If the student cannct solve the problem, éven using.the additional help, He'
is shown & correct solution to the problem.and is asked to study it carefully,
and to copy and execute it.

There are over 50 programming problems in the course. Many lessons also

supply extra-credit programming problems such as the following.

X15-1: EXTRA- CREDIT PROBLEMS FOR LESSON 15

1. WRITE A PROGRAM THAT WILL TYPE "1" IF THREE NUMBERS, A, B, AND C, AR®
- TECREASING IN SIZE (I,E. IF A IS LARGEST, B IS NEXT, AND C IS SMALLEST).
IF A, B, AND C ARE NOT DECREASING, THE PROGRAM SHOULD TYPE "O".

2. WRITE A PROGRAM THAT WILL TYPE "1" IF B IS BEETWEEN A AND ¢ TYPE "O"
OTHERWISE, (NOTICE I DID NOT SAY WHETHER A WAS.LARGER OR SMALIER
THAN C). e S o _

In the first few programming problems, the program and the values to
be used for variables are specified in ccmplete detail, and.the student is
thoroughly guizzed about the perforﬁance of his program. As the course
develops, the student is supplied with less and less complete specifications,
and he is encouraged to analyze the iﬁstructions and to experiment with ¢if-
ferent sblﬁtions. Also, he is gradually given the respbhsibility for deter-
mining whether his progfam is correct, both in the sense of debugging and
in the sense of providing a solution to the stated problem. The aim is not
only to encourage analytic abllity and creative thinking, but also to introduce
the student to the idea that wofking programmers spend most of their creative
effort in defining the problem (and, in many cases, deciding whether there |
is a problem). Further, they spend much of their programming time satisfying
themselveg that they have produced a correct program.

Little has been said so far about how a_student interacts with the
teaching program, and how the teaching program i designed to provide in-
dividualized instruction. In order to explain these things, we give some
detaile of the teaching strategy.

One of the basic requirements of a tutorial course is to provide for

individualization of instruction, with the aim of optimizing the learning

16

process. The course "Introduction to Programming,"” which is being developed
under NASA Contract NGR-05-020-244, 1s designed as an application of ‘the
results of numerocus studies in the techniques of optimizing learning. The
vériety ofloptimization routines used in the course and the consequent rich-
ness of the curriculum material have never before been' attempted in a course
of comparable lexngth or scope.

The logic of branching used within problems permits extremely fine
discriminations between student responses and thus provides a mechanism for
remediation that is appropriate, not only.to the specific problem, but also
to the specific student response; i.e,, gross discriminstion of "correct" and
"incorrect™ are not used as the basis for deciding upon appropriate remedia-
tion, as is ordinarly done in drili-and-practice materizl or in linearly
programmed courses. Fine discriminations can algo be made between correct
responses so that the "correctness" function ranges over a set of positive
as well as negative numbers, and the program responds differentially to
categories of correct as well as incorrect responses. The analysis of
student responses 1s made by means of twelve basic analysis routines; each
of these routines can return from 2 to L4 different values of the correctness
function. Furthermore, the analysis routines can be used in any Boolean
combination to increase the numbet of possible values in the range-of the
correctness function. The maximum size of the range of this function, i.e.,
the maximum number of correct-incorrect classifications for a given problem,
has not yet been fully exploited, since it is limited only by the size of
the core buffers in the computer, but we estimate it to be in the‘neighborhood
of 100. Since the probability of receiving a wide variety of distinguishable
incorrect responses to a given problem is extremely low, the current course
is designed toc use from three to ten values Tor the correctness function,
depending upon the content of the prcblem. Because the system can respond
differentially %o the'studenfs,'each problem takes on the aspect of a small
"dialogue" between the computer and the student.

The optimization scheme described above is not, however, the only one
uged in the course. A second major scheme allows the student to initiate
the dialogie. 1In the microbranching legic, the student is allowed two

different devices for requesting additional information., The first of these

17

is the HINT command, which may be given by the student at any time simply

by typing a guestion mark.: The instructional system provides an unlimited .
nhunber of hints fer each prcblem; in the current course, two hints are
provided for most problems, -and as meny as six are provided for particularly
difficult problems. By allowing for optional additional_instruction, we
keep the pace fast enough for the more intelligent, bvetter prepared. students
without penalizingqthose students whose mathematical_background ig less
adeguste, ' . ,

In addition to the HINT command, there is also a TELL command that may
~be used by students at any time. This command.causgs the computer to print
the correct answer (or a correct answer) to the problem, providing that such
text was coded for the problem; and then branches to the next problem in
gequence. 1n the curreni course,. sample correct answers are provided for
about 80 percent of the problems. There is some evidence that adult students
learn adequately without being required to-mzke overt responses, so students
are in no way penalized, and, in fact, are encouraged to request the answer
.whenever they wish, . In general, the problems that do not include sample
correct answers are those for which there is no correct answer (Do you
want a summary of this lesson?").. Two or three representative answers may
be provided for problems that have many correct answers,

To illustrate the kind of hints and angwers provided in the course,

we show a few problems from Lesson 8, with comments..

18-2: WHAT WILL AID ANSWER?
- LET M(X) = 3%X '

TYPE-M{10}
*10 [The student makes an incorrect
WRONG . o . response.]
*9 o [He types a question mark to get °
LM(X) = 3*X - . additional information.]

)

SUBSTITUTE 10 FOR X TO FIND M{10)}
*30 _ . [He'then gives the éorréct answer.)

CORRECT

+18

SUPPOSE YOU HAD ALREADY GIVEN THE ABOVE COMMANDS, AND
THEN GAVE THIS ONE. WHAT WOULD AID ANSWER?

TYPE. M(2)
*20 - jk [The student gives a wrong answer.]
WRONG ' : ' :
*6 _ [...and corrects himself without
CORRECT ' ' : " additional instruction,]
...AND WHAT WILL AID ANSWER TO THIS COMMAND¢

TYPR (1) -
*3) -~ [The student makes a correct response

. CORRECT _ _ on his first try.]

18-3: WHAT WILL AID ANSWER?
LET Q(X) = @%¥X + T

TYPE (5 - 3)
*2 - | ~ [The student requests a hint.]
QX) = 2%X + 7 o S I
1\ . R
SUBSTITUTE (5 - 3) FOR X.
*7 . T . [He asks for another hint.]
Q5 - 3)
=q (2)
= 2*%(2) + 7
= Pe?
* ' : R - [...and finally requests the answer
il : _ (by typing Ctrl-T, which is an

invisible character).!

The optimization routines described thus far are used in all problems
in "Introducticn to Programming."”" An additional scheme ig also used for
problems that require the student to write ahd debug a program. Since such
problems are necessarily more complex than the kind used in most programmed
instruction, there is alsc a greater need for more highly differentiated
remedial material. For each programming problem, a sequence of problems
was designed to test the student's understandlng of the concepis involved.
Additional hints are also available.

Although the most complex of the optimization routines are used within

problems, provision is also made for optimization at the lesson level. The

19

riumber of problems that constltute a lesson for a partleular student is-
dependent upon the responses of thai student Tor example, in Tesson 3, &
student may de only 30 problems, or he may do as many as Th, including the

problems in the associated remedial lesson. Further, after every five

lessons there ig an overview of all preceding material; these lessons con-
gist of five secfions_(oné for each of the preceding lessons), with optionsl

detailed review. Kach overview lesson is preceded by an optional self-test,

which the student may use to evaluate hiS'prOgréss.and which provides him
with a basis forrdeciding which of the sections in the subsequent overview _
lessons are appropriate.) 7 |

 One indicater of the richness of the curriculum provided by the pro-
cedures described above iz the number of different messages that can be

used in the course of a single lesson; in Lesson 3, for example, one siudent

may see 60 different messages, while another student may see as many as 400,
The number of responsés required of a student is also an indicator of the '
fichness of the curriculum; for Tesson 3 (to use the same example), only 30
responses are required of the good student, but a student whe 18 glVlng '
some incorrect responses and requesting much of the optional material may -
make as many as 200 responses (there is actually no upper limit, since a
student may make any number of incorrect responses per problem). |

Noticé that a.recurriag theme in the optimization schemes is the
provision for studentrcontrolf.'There are strong indications from pasi re-
search, both in_computer~aésiéted.instfuction gnd elsewhere, that the
participation of the student in decisions about his course of study signif-
icantly affects the rate of learning. The étudy-pf motivation in an environment
of computer-assisted instruction hag not yet been_appjoéched in any very
rigorous way, but preliminary results do indicate that gsome factors here may
completely overwhelm others in an experimental design. ‘Since curriculum |
'désign cannot-always wait on firm research resuifs?.prOViSion was made in the
| instructiocnal system for nine student control commands'(including the HINT,
TELL and GO commands as well as single-character end full-lire erase commands,
_guick sign-off, etc.). These control commands are defined by the coder and

may be left undefined if desired, . Thus if further testing of the system

20

indicates that there should be less student control, the scheme can be easily
modified, ' |

As an illustration of the use cf the optimization schemes, & coded
problem tasken from Lesson 4 is attached as an appendix. There is a top-level
problem, followed by eight subproblems which are used as remediation for
students who are having difficulty with the concept of hierarchy of operations.
The' top-level problem requires the student fo evaluate the expresslon

' 5% 213 |
(In the AID programming langusage, an asterisk is used as the symbol fecr
multiplication, and an up-arrcw is used as the symbol for exponentiation,
so the expression 5 X 23 would be written 5 % 243 in AID,) If the student
does not understand the precedence of exponentiaticn cver multiplication,
he will prodﬁce the incorrect response "1000" and will then be given the
message "Wrong, AID would evaluate 213 first, Try again." If the student
produces the correct response (4Q), he is giﬁen the standard correct-answer
message CORRECT and then goes to the nexf top-level problem (Lesson 4,
Problem 6), bypassing all of the foilowing subproblems. For the student who
fails to produce the correct answer, an algebralc derivation of the correct
answer is given, and the student goes to the first Sﬁbproblem. The first
four subpré%lems lead the student through the evaluation of the expression
_ - 32/h12 '
and the fifth subproblem requires the student to evaluate, without detailed
help, the expression '
_ 1013 * 2,

If the student succeeds, he bypésses the remaining subproblems and proceeds
to the next top-level problem, The last three subprcblems are written for
students who are having cénsiderable difficulty with the concept; these last
three probléms present the concept from a different viewpecint and provide
the student with a workable algorithm for solving problems of this type.

The entire sequence of subproblems is tutorial; few remedial séquences
in the course consist solely of additional ptractice without amplification
of the lideas. The necessary drill on the concepts presented in the course

1s attained by introducing the concepts in such a sequence that immedlate

- 21

prac%icé is provided in the context of presenting the next concept. Thus,
necessary sgkills are constantly reinforced without the need for extensive
sections of pure drill-and-prectice.

III. Preliminary Results '

The complete teaching system described above is now in use by NASA
personnel, and has been used by a small number of volunteer students from
Stanford University and Woodrow Wilson High Sc¢hool in San Francisco, but
results are not yet.available, The preliminary system, which foxmed the
basis for the present system, was used by ten students in the spring of 1969
and subseguently by another half-dozen who sought out the curriculum designer
to request use of the course:. The resulis were extremely encouraging;
student motivation was high, performance was good, and- in gll respeets, the
preliminary system proved itself both in overall philosophy andin curriculum
design. An excerpt from the April-June 1969 progress report is given here,

"A small pilot study was designed during the Sprihg-Quarter, 1969, to
sﬁpply'information for meaningful revislong of the curriculum and the in-
structional system. Since this was the first trial of the system, the most
ugeful information would be derived from observations of studénts‘-reactions
to the program. There was no plan to collect detailed data or to dé any
‘kind of statistical anslysis of data. Ten students were enrolled in the
course on a flexible time scheduling basis;'some students were scheduled
three sessiocns a week, others two, and others came only once a week, depend-
ing upon the wisheg of the individual students. The students were allowed
to use the course in whatever way they felt best; but they were restricted
to taking not more than twoe lessons per session. Also, immediately after
each session, they were to be interviewed briefly.

"The students completed anywhere from three to twenty lessons each,
with about half of them getting as far as Lesson 20. In general, the students
who did fewer lessons did so becsuse they spent less itime on the lessons
rather than because of any great difficulties with the material. In Tfact,
the student who had the most difficulty with the course; and made the slowest
progress in relation to the time spent, finished Lesson:13 by the end of the
gquarter and expressed regret that he hadn't been able:to spend enough- time

to have completed the 20 available lessons.

22

"Students were timed on several lessons in order to get a rough ides of
the -time which would. be necessary for future students to complete the course.
The average time per problem for different students'ranged from about one

minute- per problem to three minutes per prcblem; the assignments for each

lesson required about as much time as the lesson itself, [In the preliminary
version of the course, programming problemsg were given as additional assign-
ments rather than being incorporated in the lessons- as they are now.]
"Extensive notes were taken durihg intefviews with the students and
were summarized in an anecdotal weéekly report. Also, the responges to
individual problems were tabulated and the percentages of correct and in-
correct responses were calculated.. The most frequent incorrect response to

each. problem was also tabulated,

“The students were gquite enthuslastic about the course and would have
worked for.several-hours at a time had they not beén restricted to taking
no more than two lessons per séssion,,.Since moét of the students' comments
were about specific problems, there was no indication that a major revision
of the ecurriculum is needed. The following are a few general observations
based cn students! comments and behavior.

. "Use of student controls. The student controel commands, which were

explained in detail in Lesson 1, were received with enthusiasm. (A control
command is given by holding down the 'CTRL' key while striking a letter key.)
The commands used were

Ctrl-H (used to request a hint) {This has been changed to a question
: mark in the newer versicn.]

Ctrl-T {used to request the answer)

Ctrl-8 (skip to next problem) [This control command is available,
but not stressed in the revision.]

Ctrl-¢ (used to get ancther problem or lesson. After the student
types Cirl-G he is asked to specify.the lesson and problem
he desires.)

"Both Ctrl-H and Ctrl-T were used frequently, although there was

-noticeable tendency for students to use one or the other but not both.
Ctrl-S was rarely used; in fact, several students were asked, at the end
‘of Lesson 3, what control commands were aveilable and were_not able to
recall Ctrl-S. '

23

MCtrl-¢ was used much less than anticipated., At the end of the pilot
“study, the students were gueried about this; several students replied that
they thought they would not be contributing fully to the experiment (the
pilot study) if they skipped any of the lessons; a few students felt that
- they would not know what they had skipped and that it might be important to
them in later lessons (this comment was made even in reference to reviews
and seli-tests in which there wasran explicit statement that no new material
ﬁould be presented and that it was perfectly accéptable to skip the entire
lesson); only one student consistently chose to review previous lessons and
he commented that he felt he simply repeated the same mistakes without:
achieving any noticeable gain in understanding.

"Language confusion. Almost all students evidenced some confusion

between the language they were learning (the ATD programming language) and
the languege (English) used in the exposition. ~ Part of this confusion un-
doubtedly arcose because the ATD language is a subset of English (AID commands
are syntactically correct English sentences containing a verb, ending with
a period [the newer version of ‘ATD does not require a periodl, ete.);
although this is certainly not a complete explanation and it is ocbvious-
that the advantages of teaching an English-based programming language far
outweigh the disadvantages even if it could be shown to be & significant
‘factor in the laﬁguage confusion.

"Furthermore, a few students were also puzzled about which program they
“were using--the teaching prégram-or the AID interpreter (which they used
for doing assignments); one student tried to ask the AID interpreter for
~hints about an assigned programming problem. It is felt that some confusiocn
between languages and betweéh programs is glmost inherenmt in the situation

and no satisfactory way of dispelling the confusion has been found.

“Constructed responses to multiple-choice problems. - The multiple-
cholce problems used in the courée consist of a problem statement or
queétion and a list of possible answers, each of which is labeled with a
letter. For example,

"WHICH OF THESE ARE CORRECT AID COMMANDS? -
A. TYPE 2 X 3.
B. PRINT 2 3.

2k

€. TYPE 2 % 3.
N. NONE OF THE ABOVE.,

"Students are expected to respond by typing a letter’ (or list of letters)
correspondlng to the correct answer (or answers) '

"There is a notlceable tendency for students to respond to certaln
multiple~-chcice problems by typing the ahswer itself rather than typlng the
corresbonding letter. In the ATD course; a response other than a single
letter (of list of ietters) is treated as an errcr, end the message

| ' PLEASE TYPE LETTERS ONIY |
is given. This error message has been found to be remarkably ineffectivej
the probability that a student will repeat the saine kind of error after
receiving'the above error message seems to be'greater than one half, possibly
as much as three quarters. . | .

e tendency to mske the kind of error described above seems to be
,.1nfluenced by the follow1ng factors {Note “the following remarks were
based on observatlons and suggest future lines of research.]

"l, Answer length If the number of characters in the angwer choice
is small (ssy, two to six characters), there is a strong tendency to type
the ansver itself. ' ' o

"2. Context. If the problem is preceded by several problems requiring
- constructed responsesg, the tendency to eonstrnct arresponSe'is somewhat
inereased. I the preceding constructed responges are closely related to
the cholces in the multiple-choice problem, there is an even sironger
tendency to construct a response; for exampie, if the six preceding problems
require 3-diglt numbers as a response, and the choices in the multiple-cheoice
problem are 3-digit numbers, there.is a high prcbability of making an error.

"3. Problem-solving strategy required. There seem to be two distinet
- kinds of problem-sclving strategies used in producing the answer to-a multiple-
choice problem. One is a 'mental construction® of the:correct angwer, fol-
lowed by a gearch cof the choices for that answer, and the other kind is a
*feasibility-elimination® approach in which the student inspects the list
of possible angwers and chooses that’whicn ig most feasible, or eliminates-

‘those choices which are least feagible., - {Cenerally, students working on &

25

gpecific problem will not switch from one stirategy to anether unless there

is a compelling reason; for instance, & student will abandon a 'feasibility—
~elimination' approach if'several choices are equally feasible,) ‘The strategy
.a student uses is influenced by_£he ﬁroblem statement although thefe_is some
tendency for individual students tb prefer one strategy over anofher. If

the 'mental construction' strategy is used, the student is more likely to
produce an overt construction of the anéwer, therety prodﬁcing an ‘error.’'

By WOrding.used in problem statement, The wording used in instructions
to the student seems to have somé effect;bn the tendency to give a constructed
answer to & multiple-choice problem. Zn.particular, use of the word 'what'
in the problem statement produces more errors than the word ‘which.' TFor

| example, compare 'What commend causes AID to gi#e N a value of 12?' with
‘Which command causeg AID to give N a value of 12?7 | ‘

 "One additional comment: Although the above remarks.may imply that the
error of constructing a response in answer tﬁ a multiplefchoice question is
a use-mention error, thié may th.be the cése; There éfé a number of problems
in the course which require a 'partial construction’ and there is an obsérv—
gble ténden¢y_iﬂ studenﬁs td_give g more complete answer than is reguired;
for example, students tend tc answer 'Do Pert 12f rather than fDo' in
response to this problem: *

| COMPLETE THIS COMMAND TO EXECUTE PROGRAM 12.
e.... PART 12

"The error of constructing a more complete response than required is
clearly not a use-mention error, and it seems to be closely related to the
error of constructing a response tc a multiple-choice problem.

"Answer length, context, required strategy, and wording used in the
problem statement are not the only factors which contribute tc the kind of
use-mention error under consideration here; there are also individual factors,
such as age and previcus experience., However, the above four factors are
the only curriculum-oriented factors which seem.to have an effect."

Starting in the sumer of 1969, extensive revigion of the curriculum
and programs was undertaken. The major changes were the provision for

‘multiple hints (in the first version, there was only one hint per problem)

26

and the provision of a multiplie-strand structure to provide for review les-
song, summaries, and extra—eredit prcblems. The coding language énd programs
vere extended considerably. As mentioned before, detailed resulis are not
available, but all indications are that the revision is extremely successful;
both students and teachers were enthusiastic. |

IV. Computer Programs and Coding Language |

" One of the major efforts of the AID projeet has been in the development
of a_suitabie coding ienguage and a manval explaining the use of.fhat coding
langnage. The necessity for deﬁeloping a coding language became apparent
guite early in the planning stage of the system, since no available high-
level language suitable for implementing the kind of optimization gchemes
was envisioned. The coding language, INSTRUCT, developed for this projec{,
was designed to be learned and used easily.by inexperienced ccders and
writers. Further, the manual, which includes a complete description of the
instructional system, is writﬁen;for-readers who are unfamiliar with com-
puters and programming There are step byéstep instructions on coding,
proce551ng, and debugglng lessons, as well as instructions for 1n1t1allzlng
a course, and for defining additional codlng commandg. The coding commands
are summarized in a sepsrate section, so that the manuval can serve as s
reference source as well as a primer. One of the major reasons for produc-
ing such a complete codlng manual was to @rov1de an sdequate basic document
for the instructicnal system should it be 1mplemented on another computer
for use in other plaeesa The manual, which contains 90 pages, cannot be
included in its entirety in this report, but_exeerpts confaining & summary
of Op codes and a BNF definition of the languege are included in the appen-
dices. An example of a coded prcblem sequence (taken from Lesson) is.also
included. ' o

Briefly, the coding language is a high-level computer language designed

specifically for writing tutorial.computer-assisted instruction. The language
contains over 30 diffexrent ty@és of commands, such as problen statement com-
mands, response analiysis commands, conditional branching commands,‘that '
enable & curriculum.coder to specify problem statements, hints, sample_
answers, detailed analyses of student responses and contingent acticns to

be tsken, sequence of problems, and format of all messages.

27, .

In order to prov1de programmed lessons that. are hlghly 1nd1v1duallzed
ﬁhere must he nontr1v1al routines for analyzing student responses and per—
forming approprlate actions contlngent upon the results of such analyses. ”
Analysis routines must be highly differential so that spe01flc errors may
be isolated and zppropriate remedial material presented A simple correct-
-incorrect classification of responses is 1nsuff1C1ent for an 1nd1v1duallzed
.tutorlal systen of teachlng._ There are twelve baslc ana1y51s routlne5°
'IEXACT KW, EQ, MC, TRUE, YES, and thelr negatlons NOTEXACT NOTKW NOTEQ,
'NOTMC, FALSE and NO. The EXACT routine checks the student response for an
exact character~5y—character match with a coded_text strlng; KW {key word)

" checks for the occurrence of a coded key word; TRUE eneeks focr a. response

of TRUE or T; the MC.(multiple—choice) routine can be used for multiple-
-choice problems in Which.several choices are correct (a correct'response

may be a list of all correct choices, or a list of a mlnlmum‘number of
correct ch01ces, dependlng uporthow the MC command is used by the coder),

the EQ routine checks for a number Wlthlﬂ a range of numbers, as speecified
.in the coding, eor checks for equallty Wlth a single number, also as spe01f1ed
.in the codlng°

The basic analysis routines not only check en the correctness of a
student response, they also check cn the form of the student response. For
example, the EQ routine accepts as a response any nunber in integer form,
decimal form, or SClentlflC notation; any response not in an acceptable
form, e.g., a response of the word "four," eiicits an error-in-form message:
'ERROR IN FORM: PIEASE TYPE A NUMBER. Anotner routine that differentiates
between cerrectly formed and incorrectly formed responses, as well as be-
tween correct and incorrect responses is TRUE, which expects either TRUE
or T as a correct answer, and elther FALSE or F as an incorrect answer.
Any other response from the student elicits an error-in-form message
PLEASE ANSWER TRUE OR FALSE. Most other analys1s routines (YES, MC, ete.)
also contain error-in-form subroutines. ' |

Complex analyses of student responses can be made by using simple

Boolean combinations of fhe_basie analysis eommandsQ For example, the

28

coder may specify a check for a number between 1 and 10, but not equal to -
‘either S-or 5.5, by using appropriate combinations of EQ and NOTEQ commands .
Since most of the action performed by the analysis routines is internal,
i.e., with no action visible to the student, there are also commands that
cause coded messages to be relayed to the student, appropriate bfanching to
take place, etc. These commands, called "action commands," are all contin--
gent upon the results of the analyses performed by the analysis commands,
i,e,, the actions are contingent upon the correctness of the student fesponse.
In addition to the problem coding described aboﬁe, the syétem also
allows the coder to specify the number of strands, which of the student con-
trol commands are to be made availablé, end the characters to be used by the
student for giving such commands. As a labor-saving device; about 15
"standard messages™ can be defined by the coder so that he is not required
to code commonly used messages (such as CORRECT, WRONG, TRY AGATN) more than
once, _ _
Because all problems are written in a high-level coding language, any
changes needed in the curriculum for research purposes are easily aécomplished.
The teaching system described above is implemented for the PDP-10
computer located at the Computer-based Laboratory, operated by the Institute
for Mathematical Studies in the Social Sciences of Stanford University. The
teaching system consists of a coding langusge, a lesson processor Program
that will {translate from the coding language into machine~readable code, a
lesson interpreter that will interpret the trapslated code at the time a
student-is using the system, and a set of auxiliary.operational programs.
The lesson processor is essentially a compiler for the lesson coding language
and-is used to translate coded lessons into & form that can be stored ef-
ficiently for later use by the lesson interpreter. The program (the lesson
interpreter), which will be in operation at the time 2 student takes a
lesson, is the most important and largest prbgram in the teaching system.
It is & time-sharing program that must be extfemely efficient both in terms
of core space required and in terms of processing time, since both of these
factors affect the response time for all users of the system. Past experience
has shown the length of response time as the single, most critical item of

concern in the design of a system for computer-sssisted instruction. A

<9

response time of less than 3 seconds is most desirable, and a response time
of more-than 10 seconds is totally unacceptable, Response time is affected
both by the efficiency of the processing done by the program and by ‘the total
size of the program. For these reasons, the lesson interpreter is carefully
degigned and written in the most efficient available programming language.
The auxiliary operational programs include a student enrollment program ang
‘a dally teachers' report program.

.The lesson processor. The lesson processor is a two-stage processor,

the firstrstage being cne of the PDP-10 assemblers. Since the PIP-10 has a

macrb~assembler, full advantage has been taken of the macro capabilities;
the processor congists almost entirely of macro definitions of the op codes
used in the coding language, plus a very short load routine, which stores
the processed lessons on a disk file (the processor is essentially a zero-
length program). The coder is also allowed the advantasges of a macro
assembler; judicious use of macros can reduce codlng time significantly.

The lesson interpreter. The'iﬁtefpreter is written as a reentrant

" time-sharing program using 2K words (36 bit) of core plus 1K for each of
the students concurrently taking lessons. The program is written in one of
the assembler languages for the PDP-10. Great care has been taken to ensure
fast response time and econcmical use of core and disk storage. Routines
for detecting ard compensating for coding errors have been incorporated.

In a similar fashion, unexpected responses from students are not allowed to
cause errors in the @rogram, This program has been in daily operation for
as long as 10 hours per day since the first of February and is cperating
well; response time is excellent and no bugs have been found in the program.
During the month of March, the lesson interpreter handled 1,050 -lessons in
BASTC and AID without any fallures, a more than adequate demonstration of
the abilities of the program. '

As the students interact with the program, their individual history
file is continually updated &nd written into disk storage. The history file
is 100 words long and contains the student's name, the number of the course
in which he is enrolled, his current position on each strand (lesson and
problem number), the date, and various other information needed by the

program. These history files supply information for auxiliary.programs :

30

such as the dally report program; a sample daily report is included. in the
appendices. The data found in the individual history files, which are con-
tinutally updated as the student progresses throwgh the course, are the only
data collection currehtly done by the program.

The AID interpreter. The course "Introduction tc Programming: ATD"

regquires the student to learn to operate two programs that are completely
independent: the lesson interpreter (instructional program) and the AID
interpreter. The AID interpreter is a commerciszl program supplied and
maintained by Digital Equipment Corporation, the menufacturer of the PDP
computers. No changes have been made to date in the AID interpreter for
data collection or any cther reason, and there is no interrelation between
ATD and the instructional system other than thét it 1s being implemented on

the same computer.

LAN

APPENTIX A

Student Manual

INTRODUCTICON TO PROGEAMMING: AID
Student Manusl -
by

Jamesine B. Friend

April 1970

Copyright 1969 by The Board of Trustees of the
Leland Stanford Junior University
A1l rights reserved,

Ingtitute for Mathematical Studies in the Sccial Sciences
Stanford University

Stanford, California

How to Start the Teaching Progiram

In this course, you will be teking computer-assisted ingtruction in
programming. The programming language you will learn is called "AID"
and the lessons will be given by the PDP-10 computer at Stanford.

Follow these instructions to start the teaching program:”"'

1. Turn on the teletype:.the switéh:on the frent of thélf61etype must
be turned to the LINE position. ' ' '

2., Push the START or BREAK key. (If'the teletype doesn't start to hﬁm,
get help.) :

3. Type a space, The computer will then type
HT
PLEASE TYPE YOUR NUMBER AND NAME
(If this doesn't happen, get help.)

4, Type
' (This is your number and "name." Don't forget it.)

Then push the RETURN key. The computer will type
PASSWORD:

5. Type
(This is your secret password. Don't forget it.)
Then push the RETURN key. The computer will type the sign-on

message.

6. Type
L TINsT
and then push the KETURN key. The computer will type
WHERE TO?

7. Type the RETURN key.

Steps 1, 2 and 3 are used fto establish communication with the computer.
Steps U4 and 5 cause you to be "signed on." Steps 6 and 7 start the
teaching program,

IT the computer deoes not respond correctly after each gstep, get help.

Good luck!

. How to Stop

When you are throﬁgh-for the day, follow these instructions: -

1. Hold down the CTRL key while you type the letter C.
The computer will print g pericd.

2. Type the letter K, then push the RETURHN key.
""" The computer will print the 81gn-off message._

Tou do not have to turn the teletype off{‘ It Wlll turn off by 1tself

GLOSSARY

Absolute value

ATD - L oo - - L
YU ATD is the fcomputer programming language being taught in this

Bee AID Interpreter.

The - absolute value of & number is the size of that number
dlsregardlng the sign of the number. In ATD, exclamatlon

- .points are used to denote absolute value

Examples
a2.71 = 2.7
2.7 = 2.7
A

Bee lLesson 29. lso see Operatlonal Symbols

I R o e ol

courgse. "ATD" gtands for Algebraic Interpretive Dlalogue

KRKHRN KK

ATD commands

All ATD commands have a similar. form.
Each command must be on one line and must end with a
RETURN. The form of the commands is as follows:

1. An cptional step number, like 2.1 or 37. 5h or 16. 165

2. A verb such.as TYPE, SET, DELETE.

3. An. argument whose form depends “upot, the precedlng verb
" The argument for TYPE is an algebralc expression:
TYPE X + 2/Y . '_
The argument for SET is an equatlon w1th a 51ngle variable
on the left of the egual sign:
SET ¢ = 72B+3l%uj
Ete. .
4. An opticnal IF clause.
TYPE X 4+ Y IF 2 <O
SET Q=31IFP= 15
 DO'PART 3 IF X < 27

' In.addmtlon to. the above four parts, certain commands may

‘contain FOR clauses of IV FORM clauses.
The ATD commands taught in this course are.

CELETE lessons 5,11
DEMAND Tessons 12,26
DISCARD Lesson 19

D0 ... ILessons 10, ll 12
JFILE . Iesson 19

‘FORM Iesson 22

LET Lesson B

HECALL lesson 19

SET Lesson 5

S TO lLesson 16

TYPE Lesson 2

USE lesson 19

See Direct Steps, Indirect, Steps
, : TR R HRH

3

ATD functions

ATD functions are the functions already defined by AID.

These functions are
‘ARG, "COS, DP, EXP; FLRST, FP, IP LOG :MAX, MIN PROD
SGN, SIN SQRT SUM TV KP«:

Each of these functlons is separately deflned In, the gl@ssany.

See Lessons 9, 30, 31 and k.
N

ATD Interpreter

AND

The AID. Interpreter is the program used when you want AID to
solve & problem for you. After you start ATID, you can type
any ALD commands. The ATD Interpreter interprets your commands

~and executes them. ' To start the AID.Interpreter (after you are

signed on), type
Ctrl-C
L ATD
To stop the ATD Interpreter type

Ctrl-C. o
CUERRERERH

YAND" 15 & loglcal operator used in prepos1tlons.r‘All eiements
connected by "AND" must be ‘true For the entire expre551on to be

“true. If any ohe’ element is® false, ‘the expre551on 1s falge.

Examples “Asgume A = TRUE, B = TRUE, .C = FALSE;;

= A AND B X = TRUE
= AAND BAND ¢ % = FALSE _
See Lessons 15 and 43. Alsc see Proposn.tlon° ;
RHHRAH AN :

Answer, How to

To answer & problem in the teachlng program type your answer,

then type the key labeled "RETURN." For multiple-choice problems
there may be more than one correct answer; you may type the letters
in any order (w1th spaces or commas. between them, lf you w1sh),

for example,

ABC

CBA

A, C, B
B C A

. For TRUE-FALSE questions, you may type "T" for "TRUE"™ and g

for "FALSE." For YES-NO questions, you may type "Y" for "YES"
and IINH’ fOr ”NO 1

See ITesson 1.
: HEERERRR

Answer, How to Get '
To get the correct answer to a problem, hold down the 1"CTRL" key

while you type the letter "T" (for "Tell me the answer™).
FRHKKRAH

Arithmetic symbeds =
See Operational ‘symbols S
SRR . o FH KRR H

.V.AI‘I'S.;Y L [. .

An array is a set of numbers 1dent1f1ed by & s1ng1e letter and from

1 to 10 subscripts (1ndlces) ~The subscripts may be any integers
from ~250 to 250. . e e >

Examples: :
"~ The following are all members of the same array A:
1 A(-10,2,5) = 2.789
A(-10,1,0) = -k5 .
A(1,20 59) =0

Tou- can sét all undefined members of an array (for example X) to
be 0 with this command: Lo L
LET X BE SPARSE.
See Iesson 38. Also gee Iist.
Co : CERHRRERF

”Asterlsk (*)
Both the teachlng program and the ATD Interpreter print an asterlsk
. when ready for a response from the user. ' The asterisk is also used

as “the multiplication symbol {6 % 7 means 6 times 7).
ERAERKES

Base . . . _
' (See also Exponent, pronentlal functlon) "In an expecnential
function the base 1s the number multlplled by’ 1tself as often
“as specified. -
Example:

X is the base: 12 = X*X
The base may be either a number or a variable.

See Lessons L and 31 -
O RRHNHIK

Boolean expression
See Proposition.
. HH N RN

Branch = - -
To branch means to go from one part of a program to. another part
of the program cut of sequence. Té do this use the DO command
-or the TO command. o R

See ‘DO, TO. -
FHRHRARK

Command

. Beer Control commands , - AID commands. .
S CRRRHHHRK

Contrel commands

CTRL stands for the key marked "CTRL." Whenever you see a command

with CIRL~ and a letter, you are supposed.to hold down the CTRL

‘key while you type the letter. ("CTRL" stands for "control.™)

CTRL-C. This is the call command. It 1s used to stop & program
that is running. Use CTEL-C to stop elther the teaching program

c:oor the ATD Interpreter.: - If you have written an AID program

.othat is-endlessly-looping, type CTRL-C, then type BEENTER to

start AID again without restarting the program which wag. looplng
See lessons 1, 2 and 16

CTRL-G. - This is the "go! command.. You use th;s-command.pnly in
the teaching program to gc to the lesson or proplem. you chooge.
After you type CTRL-G, the computer asks "WHERE.TO?" Then you
specify the lesson or problem you want. . See Lesson 1.

o CTRL-H. .« This is the "hop" command.. It causes the teaching program
to skip the problem you are working on and go to th_e-next,..bnen
Use this command whenever you want to-go. cn to the next problem
without doing or finishing the current one.

CTRL-C. This is the "Oh, shut up" command. It will stop the
computer from typing. The computer will then wait for a response
from the user. - ;

- CTRL-T. - This is the "tell" command. . If you are u51ng the teachlng
_program “and .want: the answer to.a problem type CTRL -T and “the
computer will print.the answer and then go. on to the next problem=
See lLesson 1. R

CTRL-U. This is the "undo” command. Tt will cause the computer
to erase the line you have Jjust {typed.

?. - This is the hint command. If you are using the teaching
program and want .a hint about the problem you are working on,
type a gquestion mark, ?. The computer will then give‘you:a
hint. BSee Lesson 1. : T

R R KN

Conditional definition of functions Ce
A function is said to be defined "conditiocnally" if the value of
the function depends upcn some condition such as "...IF ¥ > O"
or "...IF 2 <X AND X < 7." For example, the absclute value
function can be defined in this way: o
For x > = 0, A X) = X.
For x < 0, A(x) = -x.
In ATD, this condltlonal function is defined by the commang .
. LETA(X)H(X> O: x; .. x.< 035 ~X) ‘
‘The. form of a conditional definition in ATD ig o
(condltlon° value; condition: value; ..,; .condition: value)
Generslly, the last condition (and last colom) may be omitted,

in which case the last value listed is used for "everything else,"
i.e., for all cases not covered by cne of the precéding conditions.
The absolute value function may be written without the last condition:
IET A(X) = X >=0: X; -X)
HRARHA R

Counter

A counter is a variable used for counting. The counter is usually
get to some initiasl value, say O, and then increased by some amount,
say 1, at regular intervals. One common use of a counter is to
count the number of times & loop is used. One of the commands inside
the loop should change the value of the counter {usually by adding
or subtracting a given number). Somewhere ingide the loop there is

“an "exit condition," in which the counter is compared with another
‘number to decide if AID should repeat the locp or if it should exit
‘from the loop and go on to some instruction cutside the loop. See
Lessons 23, 24, 25, 26 and 36. '

FRRHRFRHH N
CO5 : '
"00S(x) is the cosine function. AID will give the cosine of the
number you give. X must be given in radlans end the absolute value
of X must be less than 100.
Lixamplie:
Cos{0) = 1
FHRR RN
CYTRL
See Control commands '
CHHEERHHEF
Debug
{See also Trace) To debug a program, you must find and correct all
the errcors in it, whether they are logical errcrs or simply typing
errors. A trace ig an effective method for flndlng pre01sely where
an errcr is. BSee Lesson 1G.
FRAHREHHK
IELETE

Use DELETE to remove a variable, a specific element in an array,
or an entire array, alcng with the values belonging to them from
computer storage. You may also DELETE a step, a part, a formula,
or a form. One IEIETE command may be used to DELETE several items.
Examples :

DEIETE Z

DELETE A(2)

DELETE FORM 71

DELETE Y, FORMULA B, PART 7

See lessons 5, 8, 10, and 11...Also see FILE commands .
EPHE A _ _

DEMAND
-DEMAND X causes the computer to stop snd wait for the user to type P
‘a value. DEMAND can only be used as an indirect command.

Examples:
ATD command: output:
1.3 TEMAND B : B = *
7.12 DEMAND M(2,4) M(2,4) = *
4.1 DEMAND P AS "POUNDS" POUNDS = *

See Iessons 12 and 26.

FRFRHHHK

Direct step
An AID command not preceded by a step number is called a "direct
~step.” AID interprets and executes a direct step as soon as you
type the RETURN key. You must type a direct step each time you
-want it executed. DEMAND and TO may not be used as direct steps.

Examples:
ATD command: output:
TYPE 2%7 2%7 = 14
SET X = -3 . no output (stores -3 in location X)
: - FRFRFRHRH, .
DISCARD
See FIIE commands. Alsc see DELETE.
KR ERHHIHFR
DO
The DO commend is used to execute an indirect step or pari. You
nmay specify how many times the sitep or part is executed {(if you
don't specify, it will be executed only once). You may also use
a FOR clause and specify a rangée of values for which the step or
rart is to be executed.
Examples:
DO STEP 10.1.
DO PART 6, 2 TIMES.
DO STEP 8.2 FOR X = 12(2)20.
See Lessons 10, 11, 12, and 18. Alsc see FOR clause.
KR HKHHKR
op

DP(x) is the digit part function. This function uses the scientific
notation form of a number and finds the new form of the digit part
of the number you specify.
Ixamplies:

241,37 in scientific notation is 2°h137*lOT2, S0

DP(241,37) = 2.4137
2&137 in gecientific notation is 2. hlBT*lOT(l), 50
(.24137) = 2.4137

The DP functlon is introduced in Iesson 46.

See Scilentific Notation, XP.
HHH RN

8

Erase _ S ‘
" To erase a line, hold down the CTRL key while you type the letter
U. To erase one character at a time, type the RUBCUT key once for

each letter you want erased. See DELETE, DISCARD. See Lesson 1.
FHTERRTE :

Errors

In writing ATD programs you may make twc kinds of errors:

1. Semantic errors. A semantic error is the kind that occurs -

~ 'when you leave out a necessary command or use a valid AID
‘command when you intended to use another. AID will execute
the commands Just as you wrote them. This means that the -
only way to detect this kind of errcr is to see if you -are
given a wrcng answer. :

2. Syntax errors. These are the errors that cccur when you type
something which is meaningless to AID. Because AID does not

~ understand, it will stop and print an error message, then

“wait for you to do something (such &s correcting the mistake

and sterting egain!).

See Lesson 19. Also see Erase.
FHRHERRRR

Execute
To execute a program, you make the computer do the commands in
" the program. This is done by writing the program and then giving
ATD a command to execute the program {for example, DO PART 5).
Indirect steps and parts are stored and you must use a DO command
to cause AID to execute them. Direct steps are slways executed

immediately.
Fh R HHHEKR

Exit condition
An exit condition ig a command within a lcop which tells ATD
whether to repeat the loop or to guit looping. One kind of exit
condition compares a counter with another number to decide. When
the condition of the comparison is not met ATD exits from the
loop and goes to the rext step. No exit condltlon is needed 1T
the lcop contains a DEMAND commsnd, since you can stop the loop
_at any time by typing only a carriage return when AID walts for-
you to give a value.
‘Examples:
1.4 TO STEP 1l.25 IF X > 25.
9.34 TO STEP 9.1 IF SQRT(X) < 10. =
See Lessons 23, 24, 25, 26 and 36. See Counter. S ?
FHRHHHRR ‘

EXP

 EXP(x) is the exponmential function, EtX, where E is Euler's number

(2.71828183).

Example:
EXP(3) = 20. 0855369
See Lesgon L&,
R HKAEHAH

Exponent

In &an exponenﬁlal function the exponent tells how many times the

‘base is multiplied by itself. The exponent may be either a numbexr

or a variable,
Examples:
3 is the exponent X103
7 is the exponent: 77.431Z

:The AID function EXP{X) is equivalent to 2. 7l828183TX go X is

the exponent. A fractional (or decimal) exponent indicates which

. root of & number is being calculated. TFor example, the square

root of ¥ may be written either
xt{1/2)

or
X4(.5).

If the exponent is negative you first do whatever is 1ndlcated by

the numerical value of the exponent (find the proper root or

multiply the base by itself the correct number of times). Then
take the reciprocal of the result. :

Examples:

- ht(-3) = 1/413
104(-6) = 1/1016

If the exponent iz O, the value of the expression is 1, regardless

of the value of the bhase.

Examples:
210 =
5.510
010 =

| See Tessons b and 31 See Base, Exponential Function.
HAKHRRRHE '

1

o Il

Exponentiél function

An exponential function is a function in which the variable appears

. as an exponent,

Examples:
F(X) = 21X
a(X) = l.24(3%X)
H(X) = XtX

The ATD function EXP(X) is an exponential function which is

equivalent to 2,718281831X. Alsc see Base, Exponent.
A HRRHHF .

10

FIIE commands

Programg, formulas, forms, etec., may be filed for later use by
using the AID file. commands. The commands . ' :
USE FIIE 1CO0 . ‘ '
FILE PART 3 AS ITEM 5
will cause PART 3 to be permanently stored as 1tem 5 on disk file
100. - The PART may be fetched from the file at a later date by
using the commands : \ .
USE FILE 100
- RECALL ITEM 5
Item numbers can be from 1 to 25.
Examples -of file commands;
USE FILE 100
FILE F AS ITEM 6
FILE FORM 70 AS ITEM 10
- FILE PART 2 AS ITEM 12
An item is erased from a flle by a DISCARD command
-DISCARD ITEM 17 .
See Storage. See Lesson 19.
RRFHFRFHK

FIRST

CFIRST is an AID function that finds the flrst value in an array

which satisfies the specified proposition.

- Example

FOR

FIRST(I = 1(1)30: A(I) > 700) S
I is the index of the array A so I = 1(1)30 tells which elemerts
of the array are to be considered. A(I) > 700 is the proposition
which must be satisfied. The result of the FIRST function will be
the index of the first element in the array A Whlch is greater
than 700. = See Lesson 4k, -
KRR RN

A FOR clause can be used after a DO command. The FOR clause
gpecifies the wvalues Tor which the DO command must be executed.
There are two ways to specify the values in a FOR clause:

. 1. The wvalues can simply be listed:

DO STEP 1.3 ¥OR X .= 1,2,3,10.
Step 1.3 is done one time- for each of the four wvalues of x
listed.
2. The values may be specified by giving the range
- DO STEP 1.3 FOR.Y = 3(2)13. SR
Step 1.3 will be done for Y =3, 5, 7, 9, 11, and 13
3 is called the initial value, 2-is the step size, and 13 1s
the final value. (See Range.)
See Iessons 10, 11, and 25.
S - T HHHH AR HAH

1l

FORM

FP

FORM is the command used to tell AID to type an answer in some form

other than the standard form. To sgpecify the Torm, first type the
word "FORM," then give it a number, and follow it with a cclon.

the next line type the form you want AID to print your answer in,
including any words you want. Where AID is tc fill in the number,

use back arrows to represent digits. Put the decimal in the appro-

priate place. Caution: use only one line.

Example:
FORM T73:
THE ANSWER IS << << :

Then when you want ATD to use ypur form, use a command llke
TYPE X IN FORM 73.

See Lesson 22.
B S

¥P is the fraction part function. AID answers with the fraction
part of the number or variahle you specify.
Examples:

FP(132.576) = .576

FP(-8.543) = -.543

"The FP function is introduced in Lesscn 9.

Function

- Go

FRRRRRKK
See AID functions.

R e e e e
See CTRL-G, WHEERE TO?

HARHNRHY

Hint

In the teaching program, hints are provided for mest problems.
To get a hint, type a question mark, ?. There are usually
several hints with each problem; the Tirst time you type a
question mark you will get the first hint, the second question
mark will give you the second hint, etc.

KRRIRRRH

IF clause

An TF clause may be added tc any ATD command so that the command
will be executed only if the proposition in the IF clause is
satisfied.
Example:

1.1 SET B = 50 IF A > 100,
ATD will set the value of B eqgual tc 50 only if A is grester

- than 100. See Lesson 15.

He Ko e R e

Tndex
An index is & reference number for & list or an array. The index
is the number in parentheses. Since all the members of & list or
an arrey have the same letter, cach member has its own index to
distinguish it from the others.- :
Exanple: o e
L(16) = 10 meesns the 16th number in the list I is 10.
I, ig the label for the list.
16 is the index of z particular element.
10 is the value of that element of the list.
The plural of "index" is "indices." An index is also called a
gsubscript. See Lesson 32, _ ' ' o : '
FRARHRRF

Indirect step
An indirecet step is an AID command preceded by a step number.
Indirect steps are stored for later use, rather than executed
immediately. When you use a DO command or a TO command, the
step will be executed.
Example:
1.3 TYPE 3%2.
ATD will not print anything until you give an indirect D0 or TO
. command or one of these dlrect commands : '
DO PART 1.
or
DO STEFP 1.3.
Step numbérs must be decimal numbers containing both an integer
portion and a decimal portion; & step number can contain a maximum
of nine significant digits. Some commands may only be used in
. indirect steps; those commands are IDEMAND and TO. See Lesson 10,

Also see Part, Step number.
. KRR RARH

Initial value ‘ :

The term initial value may refer to two different things. It is
the first value given to a counter (see Loops, Exit conditiocns).
It also refers to the first value of a range of values in a FOR
cleause using this form:

initizl value (step size) final value
Ir the command

DO PART 3 FOR X = 6(2)20
the initial value is 6.

See Range.
FREFRRFH

Input
Input commands assign values to the variables in a program. Most
programs must provide for input. The SET and DEMAND commands are
uged for input. See Lesson 19. ; a ' '
FHREFRKN,

13

TNST 7
See Teaching program.
FHHEHHEH

IP . _ .
IP(X) is the integer part fuaction. AID will give the integer
part of the number or wvariable you specify.

Examples:
IP(.723) = 0
IP(72.8) = 72
IP{-6.9) = -6
The TP function is introduced in Lesson Q.
HA R R
I, ATD
See AID Interpreter.
FHRHRRWN
L INST
See Teaching Program
RARHHHAHR

Iesson
To get a specific lessom u51ng the teachlng program, you must
Tirst, sign on (see page 3)
Second, start the teaching program (Type "L INST")
Third, specify the lesson (Type "L5" for Lesson 5, "L36”
for Lesson 36, etc.)

Algo see CTRL-G.
FREF KKK

IET ,
IET is used to define functions and propositions.,
Examples:
IET A(W,L) = W¥L (formula for area of a rectangle)
IET B =X AND Y (B will be true only if X and Y are both true.)
IET T{A) = SIN(A)/C0S(4A) (tangent function)
See Lessons 8 and 45.
HRRHHRHHR

LIine number

See Step Number, Indirect Step.
FRRHAEHHR

List
You may use one letter to represent a list of numbers. XEach number
in the list must have an index to distinguish it from the cther
members of the list.
Examples: L(1) = 10 (The first number in list L is 10.)
we) =6 (The second number in list L.is 6.)
L(3) = 29 (The third number in list L is 29.)

See Lessons 32 and 33. Also see Array.
' HAKRRNHRK

1k

il

LOG S
LOG{X) is the natural logarithm function. LOG(X) gives the loga-
rithm to the base E of X. E is Buler's number (2.71828183). X
must be greater than O.
Example:

LOG(650) = 6.47697236
The LOG function is introduced in Lesson 31.

W RN

Logical operator
The logical operators in AID are AND and OR. Operations involving
AND are done before operatlons 1nvolv1ng OR. See Lesson 43, Alsc
see Prop091t10ns,
FHRFHHKRHFR

Loop -
A loop is a portlon of a program that is repeated. The number of
times a loop is executed depends on the counter and on the exit

cendition. Loops are first discussed in Iesson 23.
=)

MAX is the AID function that finds the largest value in a list.
Exampie:

MAX(5, -4, 3, y, xt2) :
You may also specify the list as a part of & sequence. You must
specify which numbers in the seguence are to be considered and
what the formula Tor the sequence is. .

Examples :
MAX(I = 1,2,3,4: I%3) is the same as MAX(B, 6, 9, 12)
MAX(J = lO(2)0 21J) is the same as
MAX(2110, 218, 216, 24, 212, 2?0)
See lesson 37.
EFHRHRHHHRR

MTNY :
MIN is the AID function that finds the smallest value in a sequence.
You must tell AID which numbers in the sequence are to be considered
and what the formuls for the sequence is. For short sequences you
may simply type the list of numbers.

Examples
MIN{i = 1(1}5: 1%3)
MIN(j = 3,0,-2: 213).
MIN(M:B;'TJ)

See Iesson 37. Also see MAX,

RRHHHANK

il

Mistakes :
See Errors, see Brase. -
' FRRHRHIR

15

Multiple choice prcblems

See Answer. :
HHHHHNKRHR

NOT

See Propositions.
FHHKRHAHHN

Numbers
Numbers may be expressed in either decimal form {(2348.25) or in
scientific notation (2.34825%10t3), . Numbers are limited to 9

. significant digits. See Lesson k, -
FEHRHKRHAe

Number line
The number line is a line divided into equal parts. OCne dividing
polnt is labeled .0 and all the dividing points to the right are
labeled consecutively 1,2,3,... . All the dividing points to the
left of O are labeled -1,-2,-3,..., consecutively.
Example:

2-1 0 1 2 3 4 5 6
) i SRR RN

Operational symbols
The AID symbols for arithmetic operation are these:
' L absolute value K
exponentiation
multiplicaticn
division
addition
- subtraction
The crder of priority of the operations is this:
] 1
t
% / evaluated from left to right
+ - evaluated from left to right
See lessons 2, 3, L and 29.
RN KRN

+ Nk =

OR :
OR is 2 logical operator used in propositions. If any element
connected by OR is true, then the entire expression is true,
otherwise the expression is false. B
Exampies: assume A = TRUE, B = FAISE, C = FALSE

X=BORC X = FALSE

Z=AOCRBORC 7z = TRUE

See Lesgonsg 15 and 43. Also see Propositions.
: FHH AN K L

%

Output
An output command causes AID to print the results of processing.
Most programs should provide for output. The only ATD output

command is TYPE. See Lessons 2 and 19.
' FRARIH R KK

PART . ,
A PART consists of all the indirect steps with the same value in
‘the integer portlon ¥or example, these steps all belong to PART 2.
2.001 SET X = 1 ' ' : - :
X+ 1

2,99 SET X
2.l TYPE X

See Iesson 11,
KHAHRHHHR

PROD
PROD multiplies &ll the specified numbers in a seguence together.
You must tell AID which members of the sequence are to be used
and what the formula for the sequence is. . For short sequences
you may simply type the list of numbers. S
Examples:
PROD(3 = 1 2,3,k § + 3)
.this is equlvalent to (1+3)*(2+3)*(3+3)*(u+3)
PROD(1 = 5(5)30: 3/4) | -
Jothis ig egquivalent to (5/4)%(10/4)%(15/4)%(20/4) *(25/4)%(30/4)
PROD(2,4,72,.8,-2)
..this is equivalent to 2¥Lx*7x 8%(-2)
See Lesson 37. Alsc see SUM, MAX, MIN.
: FRHEKHRHH

Preoposition :
A proposition is & mathematical sentence made up of arlthmeﬁlc or
logical statements that use the relational operators (>,=,etc.),
NCT, and the logical operators (AND, OR). The value of a proposition
is either true or false. The order of execution within a proposition

is

1. evaluate expressions
2. relational operatlons
3. HNOT
L, AND
5. OR :

‘Examples: assume X = TRUE, Y = FALSE, Z = TRUE
B=XANDY B is FALSE:
A=XAND Y OR 2 A ig TRUE
C={2<3)0R(7>10) Cis TRUE

Pr0p051tlons are dlscussed in Lessons 43- hS See TV.
AR AR AR

Range
.+ In a number of different AID commands a list of numbers can be
:spec1flid by defining the. range of the numbers in this way:
its)T
where i = the initial value, s = the step size, and f = the final
value.
Examples:
DO PART 7 FOR X = 15(5)%0
(The initial value is 15, the step 51ze is 5, and the
final value is L0, so the list of numbers is 15, 20,
25, 30, 35, 40.) . '
TYPE MAX(N = 1(7)29: §/3)
(The initial value is 1, the step size is 7, and the
final value is 29,. s0 the list of values for N is 1,

8, 15, 22, 29.)
A range spec1flcatlon may also be used with MIN, SUM, PROD,
-and FLRST. _ .
. %***%%*%
RECALL
See FILE Commands,
FRHH AN
Re01procal
-~ The reciprocal cof a number, say A, is found by dlv1d1ng 1 by the
number A. :
Bxamples: .
number reciprocal
3 /3
2.5 1/2.5 = .4
.5 /.5 = 2
1/3 - 1/(i/3) = 3
s
Recur51on

Recursion is a Way of defining a function on the integers by (1)
specifying the value of the function for the integer 1, and (2)
“defining the value of the function for integers greater than 1
in terms of the value of the function for smaller integers. TFor
example, the factorial function F(X) may be defined by these two
equations: '
(1) =
(thls spec1f1es the value of the function for the 1nteger 1.)
F(X) = Xx*P(X-1) for X > 1
(this defines the value of the function for X in terms of
integers less than X.)
In ATD, the sbove two equaiions are combined in a single conditional
expression, as fTollows:
F(X) = (X=1: 1; X > 1: X*¥P(X-1))
HRAEKKRKR

18

\ REENTER

FEENTER is a command that tells AID to start running your program
again where it ieft off when you interrupted by using CTRL-C. AID

does the next step and then stops and tells you where it is so you
can decide what to do next. 8See Ctrl-C.
WH KR RRHH

Reiational symbols '
These are the relational symbols used in AID:

= equal

not equal

< less than

> greater than -
<= less than or egqual to
> =

= greater than or equal to

The relational symbols are discussed in lesson 15.
N FHRFHRRH

Scientific notation
Scientific notation is used to write very large and very small

numbers.
scientific notation
30000 = 3.0 % 10th
4560000 = L.56 % 1016
0.0025 =" = 2,5 % 10t(-3)
0.00000071 = 7.1 % 10t(-7)
See Lesgson 4.
| RERERRHH
Bemantic errors
See Errors.
FRFFFRHH
; SET :
i The SET command assigns values to variables.
' Examples: '
SET X = 5.25
SET Z = A%¥B (A and B must already have values.)
The SET command is intreduced in Lesson 5.
FHRHKHHRH
- 8GN(X)} is the sign function. It gives 1 if X is & positive number,
| O if X is 0, and -1 if X is = negatlve number.
. Examples:
L. SeN(25) =
SGN(0) = O'

SaN(-762.4) = -
The SGN function is introduced in Lesson 9.
HRRHHHRHRH

Sign-on ‘ L : g
. Bee Page 3 of this manual. o o
S : R R HHH N

Slgn off
To sign coff use these commaﬂds
CTRL-C (to stop the program)
K (to sign off)
- HRFHRAHRAHR

Slgnificant digits
The significant digits of = number are the dlglts beglnnlng with
the first non-zerc digit on the left and ending with the last
non-zero digit on the right, B

Examples: :
number significant digits
0.2030 203
100
00976 976)
In ATD, numbers are limited to Q9 significant dlglts.
HRA KRR
SIN

SIN(X) is the sine function. AID finds the sine of X. X must
be expressed in radians. The absolute value of X must be less

than 100.
Example:
SIN(0) =
The SIN function is introduced in Lesscon 30.
FRFHARHR
SQRT -

SQRT(X) is the square root function. AID finds the positive square
root of X. X cannot be negative.
Examples:
SQRT(9) =
SQRT(60 + L0) = 10
The SQRT .function is introduced in Lesson 9.
FRRH WA

Start
To start using the computer, you must sign on (see Page 3)
To, start the ATD Interpreter type: ‘

I, ATD
To start the teachlﬁg program type
L INST L
see lessons 1 and 2. Also see AID Interpreter, Teachlng Program.

Rk KWk K

.20

STEP
Every AID command is called a "step." There are indirect steps,
- which are saved for later executlon and direct steps, which are
executed immediately.

See lesscon 10. See AID Commands, Indirect Steps.
FRFHHHRHHK

Step number

Any AID command may be preceded by & step number to make the command
into an indirect step (which is stored, rather than executed immed-
iately). Step numbers must be decimal numbers containing both an
integer portion and a decimal portion; a step number may contain a
maximum of nine significant dlgltsn For example,. the following are
all valid step numbers:

1.2

1.3

10.678

10.6781233

See Indirect Btep.
FHHRFARR

Stop
To stop either the AID Interpreter or the teaching program type
CTRL-C (See Control commands). To stop for the day, you must

sign off: Type "K" after you have typed CTRL-C.
FH AN NN

Storage
Storage locations are in the short-term memory (core) of the
computer. AID gives each variable, each member of a list, etc.,
its own storage location. If you change the value of a variable,
ATD finds its storage location, takes out the old wvalue and puts
in the new value. The SET command is used to store numbers and
ligts of numbers. - The LET command is msed to store function’
definitions and definitions of propositions. Indirect steps (steps
with a preceding step number) are autcmatically stored. Anything
in short-term memory may be changed simply by redefining it, or
it may be erased by using a IELETE command. For long-term storage,
see TILE Commands.

HHHHAREKR

Subscript

See Tndex.
- HH R

2l

SUM

SUM is the AID function that adds the specified members of a seguence.
You must tell ALD which members of the sequence fo-consider and what
the formula for the sequence is. TFor short sequences you may simply
1list the numbers. : :

Examples:
smM(j = 1,2,3,4: j*3)
. equlvalent to (1¥3) + (2%3) + (3*%3) + (M*S)
SUM(= 1(3)25: it2)

" ...equivalent to 1f2 + 412 & 712 + ... + 2512
SUM(lO X,4,-42.1) . :
..equlvalent to 10 + X + Z + (-b2.1)

: Bee Lesson 37. Alsc see PROD, MAX, MIN.

Syntax errors

See Errors
FRRe Ko R e

Teaching program

The teaching program is the one that teaches you how to write
programs using the AID language. After you are 51gned on, you.

e may start the teaching program by typlng

L TNST
For complete instructions, see-page 3 of this manual
S
Tell
See CTRL-T. oo
. FERRRARFH

70

TO is a branching command used to tell ATD to go toc. a step or part
cut of sequence. TO must be used indirectly only. -

. Examples:

. 2.75 TC STEP 2.3.
17.4 TO PART 15.

7O ig introduced in Lesson 16.
VRV

Trace

A trace is a table used to find errors which are difficult to spot
otherwise. To make a trace, list the steps in a program in the
crder they are done. For each step also list the values of the
variables after the step is done. Sometimes output is listed for

each step. Traces are discussed 1n Lesson 17.
' FRHERXHH

22

Trlgonometrlc functlons

The
You

only trigoncmetric functions in AID are SIN(X) and COS(X).
must define your own functions if you want to use any other

trigonometric functions.: For example, the tangent function can
be defined by : :

IET T(X) = SIN(X)/cos(X)

See SIN, COS.
- KRNt
Truth tables
See Lesscn 43.
HREFREHHF
TV .
TV(X) 1s the truth value function, where X is a proposition. If
the propesition ls true, TV(X) will be 1. If the proposition is
false, TV{X) will be O.
Examples assume A = -5 < 3 and B (2 <0) OR f2 < 1)
TV(A) =
TV(R) = 0
The TV function is discussed in Lesson 4k,
FHEFREHH
TYPE
The TYPE command csuses AID to print out the specified informatiomn.
command : output:
TYPE 2%3 2%3 = 6
TYPE < {a blank line)
TYPE "VALUES" VALUES
TYPE ¥ F(X): 3%XAt2
TYPE X = 3.&7
TYPE STEP 17.2 17.2 SET X = 2/Y.
One TYFE command may be used for several things:
TYPE FORMULA ¥, SQRT(12),3 + 2.7,
See Lesson 2.
AR
USE
' Bee FIIE Commands.
RHREFARHHH
Variable

In ATD, varisbles are used to designate storage locations for
numbers, formulasg, lists of numbers, arrays, etec. AID variables

are the single letters A, B, C, ..., Z.
fxemples:
SET A = (A is a number)
LET F(X) =Xt ¥ 3 (F is a formulsa)
SET A{2) = 7.05 (A is a list)

SET B(3,7) = 21.76 B is an array)
M is a proposition)
HRKRTRHF % '

23

WHERE TO?

XP

Bee Lesson u46.

In the teaching program "WHERE TO?" is typed by the computer to

“indicate that the user can specify -a lesson or problem to do next.

To continue your lessgons, type the RETURN key.
.To start Lesson 19, type "L19"
To do Lesson L5, Problem 6, type "L45-6"
Te get Summary of Iesson 21, type "Se1"
To get a Review of Lesson 26, type "R26", etc, -
See Lesson 1.
AAHH KA

XP(X) is the exponent part function. This function takes the
rumber you give and finds the value of the expcenent when your

" number is expressed in 501ent1f1c notation.

Examples:
24137 in sc1ent1f1c notation is 2.4137%10thk so
D XP(2hi37) =
.0024137 in sc1ent1f1c notation is 2.4137¥10t(-3) so
XP(.0024137) =

RN

.24

APPENDIX B

ATD Documentation

STANFORD ARTIFICIAL INTELLIGENCE LABORATORY o Octcber 12, 1967
OPERATING NOTE NO 32 : : : S

" AID FOR ON-LINE COMPUTATION

édapfednfrom_RAND_documentétion
by 5. Russell and R. Gruen

1. INTRODUCTION

ATD" 45 an on-line, time-shared computing service that is designed
to appear. to each user as'a‘personal "computing aide,” interacting with
the user and responding to instructions couched in a simple language and

transmitted ovér cmmmu-riication lines'-'from the user's Teletype.

Thls memorandum descrlbes the” prOgrammlng language for requesting
computatlons of ATD. Prior experlence with other programming langusages
(e. g, FORTRAN) is neither neCESSary ner appllcable, indeed, reliance
upon such experlence may be mlsleadlng

The section: below ig an overview and should be read carefully.
Section 3 is a falrly complete description of the language, designed as
a reference. The examples, however, should be studied; théy are positive
rather than negatlve, show1ng what is permltted rather than what is not
allowed . .

| 2,_' OVERVIEW

Users request actlons of AID by typlng single-line commands called

.steps A numerical label prefixed to the step is an 1mp11ed command to

ATD to retain the step as part of a stored program. AID files away

labelled steps in sequence according to the numeric value of the label

or step number. The step number, therefore, determines whether an addi-
tion, insertion, or deletion is required.

Steps are organized into parts accordlng to the integer parts of
the step numbers. Steps and parts are units that may be introduced,

.edited, typed out, or filed .in ‘long-term storage. " In addition, they

are natural stored-program units for speclfylng, in a hierarchial manner,
procedures to be carried out by AID.

+AID”--Algebraic Interpretive Dialog is derived from JOSS, a system
developed by The RAND Corporaticn. ' JOSS is & trademark and service
mark of the RAND Corporation for its computer program and services
using that program. We are indebted to The RAND Corporaticn for the
use of the program and its documentatlon.

2

Decimal and logical values may be assigned to any of the 26 letters
admitted as identifiers. Values may be organized 1lnto vectors and arrays
by using indexed letters, and the letters themselves may be used to refer
to arrays for purposes of deletion, typing, filling in long-term storage,
and ag actual parameters of formulas (see helow). :

In addition to values, arbitrarily complex expressions for valueg and
letters may be assigned to a letter,'which may then be used as an abbrevi-
ation for the expression; expressicns so assigned are called formulas.

. Formulas involving formsl parameters (identified by letters) may also be
assgigned tc a letter. The letier and expressicns for actual parameters,
in functional notaticn, may then be used as an abbreviation for the formula
“with the sctual parameters substituted for the formal ones. The letter _
itself may be used to refer to the formula for purposes of deleticn, typing,
filing, and as an actual parameter of a formula. '

Programs for evaluating the sum, product, largest, and smallest of =z
set of decimal values--and for evaluating the first in a range of decimal
values for which a condition holdg--can be expressed succinctly and used
as expressions for values: ' ‘

SM{ T = 1{1)N : A(I))
PROD(X, Y, Z/2) :
MAX(I = 1(1L)N = A(L)*B(I).)

MIN(X, ¥/3, Z¥2) .
FIRST(T = X(1)Z : P(I})

Either of the two notationel styles may be used, except for FIRST which
finds the first I for which P(I) is TRUE. Programs for determining the
conjunction cr disjunction of a set of logical values can alsc be expressed
in either style, and used as expressions for logical values.

Short programs for choosing expressicns differentially on the basis of
a set of conditiong can also be expressed succinetly and used as expressions.
The notation chosen abbreviates phrases such as:

if x=yuse x + ¥y, if x > y use x, otherwise use y-
by (X=Y:X+Y;X>Y:X;7)
Such iterative functions and conditional.éxpressions,'together with formulas,

lead to powerful, direct expressions for complex procedures, particularly
recursive ones. : Tl

ATD represents decimal numbers in scientific notation: nine digits of
significance and & base-ten scele factor in the range -99 through +99.
~Addition, subtraction, multiplicaticn, division, and square rcot are car-
ried out to give true results rounded to nine significant digits; zeroes
are substituted on underflow whlie overflow yields.aq error message. In

ab

other elementary functions, care is taken to prov1&e reasonable slgnificance
and contlnulty of approxlmatlon, to factor out error condltlons and_to
hit certzin "magic"” values on the nose. '

The six numerical relations together with AND, OR, KCT, and a set of
. elementary logical functions may be used to express loglcal values and
conditions (which may be attached tc any step).

A single, general rule governs the formation and use of. expressions
for values: with the exception of step:-labels, which must be decimal
numerals, wherever a. decimal (logiczl) numeral is allowed in a command,
an arbltrarlly complex expression for a decimal (loglcal) value may be
-used. :

AILD types answers one-per-line, identifying answers by the expression
used in the step calling for the output; in the event of conditional ex-
pressions, AID uses only the chosen sub-expression for identification.
Decimal points-and equal signs-are lined up, and fixed-point. notation is
used whenever possible. For more formal output, the user cen create full-
line FORMS. to specify. literal information and blank fields to be filled
in with answers. A string of up arrows with an opticnal decimal point is
~uged for fixed-polnt fields; a strlng of periods spec1f1es a tabular form
of a 501ent1flc notation (floating point).

Users can request ATD tc file, in long-term storage, ideptifiable
units and collections of units--steps, parts, forms, formules, and values.
Users may then request AID tc recall such filed items, discard them from
the files, or type out a list of items in a file. :

Users start BAID off on the task of carrying cut a stcred program by
directing AID to DO a step or part--iteratively (for a range-of-values)
or a specified number of -times, if desired. AID cancels all cutstanding
tasks before beginning a direct (i.e., initiated from the console) task,
begins the interpretation of a part at the first step of the part, and
then interprets each step in sequence. Each subseguent indirect (i.e.,
initiated by a step of a stored program) DO causes AID to retain the
status of the current task, pause to carry out the new task, and then
return to continue the suspended one. If the user wishes AID to behave
in the same manner for a dlrec+ly initiated task the DO command must be
enclosed in parentheses° '

ATD modifies this general behavior whenever 1t encounters: a) an
error; b) a branching command; ¢) a stopping command; d) a command for
terminating a task or a portion of a task; e) an interrupt-signal from
the user, The -deep and inveolved hlerarchy of tasks and formulas that
can cceur (recursion is egllowed) demands that ATD's status be perfectly
clear each time control is transferred to the user, for any reason. In
addition to error messages, interrupt messages, and stopping messages,
AID transmits status messages on completion of parenthetical tesks to
distinguish this state from the state of having finished a direct, non-
parenthetical task. The user is able to proceed in every situation, in

27

the event of errcrs, he can take correctlve actlon,'and then dlrect ATD
to continue with a GO command. -

3. ° DESCRIPTION

EDITING INPUT LINES

ATD indicates that it is ready to receive input by typing out an
asterisk (¥). Characters may be deleted sequentially backward by striking
the RUBOUT key. ' Typing asterisk (¥) &t the beginning or end of an input
line cancels the line. . - : ,

RULES CF FORM
Cne command per line, one line per command,
"Commends begin with a verb and end with a period.

Words, variables, and numerals may neither abut each other nor contain
embedded spaces; spaces may not appear between . an identifier (of an array,
‘a formula or a function) and lts associsated grouped argument(s), otherw1se
gpaces may be used freely. : : :

Asterisk typed - Step- . : : :
by ALD number -Verb - Arguments - Modifiers

[—.> ¥1.23 TYPR X, Y, Z#3 TN FORM 3 IF X+Y > 16.
- ¥1.4 b PART & FOR X = 1(14)141, 1808.

DIRECT COMMAND: ”Step number'omitted; cbmmand_is executed immediately.

STORED CQMMAND:” Step number present; command is stored in order of step
' number.

PTEP: A stored command, step number is llmlted to 9- dlglt
' nurbers > 1.

PART: . A group of steps whose step mumbe rs have the same in-
tegral part.

FORM: . . . A pictorial specification of literal informaticn and
. flelds to be filled with values, for formal output.
' Fields are denoted by strings of left arrows (with
" optional point) or strings cof dots (for a tabular
form of scientifie representatlon)

- *FORM 7: o
%] = we, < AMPS, V= viiesee.. VOLTS

28

NUMBERS ; Range : +10"%7 to 9.99999999- 1077
Precision: 9 significant digits

SYMBOLS : Slngle letter identifiers. May identify decimal values,

logical values (true, false), formutes, and arrays of
values,

ARRAYS : Up to 10 indices having integer values in the range
[-250,250].

DECIMAL OPERATIONS:
A

Single asterisgk for multlpllcatlon, double asterisk or
up arrow (1) for exponentiation.

RELATIONS: = < > <= > = #

Extended relations (e g, a<bs ¢) permitted. Number
- o sign for not equal.. . : .

LOGICAL OFERATICNS:

AND OR NOT
GROUPERS: (Y [] (uéed interchangeably in pairs)
3+ 1/2 4+ /.5 = 3+ (V2 + (/k-5))
-2t3%-5 = (-(2%).1)-5
D%% JHK)Y = (23)h |

It

A OR B AND NOT C OR D a cr (b and not c¢) or d

BASI(FUNCTTONS : o ' . NUMESR DISSECTICN FUNCTION

SQRT{X) square root, x > 0 S 8GN{X) -0,0,+l for x < 0,x =0, x>0
STN(X) - o U Ip(X) integer part ip(3.2) = 3

lx in radians| < 100
cos(X) _ FP(X) fraction part fp(3.2) = .2
LoG(x) natural log, x > 0 DP(X) digit part dp(100.2) = 1.002
EXP(X) e ' - xp(X) exponent part xp(l00.2) = 2
ARG(X,Y) angle of point x,y in Ixi abseclute value for decimal values

redians, arg{0,0)=0. |true|= 1, |false|=0

29

arg{x,y)

SPECTAL FUNCTIONS

SUM[T=A(B)C:F(I)] ' SUM(X,Y,Z+10)
PBOD[I:A(B)C:F(I)] ‘f ; ' PROD(A+B, C+D,E+F) -
MIN[T=A(B)C:F(T)] MIN(4,B,C,D) |
MAX[I:A(B)C:F(I)] | '. MAX(B,l,XfY)
FIRST[I=A(BYC:P(I)] - | gives first I for which 'P(I) is true
TV({P) = 0,1 IF P = FALSE, TRUE

- FALSE, TROE . IFP=0,P A0
CONI[I=A(B)C:P(I)] ' CONJ(X=1, ¥ > 3,P)
DISJ[T=A(RB)C:P(I)] | . DISJ(A=B=C,A > ¥ > 10)

CONDITICONAL EXPRESSTONS

(Pl:El: P :E,: E3)
where ; Pi are expresslions for logical values,
means: If P, is true use E,, if P, is true use Ee; otherwise use‘Es.
¥ET X = { B <Y <=5:06 ;Y <1f: 2%2 ;5). |
*IBT P(X) =/[X =@: 1 ; PROD(1 = 1{1)X : 1)].
ATD VERRS
SET . Assigns value., SET and final period may be omitted on direct
commands .
*SET X

=3
*SET A(5,X) = Ya3*X-3x2.

30

IET

DEIETHE

TYPE

TEMAND

o

TO
sT0P
Go

DONE

QUITT

" CANCEL -

"¢ Defines a formuls of .9 or fewer parsmeters. . -

*¥IET F(X,Y) = X**2+lﬁ*X 6%Y,

*IET H = (B- A)/2

*LET D(F, X) = F(X+D) F(X)]

*¥IET Q(R) = [R=f: 1 ; FP(R) fﬂ R*Q(R—l)]

Ereses values, parts, steps, forms, formulas.

*DELETE A, PART 3, ALL FORMS.

*DELETE ALL VALUES, ALL FORMULAS.

Types quoted text or values, blank lines (<), parts, forms,

*TYPE "THE QUICK BROWN FOX., " :
*TYPE X+3, D{ SIN,8 }, <, ALL STEPS.

Requests an input wvalue from user. Executing:

'1J+mmmDA(3;Hﬁd,

with T = 59 causes ALD to respond with:

A(3,69) =

etc.

The desired value for A(3 69) may then be typed, followed by

a carrigge return.

Executes or "does" part or step. FOR clause gives range of

values. Returns to user if direct, to next step 1f indirect.

*¥DO PART 6 FOR X = .1, 3(2)18, 1@0*A+2%B.

Sends AID to indicated part or step.

- ¥1.3 TO STEP 3.5.

Interrupts programn Console control returns to user.

Restarts program after 1nterrupt, error message, or STOP

- command, .

Signals completion of DO for current FOR value.
Signals completion of DO for all FOR wvalues.

Signals completion of all DO's

31

(0)

(CANCEL)
LINE

. FORM

 USE
FILE
'RECALL

DISCARD

Executes part or step without disturbing interrupted

‘calculation.

_*(Do PART 3.)

Signals completion of last (DO).

Types a blank line,

After form number, colon, and carriage-return pauses for
user to enter format for output Fields are strings of

left arrows or dots.

*FORM 3:

KL = soeesrf =<7 =
User file in dictionary.
*USE FILE 145 (DTAT).
Stores an ITEM in the files.
*FILE PART 3, A, Z, AS TTEM 7 (CODE)
Retriéves an ITEM from files.

*RECALL -ITEM 7 (COIE).

Erases a filed ITEM.

*DISCARD ITEM 3 (F00),

ALD MODIFIERS

Ir

‘FOR

TIMES

Precedes a logical expression conditioning any command.

*TYPE X IF B < = X < 5,

¥SET Y = 3 IF X < = 1% AND X*Y#lﬁ

| Used on DO only. PART or STEP is executed repeatedly for

specified set of values.

%00 PART 3 FOR X = (1)1¢(1ﬂ)lﬁﬁ, 1468
*DO STEP 1.2 FOR X = .§1, .#3, .1(4)B.

Used on DO only. Causes repeated execution ‘of PART or STEP,

*DO PART L, 43 TIMES. -
¥DO STEP 7.3, M+l TIMES.

32

IN FORM Modifies TYPE only. Causes values to be typed in fields
of specified FORM.

*TYFE X, Y, Z%2 IN FORM 3.

ATD NOUNS

TTME ' Gives 2b-hour time.
*TYPE TIME,

SPARSE Declares undefined array elements to have zero values; they
require no storage.
*LET A BE SPARSE.

$ The current line number. Maximum is 5k.

EXAMPIE OF A COMPLET® ATD TYPEQUT

¥TYPE ALL.

1.1 LINE.

1.13 TYPE FORM 2. _

1.15 DO PART 2 FOR B = .1(.1)L.

2.65 SET A = - B,

2.1 LINE IF FP($/5) = :

2.6 TYPE B, EXP(3R), LOG(EXP(B}), C*I(F) IN FORM 1.
FORM 1

FORM 2

X Exp(X) LOC PROB

I(F): H/2%8UM(I=1(1)3@:SM[JI=1{1)2:F(¥(1,I))])
F(X): EXP(-X¥%2/2)
H: (B-4)/30
Y(I,J): A+H/2%%[T(J)+2%*T-1]

C = .398942281
S T{1) = . 577350268
T(2) = -. 577350268

33

APPENDTIX C

Outline of AID Lessons

Lesson l}

Tesson 2.
Lesson 3.

Lesson k4,

Lesson. 5. -

Lesson 6.
Lesson 7,'

.lesson 8.

-Leséon 9.

* Lesson 10.
Lesson 11.
Lesson 12,

Lesson 13.

Lesson 1k.

QUTLIKE

Computer-Assisted Instruction in Programming: AID

How to answer. ‘How to erase. Control commands.

Signing on and off AID. The TYPE command. Arithmetic
operators: + - ¥ / . Decimal numbers. ' :

Uéing ATD for arithmetic, Use of parentheses, Order of
‘arithmetic cperations. ' ‘ '

The operator * for exponentiation, Order of operations.

_ Scientific notation.

Variables. -The SET commang. Re—défining variatles. [The

 IEIETE command used to delete variables. Multiple type command.

. Belf-test.

Review. .

The LET command {using funetion notation). Distinection
between LET and SET. Distinction between use of & defined
funetion and display of the formula for & function. Re-

- defining and deletlng functlons.j

Some standard ATD functions: Ip(x);'FP(x), SGN(x), SQRT(x).

‘Indirect'steps,i
DO STEP ...

DO STEP FOR

Re-defining steps and deléting steps.
TYPE STEP

Parts.

DO PART

DO PART FOR .oue
Deleting parts.

TYFE PART.

The DEMAND command.
DO PART ..., ... TIMES. -
Termination by refusal to answer a DEMAND command.

Self-test.

Review.

lesson

Lesson

lessgson
IﬁSsbn
Lesson
Lessoﬁ
Lesson
Lesson
Lesson
Lessén
Lesson
Lesson
lesson
Lesgon
Tesson
Legson
Lesson
legson
Legson
Lesson
.Lesson

Tegson

15.

16,

{17-

18.
19.
20.
o1
2.

23.

2k,

25,
26.
27.
28.
29.
30.
3L,

32.

3k
35.
36.

Relations between numbers.
Relational symbols: < > <= >=
Number line.

The IF c¢lauge, .
Introduction .of "and" and "or."
Branching., The TC command.

TO STEP ... '

TO PART ...

Traces,

-4

it 1]

Type ...

The indirect use of DO. Use of Ctrl-C, Reenter.

How to write and debug a program;

Self-test.

Review.

The FORM statement.

Loops. x ;;k+lu.
Lbéps'with-variablé‘bouhds;
Loops compared with FOR cléﬁses.
Loops with & DEMAND bommand.'
Self-test. |

Review.

Abgolute value.

‘How to store a program.

Trigonometric functions: SIN(x), CoS(x).

ZXP(x), LOG(x).

Lists,

Usging loops with lists of numbers;:

Self-test.

Review.

condition.

32

-More on lcops. Decrementing ¢ounters. Formulas for exit

Lesson 37.

Lesson 38.

Lésson 39,
~ Lesson 40.
Lesson 41.
Lesson L.

Lesson 43,

Lesson k.
TLesson 45,
Lesson 46.
Lesson b7.
Lesson 18

Lesson L9,

Tterative functions: SUM, .PROD, MAX, MIN,

Arrays.
IET S BE SPARSE.

Conditional definition of functions,
Recursion.

Self-tEStn

Review.

AWD, OR and NOT,

Truth tables.
TV(x). The funetion FIRST.

IET used to define propositiocns.

More standard AID functions.

More about lists and arrays.

Self-tepgt.

"Review.

36

APPENDIX D

Excerpts from the Coders' Manual

INSTRUCT

Coders! Manual

{excerpts)
by

Jamesine E. Friend

Copyright 1969 by the Board of Trustees of the
Leland Stanford Jr. University

.37

K. Summary of Op Codes

Notey If an op code has more than 1 argument, separate the arguments by

commas .
_ No. of Kind of
Cp Code. Arguments Argument
LESSON 24 1. Strand identi-
fier (1 to 6
letters)
2. Lesson number
EOL _ none- .
PROB 1 text string
QUES 1 text dtring
SPRCEB 1 text string
TELL 1 text string
HIN? 1 text string
EXACT 1 text string-
MC ' | 1. text string

containing list
of letters

38

Comments

Pseudo op code, Marks
beginning of a lesson.

Pseudc op code. Marks end

of lesson.

Displays prcblem number and
problem text. Pauses for
student response.

Displays problem text. Pauses
for student response. o
Displays problem text. Pauses

for student response.

Displays text of correct
answer, when requested by
student. ‘

Branch to next problem.
Default routine causes branch
to pause student response.

Displays text for hint when
requested by student. Pause

~for student response.

Analyzes student response for
exact match. Sets SCCRE,

"Analyzes response to multipie-

choice problems. Sets SCORE
to 1 if completely correct,
-1 1if completely wrong,

-2 if partially wrong,

-3 1f partially correct.
Checks fTorm of response.

EQ

KW

NC

YES

TRUE

FAISE
TIST

SET

ROTEXACT

NOTKW
CA -
feal
ce
C3

WA

1 _ text string
containing:
l. number
2. optional
number, giving

"tolerance
1 text string
0]
0
0
0
undefined#
undefined
Similar to op codes
described above, with
.. negation of SCOERE.
1 - optional text
: string '
1 . .optional text
‘ - string
1 optional text
f string
1 : optional text
: string
1 optional text
string

39

Analyzes response for equality
with coded number, within tel-
erance specified by second
number. Pets SCORE, Checks
form of responge.

Analyzes respoﬁse for existence
. of coded text string.

Bets
SCORE.

Analyzes response for 'no"
or "n". Sets SCORE. Checks
form of responge.

Similar to O.

Checks for "true" or "t".
Sets SCORE. Chec¢ks form of

response.

Similar to TRUE.

Executes only if SCORE > 0.
Displays message. Branch to
next problem.

Executes only if SCCRE = 1.
As for CA.

Executes only if SCORE = 2.

-Ag for CA.

Executes only if SCORE = 3.

As Tor CA.

Executes only if SCORE < 0O,
Branch to pauge for student
regponse.

Wl 1 cptional text "Executes only if SCORE = -1.
' - string - As for WA.
w2 i optional text " Executes only if SCORE = -2.
string As for WA.
W3 1 optional text Bxecutes only 1if SCORE = -3,
gtring Ag for WA.
BRCA Y 1. strand identi- Executes only if SCORE > Q.
fier. " Displays message. Branch to
2. lesson number spec¢ified problem.
3. problem number :
L, optional text
string
BRWA b 1, strand identi- Executes only if SCORE < 0.
- fier ‘Displays message. Branch to
2. lessgon number " specified problem,
3. problem rumber . :
}. opticnal text
string
WS ' 1 optional text Executes only if SCORE < 0.
string : - . ‘Displays megsgage. Branch to

next problem.

L. IBNF Definition of Coding Language
<gtrand> ::= <lesson> EOL<CR><strand>|<empty>-
<lesson> ::= <lesson><prob>|<lesson identifier><or>

<prob> ::=<PROB command>non-PROB commands>l
<SPRCB command><ncn-TPROB commands>[
<QUES command>nen-PROR commands>

<non-PHROB commands> ::= <HINT series>non~PROB commands>[
: <IELL command><non-FPROB commands>]
<ahalysis command>non-PROB commands>1
" <acticn command><non-PROB commands>§j
- <empty> '

<HINT series> ::= <HINT command>HINT series>|<empty>
<gnalysis command> ::= <EXACT command>|
' ' ' <MC command>|-

<EQ command>
<KW command>

4o

<NO command>|

<YES command>|
<TRUE command>l
<FAISE command>] .
NOTEXACT command|

o

o

<NCOTKW command>

<action command> ::= <CA -command>
SR - <Cl command>
<C2 command>
<C3 command>
<WA command>
<Wl command>
<W2 command>
<W3 command>
<BRCA command>j
<BRWA command>
<WS command>

Problem Statement Commands:

<PROR cdmmand> M

I

PROB'<Space><£ext string><CB>‘

<SPRCB command> ::= SPéOB <gpace><text string><CR>
<QUES command> ::= QUES <space><text string>CR>
<BINT command> ::= HINT <sPace><tex£ string><CR>
STELL commend> ::= TELL <space><text string><CR>

Analysis Commands s

<BXACT commend> ::= EXACT. <space><text string><CR>

<MC command> ::= MC <spaece>eft superguote>letter list>
: <right superguote>CR>

<letter list> ::= <letter><comma><letter list>
<detter><space><letter list>
letter> :

<EQ command> :;= EQ <space>lefi superguote><deecimal number>
<right superquote><CR>| :
EQ <space><left superquote><decimal number>
<decimal number>lright superqucte>CR>

Ea

<KW commend> ::= KW <gpace><ltext string><CR>
“<NO command> ::= NO <CR>

<YES command> ::= YES <CR>

<TRUE command> ;:= TRUE <CR>

<FALSE commang> ::= FALSE <CR>

. <NOTEXACT command:>.

. . Similar to EXACT,..EQ comuands

e

- <NOTEQ command>

Acticon Commands:

<CA command> ::

CA <space><text string><CR>|CA <CR>

1l

- <Cl command> ::= Cl <space><text string><CE>|Cl <CR>

H

<C2 command> :: ce <gpace><text string><CR>]C2 <CR>

H]

<C3 command> ::= C3 <space><text string><CR>|C3 <CR>

<WA command> :

n

WA <space><text string><CR>|WA <CR>

| o<Wl command> ::

1i

Wl <space><text string><CR>|Wl <CR>

1l

<2 command> ;:= W2 <space>ltext string><CR>fW2r<CR>

<W3 command> ::

W3 <space><text string><CR>|W3 <CR>

<BRCA conmand> ti= BRCA <space><strand identifier>,
<lesson number>,<problem number><CR>|
<BRCA gommand>,<text string><CR>

<BRWA command> ::= BRWA <space><strand identifier>,
<lesson number>,<problem number><CR>|
<BEWA. command>,<text string><CR>

WS command> ::= WS <space><text string><CR>|WS<CR>"

<strand identifier> ::= %1 to 6 letters¥

<lesson number> ::= *patural number 1 to Gog%

<problem number> ::= *natufal_nuﬁber 1 to 128% h

Ao

Miscellanecus and "Primitives":

<text string> ::= <left superquote><characier string>.
<right superquote>

<character string> ::= <character>character string>|<bmpty>
<letter> ::= ¥a - z, upper or lower case¥

<deecimal number> ::= ¥any number-in decimal form with not more than
9 significant digits; includes integers¥ .

<left superquote> ::= #¥Philco: less-than-or-equal sign
' *¥Teletype: Ctrl-Shift-L

<right superguote> ::= ¥Philco: greater-than-or-equal sign
*Teletype: Ctrl-Shift-M

b3

APPENDIX E

S_ample Coded Problem

SAMPLE CODED PROBLEM
(taken from Lesson 4)

PROB
"ATD WILL DO EXPONENTIATION BEEFORE IT DOES MULTIPLICATION, DIVISICN,
ADDITTION OR SUBTRACTION.
WHAT WOULD ATD ANSWER?
TYPE 5 * 23"

TELL
"5 % 243 = 5 % 8 = ho"

HINT
"ATD WOULD EVALUATE 243 FILRST."

HINT ,
"DO 23 FIRST, THEN MULTIPLY BY 5.".

NOTEQ "1000™

WA ‘
"WRONG. ATD WOULD EVALUATE 2t3 FIRST. TRY AGAIN,"

EQ, "}_,_0"

WS
"WRONG. 5 % 213 =5 % § = L4o"

BRCA L,k ,6

SPROB

"LET'S GO THROUGH THIS PROBLEM STEP-EBY-STEP,

WHICH EXPRESSION IS EVALUATED FIRST IN THIS COMMAND?
TYPE 32/412

A, hxp
B. 32/4
¢, hLt2
N. NONE"
TELL

"¢ (EXPONENTIATION IS DONE BEFORE DIVISION.)"

HTHNT
"EXPONENTTATTON I8 DONE FIRST."

EXACT
"J-I- 1.2”

Ll

CA
MC HC‘H
CA

WA

SPROB
"...AND WHAT IS THE VALUE OF ht2g"

TELL
U2 = btk = 16"

HINT
"h12 = 4 * 4 = poe”

EQ, M 16 "
CA

WA

SPROB ; :
"SO THE VALUE OF 32/4%2 IS THE SAME AS THE VALUE OF 32/77%"

TELL
16 (kt2 = 16)H

HIRT
"WHAT ANSWER DID YOU GET FOR Lt27"

HINT : :
"32 DIVIDED BY 4t2 IS THE SAME AS 32 DIVIDED BY WHAT NUMBER?

EQ, “}.6”
CA

WA

I5

SPROB
"THEN WHAT WOULD AID ANSWER TO THLS COMMAND?
TYPE 32/Lt2.".

TELL
"30/4t0 = 32/16 = 2"

HINT
"WHAT I8 THE VALUE OF 32/4t2"

HINT
"ATD WILL DO EXPONENTIATION BEFOHE DIVISION."

EQ |12 i
CA

WA

SPROB
"WHAT WOULD AID ANSWER?
TYPE 1043 * 2"

TELL

11043 * 2 = 1000 * 2 = 2000"

HINT

"ATD WOULD DO EXPONENTTATION REFORE MULTIPLICATION "
HINT

"Hint: 1013 = 10 ¥ 10 * 10.™

NOTEQ "10000"

WA

"WRONG, ATD WOULD DO EXPONENTTATTON EREFORE MULTIPLICATION, ™
EQ "2000"

WS .

"WRONG. 1013 % 2 = 1000 ¥ 2 = 2000"

BRCA L,4,6

! ‘.1{;6

SPROB

“IEERR TS AN EASY WAY TO DO PROBLEMS THAT HAVE EXPONENTTATION AND
ALSO SOME OTHER CPERATION: IMAGINE THAT THERE ARE PARENTHESES AROUND
THE TERM WITH THE EXPONENTIATION.

FOR EXAMPLE,

TO DO 3th + 2, DO (3%h4) + 2.

TO DO 625/5t2, DO 625/(5t2).

TO DO 442 % 244, DO (kt2) * (214).

WHAT IS THR VALUE OF 5t2/2% '

TELL . _ o
"5t2/2 = (5t2)/2 = 25/ = 12,5"

HINT
"REWRITE THE EXPRESSION WITH PARENTHESES. THEN TRY TO DC IT."

HINT
"5tz/2 = (512)/2 = 29"

EQ, 1!12.511
CA

WA

S}ROB
- MWHAT WOULD AID ANSWER?
TYPE 10%3/10%2"

TELL, : .

"10t3/1012 = (lOT3)/(1OT2) = 1000/100 = 10"

HINT |

"REWRITE THY EXPRESSION WITH PARENTHESES (USE TWO PAIRS).
THEN FIND THR VALUE, "

 HINT
"10t3/10%2 = (1043)/(1012) = 29"

EQ 'ulon
CA

WA

-7

SPROB : :
"WHAT WOULD AID ANSWER?
TYFE 10%3 0 10t2"

TELL ,
"10%3 - 10t2 = (10%3) - (10%2) = 1000 - 100 = 900"

"REWRITE THE EXPRESSTON WITH PARENTHESES EEFORE YOU DG IT."

HINT -
"10%3 - 1042 = (1013) - (l0t2) = 292"

EQ, 1 900 ft
CA

WA

48

	0928_001.pdf
	0929_001

