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EXPERIMENTAL TESTS OF A STOCHASTIC DECISION THEORY

By

*/
Donald Davidson and Jacob Marschak-l

INTRODUCTION

Common experience suggests, and experiment confirms, that a person does

not always make the same choice ,,,hen faced with the same options, even when

the circumstances of choice seem in all relevant respects to be the Same,

However, the bulk of economic theory neglects the existence of such incon-

sistenciesj and the best known theories for .decision making, for example,

those of von Neumann and Morgenstern [12] .01' Savage [15], base the

existence of a measurable util.ity upon a .pattern of invariant two-place

relations:; sometimes called Ypre.fe:rence·t and 'indifference .0' This raises

a difficulty for any attempt to use such theories to describe and predict

actual behavior,

V This paper w:'ell appear as part of a symposium on measurement to be
published by Wiley under the editorship of C.West Churchman,

Research lLndertaken by the Applied Mathematics and Statistics
Laboratory, Stanford University, under contract Nonr 225(17),
NR 1T.L-034, with the Office of Naval Research, and by the Cowles
Commission for Research in Economics under contract Nonr-358(01),
~TR 047-006 with the Office of Naval Research.

The authors were helped by discussions with G. Debreu, E. Fels,
L. Hurwicz, R. Radner, R. Raiffa, R. Savage, R, Summers and
P. Suppes.
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A number of ways of meeting the difficulty may be mentioned: (1) It

is possible to insist on the normative status of the theory and construe all

deviations as evidence of error on the part of the subject, (2) One may

defend the descriptive accuracy of 'the theory and argue that it has been

incorrectly interpreted; for exa,mple, by wrongly identifJring two options

(say winning one dollar at time t and winning one dollar at time t + 10

minutes) as the same, (3) One may interpret every case of inconsistency

as a case of indifference: if the subject has chosen ~ rather than b but

soon afterwards chooses b rather than ~ this is interpreted as indifference

between those two objects; if he chooses ~ rather than ~, ~ rather than £'

and c rather than ~ this is interpreted as indifference between those three

objects, In empirical application this approach would probably !!lake

indifference all-pervasive, (4)]lJl alternative approach is to define

preference and indifference in terms of probabilities of choice, Mosteller

and Nogee, in testing the von Neumann and Morgenstern axioms, considered

a subject indifferent between two options when he chose each. option half

the time [11]; Edwards [5] has also used this .method, In this approach

probabilities of choice do not enter the formal axiomatic development,

(5) A fifth strategy, explored in this paper, incorporates probabilities

of choice into the axiomatic structure, and exploits their propertl.es in

scaling utilities,

I. PRIMITIVE AN]) DEFINED NOTIONS

We now introduce various concepts needed for the subsequent discussion,

It should be emphasized that strictness has l.n mac'w places in this paper
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been sacrificed to perspicuity; we trust that the knowing reader ca.'l make

the corrections needed for formal accuTacy. First we list the pr~itive

notions:

10 A set A of alternatives.:! A may include wagers (choices

involving risk) as well as sure outcomes. In Sections I w..d II we shall

treat alternatives quite generally. In Section III we shall use special

properties of wagers.

2. The probability P(a,b) that the subject, forced to choose

between ~ and E., chooses a. We assume in what follows, for every ~ and

b in A:

(a) P(a,b) + P(b,a) ~ 1,

(b) P(a,b) li.es in the open interval (0,1).

In a ~ally formalized exposition these assumptions would appear as

axioms or theorems; i.n the present paper we shall sometimes leave these

assumptions tacit. Under a natural in-terpretation 2(a) has empirical.

content: i.t implies that when a subject is asked to choose between a

or E., he always chooses ~ or b. Normally, we are not interested in

testing 2(a); rather, we attempt to make it true by enforcing a choice.

Therefore we may want to state our experimental hypothesis as follows:

if 2(a) is true for a given subject, then the other axioms hold. If

2(a) fails for a subject we then reject the subject, not the hypothesis.

V We use the word 'alternative,' as is fairly common in the literature
of decision theory, to mean one of two or more things or courses
between which a person may choose.
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Or we may want to include 2(a) in the hypothesis and reject the hypothesis

for a subject who refuses an offered choice. For the experiments reported

here the issue is academiG. All subjects were docile.

For the case where a=b, 2(a) has the consequence P(a,a) = 1/2.

Formal convenience dictates that we not exclude this case although we give

it no empirical meaning.

Before commenting on 2(b) it will be useful to give some definitions.

Definition 3. a is absolutely pre:iErred to!:: if and only if P(a,b)=l.

This concept corresponds to the psychologists' "perfect discrimination."

Definition 4. a is stochastically preferred to b if and only if

1/2 < P(a,b) < 1.

Definition 5. a and bare stochastically indifferent if and only if

P(a,b) = 1/2. Since we use the word 'indifferent' in no other sense, we

often omit the word 'stochastically.'

Definition 6. c is a stochastic midpoint between a and b if and only

if P(a,c) =P(c,b).

In situations in which it is natural to apply the theory, it is obvious

that cases of absolute preference occur, violating 2(b). In particular, one

would expect that when ~ and !:: denote respectively, "receiving ~ dollars"

and "receiving £. dollars II (or.? for that matter, ill or n units of some

commodity) then, m > n implies P(a,b) = 1. More generally, if ml , nl

are am01mts of some commodity and m
2

, n
2

are amounts of a second.



receiving m
l

n
l

and n
2

.

commodities.

-5-

commodity, and ml > nl ' m2 ~ n2 , then the alternative consisting of

and m2 will be absolutely preferred to the alternative

This extends also to bundles consisting of 3 or more

In the experimental testing of stochastic theories of choice various

devices may be used to avoid comparisons of alternatives which yield

absolute preferences. Papandreou et al [13], using appropriate commodity

bundles, avoided cases of the sort just mentioned. The methods used for

avoiding comparisons apt to generate absolu~ preference in the experiments

reported here will be discussed presently.

So long as the assumption stated in 2(b) remains in force, it is not

enough merely to avoid comparing alternatives one of which is absolutely

preferred to another; the set A of alternatives to which the theory applies

must contain no two such alternatives. While we have no solution on hand,

we shall mention in the next section the possibility of modifying the formal

system to eliminate dependence on assumption 2(b).

II. GENERAL STOCHASTIC THEORY OF CHOICE

An important .aspect of a general stochastic theory of choice lies in

the fact that without specifically considering wagers it is possible to

obtain forms of measurement stronger than a mere ordering by imposing

plausible conditions on probabilities of choice. When conditions of

sufficient strength are satisfied it is possible to interpret a comparison

of probabilities as a comparison of differences in subjective value or

utility. This idea is captured in a general form by the following

definition:
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Definition 1. For a given subject, a real valued function 11 is

called a utility function on A (in the sense of Definition 1) if &~d only

if, for every ~, £, c and d in A,

P(a,b) ::: P(c,d) if and only if u(a) - u(b) ::: u(c) - u(d).,

The technique of building a subjective scale on the basis of frequency

of discriminated differences is common in psychophysics since Fechner [6];

however, the emphasis in psychophysics on relating the subjective (sensation)

scale to a physical continuum (which is not assumed in utility measurement)

tends to obscure the analogy. Discussion of the relation between psycho­

physical scaling and utility measurement will be found in Marschak [10] ,and

Luce [8], [9J.

There is a much used adage in psychophysics which may be taken as

suggesting the principle underlying Definition 1 above: 'equally often

noticed differences are equal [on the sensation scale] unless noticed always

or never' (ascribed by Guilford (7) to Fullerton and Cattell). The final

phrase of this adage enters a caveat which is clearly as pertinent in

utility as in sensation measurement for, in our terms J the caveat concerns

the case of absolute preference. Consider the case where p(6~, 5¢) ~ 1 ~

= p(¢50000., ¢o) and hence, by Definition 1, u(6f) -u(5f) = u(¢5000.) -u(¢O.),

which is intuitively absurd. The difficulty created by the existence of

absolute preferences is thus clear. The approach to a solution which

suggests itself is to add to Definition 1 the caveat 'proVi,ded neHher

P(a,b) nor P(c,d) is equal to 0 or 1.' This would require
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modification of the axiomatic conditions needed to prove the existence of a

utility function. We have not attempted to carry out this modification,

which may well not be trivial.

We now consider what conditions are sufficient for the existence of a

utility function (in the sense of Definition 1). Fortunately in approaching

this question we are able to depend on previous work due to the fact that

any theory which makes essential use of a four place relation comparing

intervals may, with fairly trivial modifications, be reconstftled as a

theory in which the atomic sentences are all of the form tP(a,b) ~ P(c,d)t

as demanded by Definition 1.:1

What constitutes sufficient conditions for the existence of a utility

function depends, in part, on the nature of the set A. We therefore

consider several cases.

(a) The set A contains a known finite number n of alternatives,

In this case it is always possible although perhaps tedious to

necessary andstipulate conditions on the probabilities P(a.,a.)
l J

sufficient for the existence of a utility function. A simple example

(for n= 3) will betreated fully later. In general, it suffices, because

of I.2(a), to consider those probabilities p(a,b) that are ~ 1/2; a given

complete ordering of these n.umbers yields, by Definition 1, a sequence of

n(n-l)/2 inequalities of the form

The modifications may allow for the special properties of probabili­
ties, and for the fact that 'P(a,b) > P(c,d)' compares signed
intervals while the g.uaternary relations taken as primitives in
some theories compare unsigned intervals.
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involving a set of only n distinct ,unknowns viz" the utilities of the n

alternatives ,Whether these inequalities have a solution can be answered

separately for each of the possible [n(n~1)/2nordering8of the

probabilities,

, (b) The set A contains anarbitrary number of alternatives which

are equally spaced, in utility (such that

if a and b are adjacent in utilityJ

for every ~,£' ~ and d in A,

and c and d are adjacent, then

p(a,b) =P(c,d)), The axioms are an obvious modification of the axioms on

page 31 of DaVidson, Suppes and Siegel [3],

(c) It will be convenient to give two definitions. The first ve owe

to Professor Patrick Suppes,

Definition 2, A set A of alternatives is stochastically continuous

if and only if it ,meets the following three conditions for every ~'£' c

and d in A:

(i) there exists a stochastic midpoint between a and £;

(ii) if P(c,d) > F(a,b) > 1/2 then there exists a ~ such that

p(c,g) > 1/2 and P(g,d) ~ P(a,b);

(iii) (Archimedean condition) if P(a,b) > 1/2 then for every

probability 9. such that P(a,b) > q > 1/2 there exists a positive

integer n such that q ~ p(a,cl ) = P(cl ,c2 ) = ". = P(cn,b)> 1/2.

Let P(a,b),~ 1/2; then a
utility ifp(a,b) ~ P(a,c)

and b are said to be adjacent in
for every c with P(a,c) ~ 1/2.
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Definition 3. The quadruple condition is satisfied if and only if

for every ~,E., £ and d in A, if P(a,b)::O: P(c,d) then P(a,c)::O:P(b,d).

It follows immediately from Definition 1 that if 'a utility function

exists on A then the quadruple condition is satisfied in A. However, we

are now in a position to assert more~

Theorem 4. If A is stochastically continuous then ~ utility

function exists if and only if the quadruple condition is satisfied.

A proof of this theorem will not be given here. The general line of

demonstration is as follows: Suppes and Winet have given an axiomatization

of utility based on a primitive concept which compares utility differences

and have proven that if certain axioms on a relation between two pairs of

alternatives hold then utility-differences can be defined,and hence, a

function analogous to a utility function (in the sense of Definition 1)

exists [18],:1 Suppes has shown how to express these axioms in terms of

relations between probabilities [17]; the new axioms on probabilities (let

us call them S) suffice to prove the existence of a utility function in the

sense of Definition 1. The three conditions of Definition 2 are trivially

equivalent to the continuity axioms of S. Finally, we' have been able to

prove that all the further axioms of S hold if the quadruple condition

is satisfied (and provided of course the assumptions specified in I.2(a)

and (b) hold). Hence we know that if the continuity and qua(l.ruple

~ See also Franz ,Alt [1].
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conditions of Definitions 2 and 3 hold, S holds, and there exists a

utility function.

(d) A .result similar to Theorem 4 was obtained by Debreu [4J under a

different definition of stoChastic continuity properties. Debreu has shown

that there exists a utility function on A if the following conditions are

satisfied:

d

(i)

in A

if ~,~, c are in A

such that P(d,a) = q;

and P(b,a) ~ q ~ p(c,a) then there is a

(ii) the quadruple condition holds for A;

(iii) if ~,~, ~ denote variable elements of A, then p(x,z) depends

continuously on p(x,y) and p(y,z).

We turn finally to the interesting case in which:

(e) the set A contains an unknown number (possibly finite) of

alternatives. For this case no axiom system is known, and it has been

conjectured by Scott and Suppes (16] that under certain natural restric­

tions on the form of axioms no axiomatization is possible.

It may be noted that in cases (b), (c), and (d) the axiom systems

adequate to prove the existence of a utility function (in the sense of

Definition 1) are adequate to prove also that any such function is unique

up to a linear transformation (i.e., the existence of cardinal utilities).

We can submit to direct experimental test a set of the kind described

in (a) containing a small, known, finite number of alternatives (let us

call the set of alternatives under test T). If the quadruple condition

is satisfied for every quadruple of alternatives in T, and T is a
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s~ple drawn from a larger set A, we may conclude-"with a degree of

confidence depending among other things on the size of the sample--that

the quadruple condition holds for A, If our hypothesis is that a utility

function on A exists then we need further information about A: for

example we may know the (finite) number of its elements (case (a)), or we

may hold that A is stochastically continuous (cases (c) and (d)),

In the experiment reported here, one hypothesis is that a utility

function exists for the set consisting of all money wagers of a certain

sort, If we can assume that A is stochastically continuous in the

sense (c) or (d) (for example because the money amounts which enter the

wagers are, approximately, continuous variables) and if, on the basis of

our sample T, we have concluded that the quadruple condition holds for

A, then we can conclude, by Theorem 4, that there exists a utility

function on A.

Actually, we did not test for the quadruple condition on our sample T,

Instead, we tested for certain implications of that condition: if T does

not satisfy such an implication, we reject the hypothesis that T satisfies

the quadruple condition. These implications involve triples (not quad­

ruples) of alternatives and will be referred to as stochastic transitivity

properties.

Even for relatively small finite sets of alternatives, the existence

of a utility function i.n the sense of Definition 1 implies more than is

implied by the quadruple condition alone. This fact suggests a view of t,he

relation between experimental evidence and hypothesis which differs

slightly from the one outlined in the preceding paragraphs. For each
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sample T drawn from A we may test all the conditions necessary and

sufficient for the existence of a utility function on T (the general

method is given above in the discussion of case (a)). ·We then consider

confirmation of the existence of a utility function on T as inductive

evidence for the existence of a utility function on A. As will be shown,

the condition of strong stochastic transitivity about to be stated gives

necessary and sufficient conditions for the existence of a utility function

on a set consisting of three alternatives.

5. Definitions of stochastic transitivity. We say that weak

stochastic transitivity holds in A if and only if, for all ~,~ and c

in A,

5.1. if P(a,b) > 1/2 and P(b,c):::: 1/2 then P(a,c):::: 1/2. We

say that strong stochastic transitivity holds in A if and only if, for

all ~,b and c in A,

5.2. if P(a,b):::: 1/2 and P(b,c) > 1/2 then P(a,c):::: max[P(a,b),

P(b,c)].

These terms are due to B. Vail [19]. (We sometimes omit the word

"stochastic.") Clearly 5.2 implies 5.1, but 5.1 does not imply 5.2; both

are implied by the existence of a utility function and are therefore

necessary conditions for the existence of such a function. 5.2 is

e'luivalent to:
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'1then P(a,c) ~ P(b,c).

Consider three fixed alternatives, and label the three relevant

of transitivity condition a~plied to the set consisting of al , a2 , a
3

then be expressed in the following symmetric form:

7·1. Weak transitivity: Pl' P2' P3 not all> 1/2 or < 1/2.

7.2. Strong transitivity:

~l ~ 1/2 if and only if P2 + P3 ::: 1,

P2 > 1/2 if and only if P3 + Pl ::: 1,

P3.~ 1/2 if and only if Pl + P2 ::: 1.

In the experiment reported in this paper, we are concerned with

triples of alternatives. It is therefore interesting to note that if

the set of alternatives consists of exactly three elements, ~'£'~'

can

then the condition of strong stochastic transitivity is not only necessary

for the existence of a utility function (as mentioned at the end of the

preceding sub-section (5)) but also sufficient. For, under strong transi-

tivity, we may assume without loss of generality that P(a,c) ~ P(a,b)

~ P(b,c) ~ 1/2. The corresponding ine~ualities between utilities

Proof: To show that 5.2 implies 6, assume P(a,b) > 1/2 and show
that, by 5.2, p(a,c) > PCb ,c) for each of the three possible cases:
(1) P(b,C) > 1/2; then P(a,c) > max [P(a,b), P(b,c)] > P(b,c);
(2) P(b,c) <: 1/2 < P(a,c); then- P(a,c) > P(b,c);· -
(3) P(b,c) < 1/2,-P(a,c) < 1/2; then P(c,a) > 1/2, hence P(c,b) ~

max [P(c,a), P(a,b)J> P(c,a), P(a,c) > P(b,c). It may be left
to the reader to prove the converse: that 6 implies 5.2.
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(Definition 1) are: u(a) - u(c) ::: u(a) - u(b) ::: u(b) - uCc) ::: O. These

inequalities are satisfied, for example, by the following numbers:

u(a) ~ 1, u(c) ~ 0, u(b) ~ any number between, and including, 0 and 1.

In Table 1, the upper three cards show how we tested strong (and weak)

transitivity experimentally. The subject made choices between the two

columns on a card; the syllables on the left represent events determining

the outcome of a wager. On the three cards there are altogether three

alternatives (wagers) paired in each of the three possible ways. By

testing whether condition 7.2 holds for a sample consisting of a number

of such triples of alternatives, we obtain evidence for or against the

hypothesis that a utility function exists on the set A from which the

sample is drawn.

III. . STOCHASTIC THEORY OF CHOICE BETWEEN SUBJECTIVELY EVEN-CHANCE WAGERS

In this section we deal with a special case of the stochastic theory

of choice, exploiting some possible properties of choices between wagers

of a special sort, namely those created by chance events with a "subjective

probability of one half." The theoretical and experimental importance of

the non-stochastic theory of choice for such wagers was first pointed out

by Ramsey [14]; a formalization of the theory applied to finite sets, and

reports of several experimental applications (including one with stochastic

aspects) are given in Davidson, Suppes and Siegel [3].

·We assumed in Section II that the set A of alternatives might

contain wagers as well as sure outcomes; however, the formal developments

made no use of this assumption.
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Some additional primitive notions are needed.

1. A set X of states of the world. The subsets of X are called

events, denoted by E, F, and forming a set e.
2. If ~,£ are in A and E is in ~ then aEb is the· wager

which consists in getting a if E happens and getting b if E does

not happen.

Definitions 3-6 of Section I are applicable to wagers; for example

when P(aEb, cFd) = 1/2 we say that aEb and cFd are (stochastically)

indifferent. We may presume that in certain cases absolute preference

occurs. In partiCular, if ~l' ~2' £1' ~ are in A and

P(al,bl ) = 1= P(a2,b2 ) then for any event E in c" P(al Ea2 , bl Eb2) - 1.

Definition 3. An event E in C is an even-chance event if and

only if, for every a and b in A,

p(aEb, bEa) = 1/2

If E is an even-chance event, we call aEb an ~-chance wager. It is

obvious that the notion of even-chance involved in this definition is

subjective; it makes no appeal to the objective probability of E. The

justification for our terminology is simple. Suppose a subject prefers a

to b. If he thinks E is more likely to happen than not, he will choose

aEb more often than bEa; if he thinks E less likely to happen than

not, he will choose aEb less often than bEa. Hence he will choose aEb

and bEa equally often if and only if he thinks E is as likely to happen

as not, Le., E has a "subjectively even chance. ":"/

The next three pages (16-18) give, in the form of a footnote, an
alternative reading of the original text (p. 19.1). Since Professor
Marschak has not been able to review the contents of this footnote,
he cannot be held responsible for it.
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Definition 4. The subject is said to be unbiased if and only if, for

any two even-chance events E and F in f and any a and b in A:

p(aEb, aFb) = 1/2 •

The chief concern of this section may be stated by giving a more

restrictive version of Definition 11.1:

Definition 5. A real valued function u is an ~-chance wager

utility function (or a utility function in the ~of Definition 111.5)

on A if and only if:

(a) u is a utility function on A in the sense of Definition 11.1,

( ) (i> , u(aEb) __ u(2a )+u(2b ).b for every a and b in A and E in v

hypothesis to the case of even-chance wagers).

Now we wish to state conditions sufficient for the existence of an

even-chance wager·utility function. To this end we define the following

.condition:

Definition 6. The ~-chance midpoint condition holds in A if and

only if for every a and b in A and E in S ,

P(a, aEb) '" p(aEb, b).

Definition 6 says that for any chance event E in S, aEb is a

stochastic midpoint between a and b (see Definition 1.6). Next we show
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that if the ~uadruple condition (11.3) and the even-chance midpoint

condition hold, then all events in ~ are even-chance events and the

condition of unbiasedness (Definition 4) obtains. First we prove an

elementary lemma which depends only on the ~uadruple condition.

LelllIlla 6.l. For all ~,~, ~ and d in A, if P(a,b) = P(b,d)

and P(a,c) = P(c,d) then P(b,c) = 1/2.

Proof: Suppose Lemma 6.1 were false, that is, its antecedent true

and its conse~uent false. Then P(b,c) of 1/2, and hence, by the ~uadruple

condition,

(1) P(b,d) of P(c,d).

Then either P(b,d) > P(c,d) or P(c,d) > P(b,d). Assume, first, that

P(b,d) > P(c,d). Then, by the ~uadruple condition, we have

(2) P(b,c) > 1/2.

But from our assumption and the antecedent of the lemma, we have

P(a,b) > P(a,c) and hence, by the ~uadruple condition,

(3) 1/2> P(b,c),

which contradicts (2). Assume, second, that P(c,d) > P(b,d). Then, by the

~uadruple condition, we have,

(4) P(c,b) > 1/2.

But from our assumption and the antecedent of the 1emm~, we have

P(a,c) > P(a,b) and hence,

(5) 1/2> P(c,b),
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which contradicts (4). Therefore if the antecedent of the lemma is true,

(1) is false, which proves the lemma .
•

Theorem 6.2. If the quadruple and even-charce midpoint conditions--- -----
hold in A, then every event E in ~ is an even-chance event.

Proof: For every E in ~ , and a and b in A,

((1) and quadruple condition)

(even-chance midpoint condition)

(even-chance midpoint condition)

(1) PCb, bEa) '" P(bEa, a)

(2) Pea, bEa) '" P(bEa, b)

(3) Pea, aEb) '" p(aEb, b)

(4) p(aEb, bEa) '" 1/2 ((2), (3) and Lemma 6.1) Q.E.D.

Theorem 6.3. If the quadruple and even-chance midpoint conditions

h_O_l_d_ 1_'n_ A,

Proof:

then the sub,ject is unbiased.

By the even-chance midpoint condition we have, for any

aandbinAandEandFin e.
(1) Pea, aEb) = p(aEb , b) and

(2 ) Pea, aFb) = P(aFb, b) .

Hence, using .Lemma 6.1,

(3) p(aEb, aFb) = 1/2. Q.E.D.

Since the even-chance midpoint condition limits the wagers under

consideration to even-chance wagers, we may, in what follows, simply write

'ab I for laEb. I (End of footnote)
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The subject is s",id to be unbi",sed if 13.nd only if, for ",ny

two even~ch13.nce events E and· F and 13.ny a .13.nd b in A: p( aEb, a;Fb) = 1/2.

It is obvious this condition is s",tisfied 13.nd there exists a utility

function u on for ",nytwo eveIl-oh13.noe events E Md F and "'IlY

a 13.nd b in A, U{a.Eb)=u(1;>E",) =U(a;Fb)""u(bFa) , This justifies writing

simply lab' for . where E is My even-chi3.Ilce event; since we explic-

i tly consider

form",lism.

sylrlbols for ch13.nce events need not enter our

The chief opncern of this section m",y be st",ted by giving", more

restrictive version of Definition 11.1:

Definition 5. A re",l v",lued function u is 13.n even-chance w"'ger utility

function (or a utility function in the sense of Definition 111.5) on· A

if and only if:

(",)u is a utility. function on A in the sense of Definition 11.1,

(b) foreyery a andb in A Md every even-chMce event E,

u(a.Eb) _u.(a) +U:(1:'»
- 2 ·2

3(",) Md (b) together express in stoch",stic form the usu",l hypothesis th",t '"

subject prefers the wager with the higher expected utility (applying this

hypothei:listo the case .of even-chance wagers) •.Clearly these conditions imply

has the same value~ for all even-chMce events E in
'J'

Md that the subject is unbiased.

Now wew'ish to <st",t" cOIlditioIlS sufficient for the existence of M eVen-

chance wager utilityfWlction. To this end we define the following condition:

Definition 6 The even-chMc" midpoint condition holds inA if and only

if the SUbject; is illlbiasedMd,for every ~ Md b in A, P(""ab)= P(ab,b).

(Definition 6 s",ys ab is a stochastic midpoint between", 13.nd £; see Def.I.6.)
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w~ may now state a theor~m analogous to 11.4:

Theorem 7. If A is stochastically continuous then an ~-chance

wager utility function on A exists if and only if the quadruple condition

(11-3) and the ~-chance midpoint condition hold in A.

Proof: Suppose A is stochastically continuous. Then a function u

on A such that P(a,b) ~ P(c,d) if and only if u(a) - u(b) ~ u(c) - u(d)

exists if and only if the quadruple condition holds (Theorem 11.4). Hence

the quadruple condition is a necessary condition for the existence of an

even-chance wager utility function. And if the quadruple condition is

satisfied then a utility function in the sense of Definition 11.1 exists;

hence:

P(a,ab) = P(ab,b) if and only if u(a) - u(ab) = u(ab) - u(b),

that is,

u(ab) = u(a) + u(b)
2 2

Therefore the quadruple and even-chance midpoint conditions together

provide necessary and sufficient conditions that a utility function in the

sense of Definition 111.3 exist, provided A is stochastically continuous.

An alternative statement of sufficient conditions may now be

considered. We define:

Definition 8. The even-chance quadruple condition holds in A if

and only if, for every ./':' E., c and d in A:

P(a,b) > P(c,d) if and only if P(a,bc) ~ p(bc,d);

and assert:
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Theorem 9. If' A is sto~hasti"ally ~ontinuous then ~ utility

f'un~tion on A in the sense of' Def'inition 111.5 exists if' and only if'

the ~-~han~e quadruple ~ondition holds in 'VA.

We now estab,lish an interesting ~onsequen~e ,of' the even-~han~e

qua~ruple ~ondition;

Theorem 10. If' the ~-~han~e quadruple ~ondition holds in A then

f'or all ~, £) ~ and d in A

P(a,b) > P(~,d) if' and only if' P(ad,b~)~ 1/2.

We establish Theorem 10 by noting that if' the even-~han~e quadruple

~ondition holds, then P{a,b) > P{~,d) is equivalent 'to P(a,b~) ~ P{b~,d),

whi~h in turn is equivalent to P(ad,b~) ~ P(b~ ,ad) •

~ Proof'; It f'ollows dire~tly f'rom Def'inition 111.5 that if' a utility
f'un~tion in the sense .of' that def'inition exists the even-~han~e

quadruple ~ondition holds. ,We prove the suf'f'i~ien~y of' the even­
~han~e quadruple ~ondition by showing that it implies both the
even-~han~e midpoint ~onditionand the quadruple ~ondition, and then
applying Theorem 7. By the even~~han~e ql1a4ruple ~ondition we have
(replacing '£' by '~', and '£' and '~' by '£'):

(1) P(a,a) = P(b,b) if' and only if' P(a,ab) = P(ab,b).

The right side of' (1) (i.e. the even-~han~e midpoint ~ondition) is
true sin~e the lef't side is true by I.2(b). Using the even-~han~e

quadruple ~pndition again and assumption L2(a) the f'ollowing steps
lead to the quadruple ~ondition:

(g) P(a,b) ~ P(~,d) if' and only if' P(d,b~) ~ P(b~,a)

{3) P(d,b~) ~ P(b~,a) if' and only if' P(a,~)~ P(b,d).
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We have seen (in the proof of Theorem 9) that the even-chance

quadruple condition implies the quadruple as well as the even-chance

midpoint condition. On the other hand, these two conditions in conjunction

do not imply the even-chance quadruple condition since they do not imply

its consequence stated in the conclusion of Theorem 10.:; Theorem 10

thus states a strong principle. It interlocks, in effect, the utility

scales obtained by comparing rlifferences in utility by two separate methods.

II. Definition of stochastic transitivity for utility intervals. We

say that weak stochastic transitivity for utility intervals holds in A

if and only if, for ~'~'~'~' e and f in A,

ILL if P(bf,de):::: 1/2 and P(ae,cf):::: 1/2 then P(ab,cd) > 1/2.

We say that strong stochastic transitivity for utility intervals holds in

A if and only if, for all ~'~' ~,d, e and f in A,

11.2. P(bf,de):::: 1/2 if and only if P(ab,cd):::: P(ae,cf).

:; To show this, suffice it to,co nsider the inequalities:

P(a,b) > P.(c,d) > P(bc,ad) > 1/2 > P(ad,bc) > P(d,c) > P(b,a),

which contradict the conclusion of Theorem 10. Yet they are
consistent with the conjunction of the quadruple and the evencchance
midpoint condition, for the only relations to which those conditions
in conjunction carr apply in the present case are (apart from trivial
repetitions): P(a,b) > P(ad,bc) and P(c,d) > P(bc,ad). The former
relation yields P(a,ad) > P(b,bc) and hence P(ad,d) > P(bc,c),
p( ad,bc) > P(d,c), consistent with the assumed chain of inequalities;
the latter relation yields, by similar steps, P(bc,ad) > P(b,a),
also consistent with the assumed inequalities.
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The analogy between the .transitivity conditions for alternatives (11.5)

and transitiVity conditions for intervals (111.11) may be brought out as

follows. If a utility function in the sense of Definition 111.5 exists

then 11.1 is .equivalent to the statement (holding identically for any six

numbers) :

if' FU(b) + u(f) ] - [u(d) + u(e) ] >0 and

(u(a) + u(e) ] - [u(c) + u(f)] > 0 then

(u(a) + u(b) 1 - (u(c) + u(d)] > 0 ,

and hence to:

12.1. if u(o) - 'u(d) ~ u(e) - u(f) and u(e) - u(f) c u(c) - u(a)

then u(b) - u(d) ~ u(c) - u(a) .

Similarly, 11.2 is equivalent to:

12.2. u(b) - u(q) ~ u( e) - u( f) if' and only if'

[u(b) - u(d)]- [u(c) - u(a)] ~ [u(e) - U(f)] - (u(c) - u(a)].

Now let the length of the utility interval u(b) - u(d) = I, u(e) - u(f) = J

and u(c) - u(a) = K. Then 12.1 and 12.2 become similar in form to

11.5.1 and 11.6:

13.1- if' I> J and J > K then I > K

13.2. I> J if and only if' 1-K > J-K.

Thus 11.1 and 11.2 may be interpreted as stating .conditions on utility

intervals analogous to the conditions stated by 11.5.1 and 5.2 for

alternatives (whether or not these alternatives happen to be wagers).
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However, it should be emphasized that in testing the transitivity of

intervals we must ,make use of wagers; while we did use wagers in testing

the transitivity of alternatives, this is not essential to the theory.

From 12.1 and 12.2 it is clear that the transitivity conditions for

utility intervals are necessary for

in the sense of Definition 111.5.:1

the existence of a utility function

To obtain evidence whether such a

function exists for a limited set of outcomes consisting of winning and

losing small amounts of money, we tested certain implications of 11.1 and

11.2 for sextuples of outcomes which may be regarded as samples from the

total set of outcomes. Let .us designate six specific money outcomes

aI' a2 , a
3

, a4' a
5

, a6 arranged in ascending order by monetary value.

For reasons given in the next section we considered the following

probabilities only:

For these three Probabilities the implications of 11.1 and 11.2 are just:

15.1. Weak transitivity of utility interv81s:
---;

*/J It was conjectured by the authors that if the set of alternatives is
stochastically continuous then the conjunction of weak transitivity
of alternatives and of weak transitivity of intervals is necessary
and sufficient for the existence of a utility function in the sense
of Definition 111.5. While the manuscript was in preparation the
conjecture was proved by G. Debreu using his definition of stochastic
continuity - .seeSection II case (d) above.
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15·2. Strong transitivity of utility intervals:-

Pl ::: 1/2 if and only if P2 + P3 < 1,-

P2 > 1/2 if and only if P3
+ Pl < 1,-

P3
> 1/2 if and only if Pl + P2 <1--

It will be noted that conditions 15.1 and 15.2 are identical with conditions

II.. 7.1 and 11.7.2 where, of course, the three relevant probabilities are

differently defined. If a utility function for the six outcomes

a
l

, ... , a6 exists, 15·1 and 15.2 will be satisfied; but the converse is

not in general t~e. The existence of a utility function in the sense of

Definition 111.5 implies, even for six outcomes, more than is implied by

the transitivity of intervals condition (for example, 111.10 is implied by

the existence of a utility function but not by the transitivity of intervals

condition); and the transitivity of intervals condition alone implies more,

for six outcomes, than is tested by checking the relations given in 15.1

and 15.2 with Pl' P2' P3 as defined above.

The second line of specimen cards in Table 1 illustrates the method

used in testing 11.1 and 11.2. Before the three pairs of wagers on these

cards were offered the subject it was verified that the chance events

underlying the designed money-wagers were even-chance events in the sense
*/

of Definition 3.J This justified assuming that all wagers on the cards

were (for the given subject) even-chance wagers; and therefore it could be

tentatively assumed that whenever the subject chose a wager (a column of a

card) he could be interpreted as comparing two utility intervals,

~ Amore precise statement of the .procedure used will be given in the
next section.
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represented by the rows of the card. On the three cards illustrated there

are three pairs of identical rows; they correspond to the intervals I, J

and K in 13.1 and 13.2. (From 12.1 and 12.2 it is clear that interchange

of rows or of columns in a given card does not matter nor the interchange

of alternatives in one column.)

IV. EXPERIMENTAL DESIGN

The experiment to be described was designed to test the plausibility

of the hypothesis that (for given indiViduals) there exists a utility

function in the sense of Definition 111.5 (and therefore in the sense of

Definition 11.1), defined over a set of alternatives consisting of winning

and losing small amounts of money and of even-chance wagers constructed

from the basic alternatives. The individuals were 17 students from an

elementary logic class at Stanford University. The general hypothesis was

tested by testing certain of its conse~uences: stochastic transitivity

(weak and strong) of alternatives as applied to triples of alternatives

(interpreted here as wagers); and stochastic transitivity (weak and strong)

of utility intervals as applied to sextuples of alternatives.

The obvious way of testing a stochastic theory of choice is to estimate

probabilities of choice from fre~uencies of choice observed when the subject

is repeatedly offered the same alternatives. This method, common from

psychophysical experiments, has been .used with apparent success by a number

of workers in decision theory. These workers (Who include Mosteller and

Nogee, Ward Edwards and Papandreou) were, of course, aware of the memory

effect, and used various techni~ues in the attempt to cope with it. In a

I
·f,

I
i
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pilot study for the present experiment we found that with wagers of the

sort we wished to use the subject almost always makes .the same choice when

offered the same pair of alternatives; thus we would be forced to estimate

almost every probapility as 0 or 1. The wagers between which the subjects

had to choose had the same actuarial value; the wagers could therefore be

assumed to be close in subjective utility. Remarks by the subjects led to

the suspicion that the cause of the unforeseen consistency was the subject's

ability to remember his previous choices (although various masking

procedures were attempted such as reversing the order in which the wagers

in a pair were offered, and inserting other offers between repetitions of

the :i,dentical pair of wagers). In psychophysical experiments memory cannot

have this effect since the subject is given no way of identifying the

repetition of a stimulus.

Therefore in .order to avoid the effect ·of memory, the same pair of

wagers was never offered twice to a .subject. The method. used for testing

our hypothesis unq.er this restriction is explained in the next sectJon.

Each subject was asked to make 319 choices; a choice consisted in a

verbal response ('A' or 'B') to a stimulus-card of the kind illustrated in

Table 1. In 107 cases selected (with certain limitations to be mentioned

later) at random, and unknown in advance to the subject, the response of

the sUbject was followed by playing off the wager selected, and the subject

lost or won the appropriate amount of money.

The 319 stimulus-cards were designed as follows. EverY card displayed

four figures (posit:i,ve or negative) representing a possible outcome consist­

ing .of losing or winning the amount of money shown. On the left were two

nonsense syllables(WUH andXEQ,; ZOJ and ZEJ; Q,UJ and Q,UG) which stood for
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chance events. The events were created by the subject tossing a die with

one nonsense syllable on three faces and another nonsense syllable on the

other three faces. In an effort to offset recency and memory effects three

different dice were used. The two right hand columns, marked 'A' and 'B'

represent the wagers between which the subject was to choose.

For testing hypotheses concerning the existence of an even-chance

wager utility function it was necessary to ascertain whether the events

created by the three dice just described were even-chance events. In

practice this was tested indirectly by assuming, for any money amounts

m and n (in cents):

P(mEn, nEm) = 1/2 if and only if p(mEn, n-l E m) > 1/2 and

P(mEn, n+1E m) < 1/2.

Previous experiments had shown that, given this modified interpretation,

subjects generally accept the nonsense syllable dice as generating even­

chance events; therefore we tested each die only a few times with each

subject (see Davidson, Suppes and Siegel [3), p. 56 and Table 1, p. 57).

In all, 12 stimulus-cards were used to test the dice; three additional

cards were added to this group to familiarize the subject with other sorts

of choice.

The remaining cards were intended to test the transitivity of

alternatives and of intervals (11.5 and 111.11). Thirty-eight se~uences

of seven money amounts were chosen such that the money amounts, in the

light of previous experiments (Mosteller and Nogee; Davidson, Suppes and

Siegel), would be approximately evenly spaced in utility for most subjects.

Table 2 gives the first 19 se~uences; the other 19 se~uences were produced



from the first by reversing the signs (thus wins become losses and vice

versa). This symmetxy provides a simple guarantee that the actuarial value

of the complete set of wagers is zero; why this is desirable will be

explained below. ·Eight cards were made for each 7-tuple of money amounts,

yielding 8x38 = 304 cards in all. Using the letters at the top of Table 2,

the eight .cards showed the following patterns:

1 2 3 4 5 6 7 8

a .b c d ab b c a c d e b c b d

d c f e f e e d f d g b g f g e

It,~ll be observed that the triads 3, 4, 5 and 2, 7, 8 each contain

just three alternatives (wagers, represented as columns) and thus may be

used to test the transitivity of alternatives. Triads 1, 2, 3 and

4, 6, 7 each compare, in effect, three intervals (represented by rows)

and thus may be used to test the transitivity of intervals. Because of

this overlap between triples we have achieved some economy in the number

of observations: the total of 304 cards yields 76 triples designed to test

the transitivity of alternatives and 76 triples designed to test the

transitivity of intervals.

The assignment of one of the three dice to a specific card was random.

Because certain wagers (not cards) were repeated once, the column (A orB)

on which a wager appeared was randomized; the row (top or bottom) assigned

to an outcome in a wager was also randomized. Finally, the order in which

the cards appeared was randomized, except that the fifteen cards used for

learning and to test that the dice created even-chance events preceded all
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others, and all three cards from a given triple appeared during the same

session ;,

We may now make explicit two rules employed in limiting .the offers

appearing on the stimulus cards. No sure thing alternatives were. allO',ed

on the ground that these might distort the results should there exist a

specific utility or disutility of gambling. The second rule is intended to

eliminate cases of absolute preference. In any given triple of cards there

are six distinct outcomes. Let us assign the numbers 1,2, ... , 6 to the

six outcomes in order of monetary value; the number assigned an outcome

denotes its rank. The rule is this: on any given card, the Sum of the

ranks of the two outcomes in one wager must be equal to the sum of the ranks

of the two outcomes in the other wager (see 111.14). Since the outcomes

are chosen to be approximately evenly spaced in utility, the rule is

designed to insure that two wagers which are compared shall not differ too

strongly in expected utility. In application, no two wagers on one card

differed by more than ~ cents in actuarial value. When the transitivity

of intervals is tested for six outcomes the two rules just mentioned limit

the pairs of wagers to be compar-ed to exactly three.

Of the 17 subjects 6 were women and 11 were men. Subjects were tested

individually. Each subject came to three sessions, spaced a few days

apart; two sessions were never on the same day for a given subject, nor

.more than five days apart. A session lasted between 35 and 55 minutes.

SUbjects were asked not to discuss the experiment during the testing; none

of them had any detailed knowledge of game theory or decision theory.



At the beginping of the first session a subject was shown the three

nonsense syllable dice and the game he was to play was explained. .The

subject was given ¢2.00 credit (in chips) and told that this was .his stake

for the three sessions. At the end of the three sessions, his chips would

be redeemed in cash; if he had won, he would receive ¢2.00 plus his

winnings; losses would come out of the ¢2.00; greater losses would have to

be paid out of his own pocket.

The first 15 stimulus cards have been described; of these, 12 tested

whether the subject accepted the dice as creating.even"chance events, and

three were for learning purposes. In effect, every subject did accept the

dice as 'fair. I All of the first 15 cards were played off: after the

subject gave his response by choosing wager A or B, he put the

indicated die in a leather cup, shook, and rolled. Depending on the

outcome, the experimenter then collected from or paid out to the subject

the appropriate number of chips. The rest of the first session consisted

in responses to 88 more stimulus cards testing the two sorts of transi­

tivity.Of these, 25 choices.were played off; the subject did not, of

course, know whether a card would be played until after he had mad.e his

choice. The cumulative expected win for a subject who always chose the

wager with the higher actuarial value was +441 for the 25 cards which were

playeo. off. J3ubjects were urged to take as long as they wished to make a

decision.

During the second session the subject was asked to make 112 decisions;

of these, 36 were played off. The cumulative expected win for the actuarial

chooser was +391.
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The last session called for 104 decisions of which 31 with an expected

win of +55¢ were played off. During this last session the experimenter

could playoff additional wagers to increase the winnings of an unlucky

subject.

As mentioned above, the actuarial value of the total of all wagers

offered was zero. Since the wagers between which a subject was to choose

seldom had exactly the same actuarial value, a consistent "actuarial

chooser" could have expected to win if every choice had been played off.

The cards chosen for playing had a small positive actuarial value for the

"random chooser" and a higher actuarial value for the actuarial chooser.

The hope was that the average subject with average luck would slowly

increase the sum at his disposal; its size would not vary enough to

influence choices substantially. It may be doubted whether this hope was

entirely realized. In any case for many subjects, the sum at their

disposal changed fairly radically during the play, and verbal comments by

subjects suggested that this influenced choices. The highest total win

(for all three sessions) was ¢4,87 (including the original ¢2.00 stake);

the least fortunate subject received a few cents less than ¢2.00. However

several subjects had their winnings 'artificially' increased during the

last session by the experimenter naming for playoff certain cards on which

both wagers had high positive actuarial value; unknown to the subject, it

had been decided in advance that no subject would average less than ¢1.00

an hour for his time.
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V. STATISTICAL DECISION RULES

Transitivity regions. Consider the three related probabilities Pl'

P2' P3 as defined for the statement of conditions 11·7,1 and 11.7.2, or

as defined for the statement of conditions 111.15.1 and 111.15.2. Let us

denote by the ordered triple of probabilities

so defined. ip is a point in the unit cube U, since each component of p

is between 0 and 1.

'We now define two sub-regions of U:

. Region W:

transitivity) •

Region S:

tra,nsitivity ) .

i
p

i
p

obeys condition 11.7.1 (or II1.15.1) (region of weak

obeys condition 11.7.2 (or 111,15.2) (region of strong

Obviously region S is included in region W. The hypothesis pairs to be

tested may be stated:

!IyIJothesis H : For all i,
i is in W;p

w

Hypothesis HO
: There exists i such that i is in U-W;an p

w

!IyIJothesis H For all i,
i is in S;: p

s

Hypothesis HO . There exists i such that i
is in U-S.an ps'

Note that each of the hypotheses has two empirical interpretations; one

concerns stochastic transitivity of alternatives, the other stochastic

transitivity of utility intervals. We need not distinguish between the

two interpretations in discussing the method of statistical testing.
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from observed

Since a given choice was presented to a subject only once, it was

i
pimpossible to estimate the probability triples

frequencies. Corresponding to a given i
P we made one observation

consisting of the three responses of a sUbject to a triple of related

stimulus cards. Suppose, for the sake of simplicity of exposition, that

the pairs of wagers on a related triple of stimulus cards are arranged in

in Sections II andthe order suggested by the definitions of Pl' P2' P3

III (this has been done for the triples of cards shown in Table 1). Then

if the subject chooses column A on the first card, there is greater

likelihood that Pl > 1/2 than that Pl < 1/2; if he chooses column A

on the third card, there is greater likelihood that P
3

> 1/2 than that

P
3

< 1/2. An observation is an ordered triple of responses; there are

just eight possible observations:

°1 =; < A,A,A > °5
=; < B,A,A >

°2 =; < A,A,B > °6 =; < B,A,B >

°3 =; < A,B,A> °7
=; < B,B,A >

°4 =; < A,B,B > Os =; < B,B,B >

In a non-stochastic theory observations 01 and Os would be cases

of intransitivity. In a stochastic theory they merely strengthen the

evidence in ~avor of (stochastic) intransitivity. To avoid confusion we

call such observations cyclical because, e.g., < A,A,A > means that a

certain wager a was chosen in preference'to b'-' b to c·-' and c in

preference to ~, thus forming a cycle.



In its strict fo:nnulation, our problem is analogous to the following

simpler (one- instead of three-dimensional) problem: "Test the hypothesis

that each coin made by a ~ertain coin-making machine has a bias, not

necessarily an equally strong one for all coins, in favor of falling heads,

You are permitted to take a finite number of coins and to toss each coin

just once 0 " Each coin of this example corresponds to a triple of choices

from three pairs of our wagers. The parameter-space is, respectively, the

unit-interval (0,1) or the unit~cube U. The interval (1/2, 1) which

contains the probability of a biased coin falling heads corresponds to our

transitivity region W (or S) which contains all probability-triples if the

subject satisfies the transitivity condition. Should this formulation be
(

accepted, then, out of the infinite set of potential observations (coins,

triples of choices) it would suffice for a single one to be outside of a

specified region (the bias-interval for coins, the transi.tivity region for

response-triples), in order to rule out the hypothesis in question. But

such a fact cannot be ascertained empirically, from a finite number of

observations. The problem becomes accessible to empirical test if it is

reformulated as follows: "A coin-making illachine is characterized by an

unknown probability distribution of the chance variable p (probability of

a coin falling heads); one is permitted to toss coins, each only once, in

order to get evidence about thed.istribution of p." The chance variable p

correspond.s, in the theory of stochastic choice, to the triple:

< Pl' P2' P3 > defined above.

For example, one might test the following hypothesis about the

distribution of p: the proport.ion of Goins (or of triples of wagers)
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whose p falls into a specified region is at least 9%. This approach has

been used in a later study, by H, D. Block and J, Marschak [2]; ,nth

regions like S, this statistical problem is rather complicated. In the

present study, we chose a simpler though more arbitrary approach by adding

the following assumption: p is uniformly distributed about an unknown

region which is either the whole space of possible p's (the unit cube, in

our case) or a specified region (such as W or .S). We have thus two

pairs of alternative hypotheses:

[::'
i is distributed uniformly W, and Prob(pi

€W) 1P over ~

i is distributed uniformly U, and Prob(pi €U) 1p over ~

G:'
i is distributed uniformly S, and Prob(pi

€ S) 1P over ~

i is distributed uniformly over U, and Prob(pi € U) 1.P ~

It turns out that for testing the statistically reformulated

hypotheses, all that matters (the "sufficient statistic") is the number of

cyclical observations. Computations yield the following probabilities of

a cyClical observation:

Probability of ~ Cyclical Observation

If H is true 20
25.00 %

0 80 =

If H is true 15 18.75 %w 80 =

If H is true 11
13·75 %s 80 =
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The reasoning leading to the first figure (2':f/o) is obvious: if
i

p is

r

distributed uniformly over the unit cube, each of the eight possible

observations 01' •.• , 08 is e~ui~probable. Since two of these are

cyclical, the probability that a given observation is

true is 1/4. The other two figures (15/80 and 11/80)

cyclical if H
o

were obtained::!

is

by

integrating over the specified region (W or S, respectively) the

expression

The decision rule used was this (we state it for H .
w' that for Hs

is analogous): Accept H if the number
w

r of cyclical observations is

less than c, where c (a number obtainable from tables of binomial

distribution) is such that Frob (1' < c, when Ho
is true) ~ Frob (r ~ c,

when H
w

is true). The two probabilities just written are) respectively,

that of committing the error of accepting H when
w

Ho
is true, and that

of committing the error of accepting H
o

when H is true.
w

By making

them equal, we make the larger of' the two error probabilities am.i.nimum.

The significance level of test is equal to both of them. If instead of

this "minimax" principle that takes into account both kinds of error we had

followed the custom of merely "testing the null hypothesis," the decision

could have been made, given our number of observations, with a much lower

V With the help of Karol Valpreda Walsh and Robert C. Mercer, which we
gratefully ac~nowledge.
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probabilii;y of errors of Type I (called "significance level"). The latter

would then have been defined as the probability of rejecting H
o

when it is

true. However, the nature of the problem forces us to treat the null

hypothesis and its alternative symmetrically.

In the present experiment we made on each subject a total of 76

observations for each hypothesis; 26 observations for each hypothesis were

made during the last session. Applying our computations and decision rule

to these figures we obtain:

Number of Observations

n = 76 (all sessions) n = 26 (Session III)

Decis.ion rules

Accept H if r is less than: 17 6
w

Significance level: 24% 35%

Accept H if r is less than: 15 5s

Significance level: 100/0 23%

One obtains, of course, much lower significance levels if one is

permitted to regard the re~ponses of all subjects as belonging to the same

statistical population, thus increasing the sample size by the factor of

compute the decision rules at which the probabilities of errors of both

kinds are equated; these rules are, for samples of this magnitude: reject

H if and only if the proportion of cyclical observations is larger than
w

---------------- --- -----(

21.7 percent; reject Hs
if and only if this proportion is larger than

18.7 percent (compare these figures with the last line of Table 3). The
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significance levels are as follows: for Session III, .055 for H
w

and

.001 for H .
s' for the total of all sessions, .003 for Hw

and

negligible for H •
s

Finally, we observe that if the proportion of cyclical observations

falls very much below the probability indicated above for weak or strong

transitivity, we shall presume that the assumption of uniform distribution

over the (weak or strong) transitivity region is to be corrected: we shall

have to assign lower weights to those points of the region that lie near

its boundaries other than the facets of the unit cube.

more

As another and possibly preferable way of exploiting the information

fully, Herman Chernoff and Roy Radne:J suggested computing the

likelihood ratio for each pair of hypotheses and each possible set of

observations. Let P (r,n) be the probability that, out of n responses,
o

is true. With a corresponding notationexactly r are cyclical if Ho

for the cases when H or H are true, we can use the ratiosw s

L (r,n) ~P (r,n)/P (r,n) and L (rjn) ~ P (r,n)/P (r,n)
w· w 0 s· 80

to convey the confidence that one may attach,. on the basis of observations,

to the hypothesis H or H,w s each against the hypothesis H .
o

Using the

binomial distribution formulas, one derives from the probabilities of

cyclical observations: (20/80 for H,
o 15/80 for H and 11/80

w

for H), the two likelihood ratioss

V In an oral communication
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Thesenurnbers are tabulated below, for n = 76 and n= 26 (wi.th r

ranging from 0 to, respectively, 17 and 7), and can be used to

interpret, subject by subject, the results shown on Table 3 for the total

of observations and for Session III.:;

Likelihood ratios (approximate)

No. of cyclical H against H H against Hw a s 0

responses:

r= n = 76 n '" 26 n = 76 n=26

0 430 8.0 40 000 38

1 300 5·5 20 000 18

2 210 3.8 9 300 8.7

3 140 2·7 4 500 4.1

4 100 1.8 2 100 2.0

5 69 1·3 1 000 0.9

6 49 0·9 490 0.5

7 33 0.6 240 0 ..2

8 23 0.4 110 0.1

9 16 54
10 11 26

11 7 •. 6 12

12 5·3 5·9

13 3.6 2.8

14 2.5 1.3

15 1.7 0.6

16 1.2 0·3

17 0 ..8 0.1

:; Again, if we regard all subjects as belonging to the same statistical
population, the likelihood ratios are naturally much higher: they
are of the order of many thousands, for both H and H, even if
the pJ;'oportion ofcy.clical observations is as hIgh as 15spe:rocent.
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VI. RESULTS OF EXPERIMENT

Table 3 summarizes the main experimental f'indings. For a large

majority of' subjects, the number of' cyclical responses f'alls f'ar below the

expected frequency under strong transitivity (both of' alternati~es and of'

intervals). Under the null hypothesis, one out of four triples could, on

the average, be expected to be cyclical; this would result in 38 cyclical

responses for the total of' 152 triples, or 19 for the 76 triples which

tested each of the two varieties of transitivity. The highest total number

of' cyclical responses f'or any subject was 28 (Subject J-), while Subject F

had the highest number of' cyclical responses (17) for a set .of' 76 triples.

The expected numbers of' cyclical responses in 76 triples f'or Hw
and Hs

are 14.25 and 10.45 respectively. Two subjects (J and N) in the case of' t..Qe

transitivity of' alternatives, and two subjects (C and F) in the case of' the

transitivity of intervals, exceeded the number of' cyclical responses

expected on the assumption that Hw is true. The average number of

cyclical responses for all subjects on the 76 triples testing transitivity

_of alternatives is 10.4 while the average on the triples testing transi~

tivity of intervals is 10.7. These figures are close to the prediction of

10.45 cyclical responses if strong transitivity holds.

The last line of Table 3 should be related to what was said in

Section 5 about using the responses of all subjects as a sample from the

same population. On this basis (and uniier the assumptions of Section 5

regarding a priori distribution) weak as well as strong transitivity, for

both alternatives and intervals, should be accepted at a quite low
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(i.e., strict) significance level~~

Table 4 applies the Decision Rules of Section V to each subject (using

the results .from all sessions). For all subjects, BYpothesis Hw of weak

transitivity had to be accepted with respect both to alternatives and to

intervals (though at.a very modest, i.e., high, significance level: 24%).

For all but two subjects, strong transitivity had to be accepted (at a

significance level of 10%), but the two subjects were not the same for

alternatives and for intervals. The correlation of .49 between behavior

with respect to alternatives and behavior with respect to intervals is just

significant at the 5% level for 17 observation-pairs; however, it should not

be judged significant at that level if one considers the fact that some of

the data were used in two ways as described in Section IV.

An interesting feature of the data displayed in Table 3 is the change

in the proportion of cyclical observations from session to session. While

not always evident for individual subjects, when the results for all

subjects are averaged there is a systematic decrease in the percentage of

cyclical observations from session to session both for alternatives and for

intervals. During the first session the overall proportion of cycles is

13.4%; during the second session 10.5%; during the third 7.4%.

*/-l If-weak transitivity is accepted for both alternatives and intervals
and if the set of even-chance money-wagers can be regarded as
stochastically continuous then--as remarked in a footnote in
Sec. III--a utility function in the sense of Definition 111.5
exists. The size of the sample used for the joint test of transi­
tivity of alternatives and of intervals is somewhat reduced by the
overlapping between the sets of cards used for these two tests
separately (see Sec. IV); this raises the significance level somewhat.
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For the third session, the Decision Rule indicates that the null

hypothesis must be accepted for·one subject (N) for transitivity of

alternatives, and for one subject (J) for transitivity of intervals. There

is also one subject in each category (Subjects J and C respectively) for

whom weak but not strong transitivity must be accepted. In every other case

the hypothesis of strong transitivity may be accepted.

During the three sessions there was an increase in the correlation

between performance with respect to alternatives and performance with

respect to intervals, as follows:

Session

Correlation

I

.00

II

.~

III Total

.49

The change from I to II is significant at the ~ level.

VII. DISCUSSION

Assuming a utility function of money uni~ue up to a linear trans­

formation exists for a subject, it is possible to make some rough inferences

from the data concerning the shape of the utility cUrve (a curve which plots

utility against the money amount of the basic alternatives). Table 5

classifies the responses of each subject to the 304 cards used to test

transitivity. On 249 cards the two wagers had different actuarial values;

the second and fifth columns in Table 5 show in how many cases the subject

chose the wager with the higher actuarial value ('actuarial responses') and

in how many cases the subject chose the wager with the lower.actuarial

value ('counter-actuarial responses'). On every card, one wager involved



both the highest and the lowest money amount, while the other wager involved

outcomes of intermediate money value; see 111.14. Responses may therefore

be classified according .as the subjects chose the wager with the greater or

the lesser dispersion (the dispersion of an even-chance wager is the

difference in money value between the two outcomes). The second and third

columns of figures in Table 5 show how often the counter-actuarial choices

favored high or low dispersion. 55 cards showed wagers of e~ual actuarial

value; these responses are classified to indicate whether the high or the

low dispersion wager was chosen. In evaluating the figures in Table 5 it is

necessary to know that of the 249 cards with wagers of une~ual actuarial

value, 124 paired the higher actuarial value with the higher dispersion and

125 paired the higher actuarial value with the lower dispersion.

A subject for whom utility was linear in money and with absolute

preferences between all pairs of wagers offered would always choose the·

wager with the higher actuarial value. There is no subject who did this.

Subjects A and 0 come closest with 22 and 33 cOlLnter-actuarial answers.

Both these subjects show some preference for low dispersion when they depart

from the actuarial choice •

.We may call a subject conservative who, when departing from the

actuarial answer, more often than not chose the wager with the lower

dispersion, for such a subject would, from an insurance point of view, be

paying for the privilege of taking. the smaller ri sk • In the same way we

may call a subject venturesome who, when departing from the actuarIal

answer, more often than not chose the wager with the higher dIspersion.

Using this criterion, five subjects were conservative and twelve were
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venturesome. In the light of previous experimental results with college

students (vid. Mosteller and Nogee [llland Davidson, Suppes and Siegel 13]),

the percentage of venturesome subjects is perhaps surprising. Part of the

explanation may lie in the fact that the subjects were volunteers and knew,

before they volunteered, that the experiment involved some financial risk.

A subject who invariably chose the hi~~er or the lower dispersion would

yield no cyclical observations (no pair of wagers showed the same dispersion

as this would lead to absolute preference ), while the consistent actuarial

chooser would be certain to show no more than six cyclical triads of

responses (there were six triples of cards where each pair of wagers had the

same actuarial value). It is therefore an interesting question to what

extent the results obtained were due to actuarial, conservative, or venture­

some strategies (conscious or otherwise) on the part of the subjects.

Table 5 makes it obvious that no subject consistently followed any of the

three policies. Comparison of Tables 3 and 5 brings out the fact that the

four subjects with the largest number of cyclical observations (subjects C,

D, F and J) include none of the five subjects with the largest number of

counter-actuarial responses. On the other hand, Subject L, with the lowest

number (4) of cyclical triples, seems to owe this score in part to a

conservative taste for low dispersion wagers, while Subject A, with only

five cyclical triples, has the fewest counter-actuarial responses.

We may also ask whether the frequency of cyclical observations depends

on the size of the differences in the actuarial values of each pair of

wagers. One would expect cyclical observations to occur relatively more

often in cases where these differences are small and thus provide no
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guidance, or only a weak one, for the choice between two wagers and the

ranking of three wagers. In Table 6, four groups--A, B, C, D--of triples

are defined, the number of observations (i.e., the number of triples

times 17, the number of sUbjects) is entered for each group, and the

frequency of cyclical vs. non-cyclical observations given. A finer

grouping of triples was precluded by sample size limitations. In fact,

the distinction between Groups A and B proved to be statistically

insignificant (and hence the unexpectedly lower percentage of cyclical

observations in Group A compared with Group B is not statistically

significant). Significant and interesting results are obtained by

comparing Group (A,B) (which is the union of A and B and thQS consists

of all triples with actuarial differences not exceeding 1/2 cent on any

card) either with Group C (actuarial differences not smaller than 1 cent

on any card) or with the composite group (C,D)(actuarial difference

exceeds 1/2 cent on at least .one card). These comparisons tend to

confirm the hypothesis that small actuarial differences favor the

occurrence Of cyclical choices.

It may be asked whether the decrease in the proportion of cyclical

observations from session to session was accompanied by ,an increase in

the proportion of actuarial responses. The following figures show that

it was.
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Sessions

I II III

Number o~ cards with
wagers o~ di~~erent

actuarial value 1241 1598 1394

Number o~ actuarial
choices 810 1106 979

(Percentage) (65-3 %) (69·2 %) (70.2% )

Number o~ triples 748 952 884

Number o~ non-cyclical
observations 648 845 819

(Percentage) (86.6 %) (89·5 %) (92·6 %)

The increase in the proportion of actuarial choices was statistiCally

Signi~icant (p < .05) ~rom Session I to Session II and de~initely not

signi~icant (P> .50) ~rom Session II to Session III. On the other hand,

the proportion o~ non-cyclical observations increased highly signi~icantly

(p < .01) ~romSession II to Session III, although it did not increase

signi~icantly (p> .2) ~rom Session I to Session II. This suggests that,

to the extent to which there was an increase in non-cyclical observations it

should not be explained by the increase in actuarial choices. However, a

more detailed analysis would be necessary to clari~y this point,

In the table just given, the proportion o~ non-cyclical observations to

the total number o~ triples o~ cards is, in each o~ the three sessions,



consistently higher than the proportion of actuarial choices to the total

number of cards. A formal test shows the difference between the proportions

to be statistically highly significant. Thus, considering all subjects to

belong to the same population, the probability that a subject's response to

a triad of cards will be non-cyclical is higher than the probability that

his response to a single card will be actuarial.

Broadly speaking the present experiment shows that in its context

ilecisions are better explained by certain implications of a stochastic

decision theory than by the assumption that choices are made at random.

The interest of this result would be impugned if the same data could be as

well or better explained by alternative hypotheses. For this reason we

have been considering the plausibility of the claim that, to the extent that

subjects avoided cyclical triads of responses (and hence tended to verify

the hypotheses under test), this was due to the more or less consistent

employment of actuarial, venturesome or conservative policies by the subjects"

In Table 7 we attempt a direct comparison of three alternative theories as

predictors of certain observed choices.

Assume that a related triple of cards was always arranged in the "normal

form" shown in Table 1 and that the three cards were presented to the SUbject

in order from left to right. If a subject chose one left and one right

column for the first two cards, the hypotheses H (or H )w s
as well as Ho

would predict equal probabilities of choice for each wager on the third card.

The interesting cases arise when the left column or the right column is

chosen on both the first two cards; then the hypotheses H and H will
w s

give the h~gher probability of choice to the opposite column on the third
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card (for example, if column A is chosen on each of the first two cards,

column B is more apt to be chosen on the third card if the hypotheses are

true) .

The first two columns of figures in Table 7 show how often the subject

chose the more probable wager on the third card for those cases where both

of the first two choices were wager A or wager B. The th;.rd and. fourth

columns show how often, for the. same cards for which results are given in

the first two columns, the subject chose the wager with the higher actuarial

value. The total number of predictions is lower because some cards had two

wagers with equal actuarial values. The last two columns show, for the same

cards again, how often the subject chose in accord with his gene~al tendency

to favo~ low or high dispersion wagers, This tendency was determined from

the figures in Table 5 showing how often the counter-actua~ial responses of

the subject favored low or high dispersion.

At the bottom of Table 7 the three theories are compared with respect

t.o the percentage of correct predictions. The expected utility theory is

superior to the other two with 81.6% correct predictions; the actuarial

theory is slightly better than the dispersion theory with 72.2~ correct

predictions as compared to 69.0% correct predictions. Each of the differences

between these proportions (taken pairwise) is statistically significant

(p < .01). It is also worth noting that for every individual subject the

expected utility theory predicted better than the dispersion theory; however

the actuarial theory was very slightly superior to the expected utility

theory for two subjects (SUbjects C and J).



A remark is called for concerning the marked decrease in the proportion

of cyClical observations from session to session. It seems attractive to

call this a learning ;phenomenon. However, what was learned was certainly

not connected with specific cards, wagers, money amounts, or triples of

cards, for none of these was repeated in two sess.ions (specific cards and

triples were not repeated even in the same session), The evidence indicates

that the subjective probability of the chanCe events was firmly established

from the start. We may say that the subject learned transitive behavior or

that he learned to maximize expected utility (at least in the sense of our

stochastic definitions of these terms). There is also evidence that some

subjects learned to make actuarial choices. The matter seems worthy of

fuller studYj both theoretical and experimental.

VIII. SUMMARY

The experiment was designed to test whether certain conditions hold

which are necessary for the existence of a utility function over the set of

money wagers as well as over the set of money amounts. Seventeen subjects

were tested individually in three sessions each. Every choice involved a

risk since subjects did not know in advance which choices would be played

off, that is, would result in actually paying (or receiving) money. The

main results may be summarized as follows:

1. For all subjects, the number of intransitive triads of responses

(called 'cyclical observations') was, as required by the hypotheses, less

than the number expected by chance.
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2, A statistical test, based on responses to non-repeated choice

situations, indicates the acceptance, for all subjects, of the hypotheses

of weak stochastic transitivity of alternatives and weak stochastic

transitivity of utility intervals.

3, For fifteen subjects in each case, the acceptance of the hypotheses

of strong stochastic transitivity of alternatives and of intervals is

indicated.

4. Both in testing the transitivity of alternatives and the transitiv­

ity of intervals, there was a systematic decrease in the number of cyclical

responses from session to session.,;,

5. A comparison shows the superior accuracy of a stochastic theory

of decision in predicting certain choices as compared to two alternative

theories. On the whole the evidence does not appear to support the claim

that the low number of cyclical obsel"Vations can be wholly explained by

simple policies based on the actuarial values of wagers, or on the degree of

risk (dispersion).



TABLE 1

Specimen Stimulus-Cards

For testing transitivity of alternatives:

A B

ZOJ -51:- +361:-

ZEJ ~211:- -381:-

A B

QUG +361:- -541:-

QUJ -381:- +221:-

A B

WUH -541:- -51:-1

XEQ; +221:- -2l~

For testing transitivity of utility intervals:

A B

ZOJ - 61:- + 51:-

ZEJ +241:- +131:-

A B

QUG +381:- +3l¢

QUJ +131:- +24¢

A B

WUH +311:- +381:-

XEQ + 51:- _ 61:-
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TABLE 2

Money Amounts (Wins and Losses) Used in

Constructing Stimulus-Cards

Sequence a b c d e f g

1 -17 -12 - 5 + 2 + 8 +17 +21

2 -20 -16 -11 - 4 + 3 +10 +15

3 -12 - 5 + 2 + 9 +14 +19 +23

4 ~22 -18 -14 - 9 - 2 + 5 +12

5 -14 - 8 - 4 + 5 +13 +20 +26

6 -36 -17 - 8 -} 2 +10 +21 +27

7 -13 - 8 - 5 - 1 + 4 + 7 +12

8 -35 ~28 -22 -15 - 8 - 2 + 6

9 -27 -16 - 4 + 7 +21 +34 +47

10 - 6 + 1 + 8 +15 +22 +30 +34

11 -39 ~25 - 9 + 6 +23 +40 +56

12 -37 -22 - 6 + 5 +21 +38 +54

13 - 7
_ 4 - 1 + 3 + 6 + 8 +11

14 -14 - 9 - 6 - 2 + 3 + 6 +11

15 - 6 + 2 +12 +21 +29 +36 +42

16 -24 ~20 -14 - 7 + 1 + 8 +13

17 -31 -17 - 5 + 8 +21 +33 +46

18 -11 - 3 + 4 +12 +19 +24 +28

19 -17 - 6 + 5 +13 +24 +31 +38
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TABLE 3

Number of Cyclical Observations for each Subject

Testing Transitivity Testing Transitivity
of Alternatives of Intervals

Sessions: I II III Total I II III Total

Number of triples
offered 22 28 26 76 22 28 26 76

Expected number Number of Cyclical Observations
under uniform
distribution over·
the region of:

unit cube 5·50 7·00 6.50 19·00 5·50 7·00 6.50 19·00

weak transitivity 4.13 5·25 4.88 14.25 4.13 5.25 4.88 14.25

strong transitivity 3.03 3.85 3.58 10.45 3·03 3.85 3.58 10.45

Subject

A 4 0 0 4 0 0 1 1
B 3 5 2 10 1 6 3 10
C 5 3 3 11 6 5 5 16
D 4 7 0 11 4 5 2 11
E 1 0 0 1 0 3 3 6
F 3 6 0 9 5 10 2 17
G 2 1 2 5 3 0 0 3
H 2 1 1 4 4 2 1 7
I 1 2 1 4 3 3 0 6
J 2 9 5 16 3 3 6 12
K 4 2 2 8 3 5 3 11
L 1 1 0 2 1 1 0 2
M 2 2 1 5 7 5 1 13
N 6 3 7 16 2 0 3 5
0 4 2 1 7 3 2 0 5
p 1 3 3 7 2 1 3 6
Q, 7 5 2 14 1 4 2 7

Average no. of 3.06 3.06 1.76 7·88 2.82 3.24 2.06 8.12
cyclical
observations:

Percentage of 13·9 10·9 6.8 10.4 12.8 11.6 7·9 10·7
cyclical
observations:



TABLE 4

All Sessions (76 Triads); Distribution of Subjects by the Number of Cyclical

Observations. (Correlation Coefficient = .49)

No. of cyclical No. of
observations for No. of cyclical observations for intervals: subjects:
options:

1 . 2 • 3 . 4 • 5 . 6 . 7 . 8 . 9 . 10 . 11 . 12 . 13 • 14 . 15 . 16 . 17
1 E 1.
2 L 1

3 0

4 A I H 3

5 G M 2 ~~
(1) ()

6 0 ~()

8~
7 0 P 2 §~.
8 K 1 til 'i I

f-'o 0
~<+1:'

9 F 1 "!-'.oq I
<j

10 B 1 ~§
'<j p,

11 D C 2

12 0

13 0

14 Q 1

08~

15 0 ::s lil.l

I-' § "'<j (1)

16 N JO 2 0>'0
f-'o <+
<+

17 0 f-'o ~
<j (1)

~~
'<j

No. of 1 1 1 0 2 3 2 0 0 1 2 1 ; 10 0 1 1L

sub-
~cceptWeak Transitivity Onlyjects: Accept Strong and Weak Transitivity
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TABLE 5

Responses for each Subject According to

Actuarial Value and Dispersion

(Total number of wagers ~ 304)

Subject Pairs of wagers of unequal Pairs of wagers All pairs
actuarial value of equal of wagers

actuarial value

Actuarial Counter-actuarial
responses responses

Dispersion Total Dispersion Dispersion
chosen chosen chosen

High Low High Low High Low

A 227 10 12 22 11 44
1

134 170

B 14 9 75 25 100 41 14

I:~~
91

C
I

162 54 33 87 37 18 120

D 165 75 9 84 43 12 i 234 70
1 168E

I
174 45 30 75 29 26

I
, 135

F

I
161 73 15 88 41 14 223 81

!

G 149 79 21 100 43 12 225 79

H 175 65 9 74 46 9 .225 79

36 49 34
!

I 200 13 21 i 181 123I
J 162 50 37 87 27 28 1 164 140

K 167 54 28 82 34 21 184 120,
L 182 15 52 67 18 37

,
103 201

M 136 49 64 113 28 27 137 167

N 160 53 36 89 37 18 177 127

0 216 12 21 33 12 43 127 177

P 165 23 61 84 18 37 104 200

Q 145 58 46 104 34 21 169 135
,
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TABLE 6

Actuarial Characteristics of Triples Offered
and the Fre~uency of Cyclical Observations

Character of triples offered Number of observations

(d = difference between the Percentage
actuarial values of the two Non'- of cyclical
wagers on a card.) Total Cyclical cyclical in total

A. d = o on all three cards 102 17 85 16.7

B. o < d ::: 1/21- on all three 272 59 213 21. 7
cards

(A,B) . o ::: d ::: 1/21- on all three (374) ( 76) (298 ) (20.3 )
cards

C. d ~ 11- on all three cards 442 49 393 11.1

D. All other triples 1768 147 1621 8.3

(C ,D) • d > 1/21- on at least one (2210) (196 ) (2014 ) (9·3)
of the three cards

TOTAL 2584 272 2312 10·5

Variation of frequency between

groups P Significant?

A against B 1.3 > .25 No

C against D 3·2 > .05 Hardly

(A,B) against C 13·7 < .005 Yes

(A,B) against (C,D) 43 < .005 Yes
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TABLE 7

Comparison of Expected-Utility, Actuarial, and

Dispersion Theories as Predictors

Subject
,

Expected Utility Actuarial Theory Dispersion Theory
Theory

Correct Incorrect Correct Incorrect Correct Incorrect
predic-
tions

A 84 5 74 5 56 33
B 63 20 39 29 60 23

46 42 I 44C 27 20 29
D 86 22 69 24 84 24

E 76 7 56 19 50 I 33
F 80 26 68 28 74 I 32
G 86 8 47 33 80 14

H 100 11 74 22 92 19
I 71 10 66 8 50 31
J 49 28 43 25 42 j 35
K 52 20 43 17 48 I 25I,

rL 83 4 60 17 64 23
j

M 57 18 43 25 50 I 25
N 63 21 53 22 59 i 25
0 76 12 69 8 57 ! 31
P 70 13 52 24 68

)
15

i
Q 70 21 41 35 48 i 43

Totals 1213 273 939 361 i 1026 460

Percentage I
,

Correct I
81.6 72.2 I 69·0
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