' EXPERIMENTAL TESTS OF A STOCHASTIC DECISION TEEORY

BY

DONALD DAVIDSON AND JACOB MARSCHAK

 TECHNTCAL REPORT NO. 17

JULY 25, 1958

- PREPARED UNDER .CONTRACT Nonr 225(17T)
(NR 171-03k)
FOR

OFFICE OF NAVAL RESEARCH

. REPRODUCTION IN WHOLE OR IN PART IS
PERMITTED FOR ANY PURPOSE OF

THE UNITED STATES GOVERNMENT

EEHAVIORAL SCIENCES DIVISION

“APPLIED MATHEMATICS AND STATISTICS LABORATORY
' STANFORD UNIVERSITY
_ STANFORD, CALIFORNTA







EXPERIMENTAL TESTS OF A STOCHASTIC LECISION THEORY

By

) _ %
Donald Davidson and Jacch Marschak—/

INTRODUCT ION

Common expervience suggests, and experiment confirms, that a person does
nqt always make the same choice when faced with the same options, even when
the circumstances of choice seem in all relevant respects to be the same.
However, the buik of economic theory neglects the existence of such incon-
sistencies; and the best known theories for decision making, for example,
those of von Neumenn and Morgenstern [12] or Savage [15], base the
existence of & measurable utility upon a pattern of invariant two-place
relations, sometimes called 'preference' and "indifTerence.'! This raises
a difficulty for any attempt to use such theories to describe and predict

actual behavior.

f/ This paper will appear as part of & symposium on measurecment to be
published by Wiley under the editorship of C. West Churchman.

Regearch underbeken by the Applied Mathematics and Statistics

Laboratory, Stanford University, under contract Nonr 225{17),

NR 171-034, with the Office of Naval Research, and by the Cowles

Commission for Research in Economice under contract Nonr-358(01},
. NR oW7-006 with the Office of Naval Research.

The authors were helped by discusslons with G. Debreu, E. Fels,
L. Hurwicz, R. Radner, H. Raiffa, R. Savage, R. Summers and -
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A number of ways of meeting the difficulty may be mentioned: (l) it
1s possgible to insist on the normative status of the theory and construe all
deviations as evidence of error on the part of the subject. (2) One may
defend the descripiive accuracy of the theory and argue that 1t has heen
incorrectly interpreted; for example, by wrongly identifying twe options
(say winning one dollar at time +t and winning one doliar at time %+ 10
minutes) as the same. (3) One may interpret every case of inconsistency
as a case of indifference: 1f the subject has chosen a rather than b but
gsoon afterwards chooges D rather than.ﬁ'this is interpreted as indifference
between those two objects; if he chooses a rather-than b; b rather than ¢,
and ¢ rather than & this is interpreted as indifference between those three
objects. In empirical application this apprcach would probably make
indiffersnce all-pervasive. (k) An alternative épproach is to define
preference and indifference in fteyms of probabilities of choice. Mosteller
and Nogee, in testing the von Neumann and Morgenstern axioms, considered
a subject indifferent between two options when he chose =sach opticn halfl
the time [11]; Edwards [5] has alsc used this method. In this approach
probabilities of choice do not enter the formal axiomatic development.

(5) A fifth strategy,.explored in this paper, inccrporates prohabilities

of cholce into the axiomatic structure, and exploits their properties in

scaling utilities.

I. FPRIMITIVE AND DEFINED NOTIONS
We now introduce various concephs needed for the subsequent discussion.

It should be emphasized that strictness has in many places in this paper




been sacrificed Lo perspiculiy; we trust that the knowing reader can make
the corrections needed for formal accuracy. First we list the primitive

notions:

*
L. A get A of alternativesu—/ A may include wagers (choices

involving risk) as well as sure outcomes. In Sections I and II we shall

treal alternatives quite gernerally. In Section IIJT we shall use special

properties of wagers.
| 2. The probability P(a,;b) that the subject, forced to choose
between g'and-gp chooses a. We assume in what follows, for every a and
E_in_ A |
(a) P(ayﬁ)-+ P(b,a) = 1,

(b) P{a,b) lies in the open interval (0,1).

In a fully formalized exposition thesge assumpbions would appear as
axioms or theorems; in the present paper we shall sometimes leave these
assumptions tacit. Under a natural inserpretation 2(a) has empirical
content: it implies that when a subject‘is asked to choose between a
or b, he always chooses a or Db, Normally, we are not interested in

testing 2(a}; rather, we attempt to make it true by enforcing a choice.

Therefore we may want to siate our experimental hypothesis as follows:
if 2(a} is true for a given subject, then the other axioms hold. If

2{a) fails for a subject we then reject the-subjecty not the hypothesis.

f/ We use the word 'alternative,’ as is fairly common in the literature
of decision theory, to mean one of two or more things or courses
between which a perscn may chocse.
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Qr we may want to include E(a) in the hypothesis and reject the hypothesis
for a subject who vefuses an offered choice. For the experiments reported
"here the issue is academic. All subjects were docile.

For the case where a=D, 2{a) has the consequence Pla,a) = 1/2,
Formal convenience dictates that we not exclude this case although we give
it no empirical meaning.

Before commenting on 2(b) it will be useful to give some definitions.

Definition 3. a is absolutely prefrred to b if and only if Fla,b)=1.

This concept corresponds to the psychologists' "perfect discrimination.”

Definition 4. a is stochastically preferred to b if and only 1T

1/2 < P{a,b) < 1.

Definition 5. a and b are stochaStically indifferent if and only if

P{a,b} = 1/2. Since we use the word 'indifferent' in no otker sense, we

often omit the word 'stochastically.'’

Definition 6. ¢ is a stochastic midpoint between a and b if and only

if P(a,c) = P(e,b).

In situations in which it is natural to apply the theory, it is obvicus
that cases of absolute preference occur, violating 2{b). In particular, one

would expect that when a and b denote respectively, "receiving E_dollars”

and "receiving b dollars" (or, for that matter, m or n units of some

commcdity) then, m >n implies P(a,b) = 1. More generally, if m., n

are amounts of gome commodity and Ly, N, are amounts of a second



commedity, and m, >n. , m, >n then the alternative consisting of

1 1 2 2 ?

receiving m, and mE will be abgolutely preferred to the alternaibive

n, and - This extends also to bundles consisting of 3 or more
commodities.

In the experimental testing of stochastic theories of choice various
‘devices may be used to avoid comparisons of alternstives which yield
absolute preferences. Papandreocu et al [13], using appropriate commodity
bundles, avoided cases of the sort just ment;oneda ‘The methods used for
avoiding comparisons apt to generate absoluf% preference 1n the experiments
reported here will be discussed presently.

So long as the assumption stated in 2(b) remains in force, it is not
enough merely to avoid comparing alternatives one of which ié absolutely
preferred to ancther; the set A of aiternatives to which the theory appliss
must contain no two such alternatives. While we have no solution on hand,

we ghall mention in the next section the possibility of modifying the formal

system to eliminate dependence on assumption.E(b),

II. GENERAL STCCHASTIC THEORY OF CHOICE

An important aspect of a gereral stochastic theory of choice lies in
the Tact that without specifically considering wagers it is possible to
obtain forms of measurement stronger'thén a mere ordering by imposing
plausible conditions on probabilities of choice. -When conditions of
sufficient strength are satisfied it is possibie to interpret a comparison
of prchbabilities as a comparison of differences in subjective value or
-utility. This idea is captured in a general form by the following

definition;:




Definition 1. For a given subject, a real valued funetion wu is

called a utility function on A (in the sense of Definition l) if and only

if, for every a; b, ¢ and d in A,
P(a,b) > P(c,d) if and only if wu{a) - u(b) > uf{c) - uw{d).

‘The technique of building a subjective scale on the basis of freguency
of discriminated differences is common in psychophysics since Fechner [61;
however, the emphasis in psychophysics on relating the subjective (sensation)
scale to a physical continuum (which is not assumed in utility measurement)
tends to obscure the analogy. -Discussion of the relation between psycho-
physical scaling and utility measurement will be found in Marschak [10] and
Iuce-[8], [9].

There is a much used adage in psychophysics which masy be taken ag
suggesting the prineiple underlying Definition 1 above: T'equally often {
noticed differences are equal [on the sensation scale] unless noticed always
or never' (ascribed by Guilford [7] to Fullerton and Cattell). The final 5

Phrase of this adage enters a caveat which ig clearly as pertinert in

utllity as in sensation measurement for, in our terms, the caveat concerns

the case of absolute preference. Consider the case where P(6¢, 5¢) = 1 =
= P(#50000., $0) and hence, by Definition 1, wu(6¢) -u{5¢) = u($5000.) -u(g0.), o
which is intuitively absurd. The difficuliy created by the existence of
absolute preferencés is thus clear. The approach Lo s solution which

. suggests itself is to add to Definition 1 the cavest 'provided neither

P{a,b) nor P{c,d) is equal to 0 ox 1.' This would require



modification of the axiomatic conditions needed to prove the existence of a
utility function. We have not atiempted to carry out this modification,
which may well not be trivial.

‘We now consider what conditions are sufficient for the existence of a
qability funetion (in the sense of Definition 1). Fortunately in approaching
_this question we are able to depend on previous work due to the fact that
any theory which makes essential use of a four place relation comparing
intervals may, with fairly trivial mcdifications, be reconstrued as a
theory in which the atomic sentences are all of the form 'P(a,b) > P{c,4)’
as demanded by Definition l.f/

What constitutes sufficient conditions for the existence of a utility
function depends, in part, on the nature of the set A. We therefore
consider several cases.

(a) The éet A contains & known finite number n of alternatives,
Bpsceny By In this case it is always possible although perhaps tedicus to
stipulate conditions on the probsbilities P(ai,gj) necessary and
sufficient for the existence of a utility function. A simple example
(for n=3)} will betreated fully later. In general, it sufficeé, because
of I.2{(a), to consider those probabilities Ha,b) +that are > 1/2; a given
complete ordering of these numbers yields, by Defimition 1, arsequence cf

n{n-1)/2 inequalities of the form

w(a,) - u(ay) > ulay) - wla)> ... >0

Ny

The modifications may allew for the special properties of probabili-
ties, -and for the fact that ‘P{a,b) > P(c,4)' compares signed
intervals while the quaternary relations taken ag primitives in

some theories compare unsigned intervals.




Anyolving a set of only n distincet unknowns viz., the utilities of the n
alternatives. Whether these inequalities have a solution can be answered
separately for each of the possible [n(n"— 1)/2]! orderings of the
Prcbabilities.

(b) The set A contains an arbitrary number of alternatives which
are equally'spac_ed? in wtility (_such that for every a, b, ¢ and 4 in A,
if a and b are adjacent in utility*—/ and ¢ and g. are adjacent, then
P(a,b}) = P(c,d)). -The axioms are an obvious modification of the axioms on
page 31 of Davidson, Suppes and Siégel [3].

(e} It will be convenient to give two definitions. The first we owe

to Professor Patrick Suppes.

Definitior 2. A set A of alternatives is stochastically continucus

if and only if it meets the following three conditions for every a, b, ¢

and 4 in A:
(1) there exists a stochastic midpoint between &a and b;

(i1) if P(e,d) > P(a,b) > 1/2 +then there exists a g such that

P(e,g) » 1/2 and P{g,d) > P(a,b);

(ii1) (Archimedean condition) if P(a,b) > 1/2 then for every
probability g such that P(_a_,b) > q > 1/2 there exists a positive

integer n such that gq > P(a,cl) = P-(cl,ca) = ... = P(cn,b) >1/2.

*/ lLet P(a,b)>1/2; then a and b are said to be adjacent in
utility if P(a,b) < P(a,c) for every c with F(a,c) > 1/2.




Definition 3. The guadruple condition is satisfied if and only if

for every a, b, ¢ and d in A, if P(a,b) > P{c,d) then P{a,c)>P(b,d).

It follows immediately from Definition 1 that if a utility function
exists on A then the quadruple condition is satisfied in A. However, we

are now in a position to assert more:

Theorem U . If A is stochastically continuous then a utility

function exists if and only if the quadruple condition is satisfied.

A proof of this theorem will not be given here. The general line of
demonstration is as follows: Suppes and Winet have given an axiomatization
of utility based on a primitive ccnceét-whiéh compares ubility differences
and have proven that if certain axioms on.a relation beﬁween two pairs of
‘alternatives hold then utility-differences can be defined, and hence; a
function analogous to a utility function (in the sense of Definition 1)
exists [18}:/ Suppes has shown how to express these axioms in terms of
rélations between probabilities [17]; the new axioms on probabilities (let
us call them §) suffice to prove the existence of a utility function in thé
sense of Definition 1. The three conditions of Definition 2 are trivially
equivalent to the continuity axioms of S. Finally, we have been able to
rrove that all the further axioms of ‘§ hold if the guadruple conditicn
is satisfied (and provided of course the assumptions specified in I.2(a)

and (b) hold). Hence we know that if the continuity and gquadruple

¥/  See also Franz Alt [1].
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conditions of Definitions 2 and. 3 hold, S holds, snd there exists a
utility function.

(d) A result similar to Theorem 4 was obtained by Debreu [4] under a
different definition of stochastic continuity properties. Debreuw has shown
that there exists a utiiity function on A 1if the following conditions are

satisfied:

(i) if &, b, c are in A .and P(b,a) > q > P(c,a) then there is a

d in A such that P(&,2) = g;
(11) the quadruple condition holds for Aj

(iii) if x, y, z denote variable elements of A, then P(x,z) depehds

continuously on P{x,y) and P(y,z)-
~ We turn finally to the interesting case in which:

{e) the set A contains an unknown number (possibly finite) of
alternatives. -For this case nc axiom system is known, and it has been
conjectured by Scott and Suppes [16] that under certain natural restric-
tions or the form of axioms no axiomatizatioﬁ is possible.

Tt may be noted that in cases (b), (c), and (&) the axiom systems
adequate to prove the existence of a utility function (in the sense of
Definition 1) are sdequate to prove also that any such function is unigue
up to a linear.transformation (i.e., the existence of cardinal utilities).

‘We can submit to direct experimental test a set of the kind described
in (a) containing a small, known, finite number of alternatives (let us
call the set of alternatives under test T). If the quadruple condition

is satisfied for every quadruple of alternatives in T, and T ig a




_ll_

semple drawn from a larger set A, we may conclude--with a degree of
confidence depending among other things on the sgize of the sampie--that
the quadruple condition holds for .A. If our hypothesis is that a utility
function on A exists then we need further information about A: for
example we may know the (finite) number of its elements {case (a)), or we
may hold that A is stochastically continvous (cases .(c) and (d)).

In the experiment reported here, bne hypothesis is that a utility
function exists for the set comsisting of all money wagers of a certain
sort. If we can assume that A is stochastically continuous in the
sense (c) or_td) (fér example because the money amounts which enter the
wagers are, approXimately, continuous variables) and if, on the‘basis of
our sample T, we have concluded that the quadruple condition holds for
A, then we can conclude, by Theorem k&, that there exists a utility
function on A,

Acturally, we did not test for the quadrupie condition on cur sample T.
Instead, we tested for certain implications of that condition:. if T does
not satisfy such an implication; we reject the hypothesis that T satisfies
the'quadruple condition. These implications involve triples (not qusd-
ruples) of alternatives and will be referred to as stochastic transitivity
properties.:

Even for relatively small finite szets of alternatives, the existence
rof a utility function in the sense of Definition 1 implies more than is
implied by the quadruple condition alone. This fact suggests a view of the
relation between experimental evidence and%hypothesis which differs

stightly from the one outlined in the preceding paragraphs. For each




gsample T drawn from A we may test all the conditions necessary and
sufficient for the existence of a utility function on T (the genersl
method is given above in the discussion of case (a.))° We- then conéider.
confirmation of the existence of a utility function on T as inductive
evidence for the existence of a utility function on A. As will be shown,
the condition of gtrong stochastic transitivity about to be stated gives
necessary and sufficient_conditions for the existence of a utility function

on a set conslsting of three alternatives.

5. Definitions of’" stochastic transitivity. We say that weak

stochastic transitivity holds in A if and only if, for all a, b and c

in A,

5.1. if P{a;b) > 1/2 and P(b,c} >1/2 then P(a,c) > 1/2. Ve

say that strong stochagtic transitivity holde in A if and only if, for

all a, band c¢c in A,

5.2. if P(a,b) >1/2 and P(b,c) >1/2 then P(a,c) > max[P(a,b),

.P(b,c)].

These terms are due to 8. Vail [19]. (We sometimes omit the word
"stochastic.") Clearly 5.2 implies 5.1, but 5.1 does mot imply 5.2; both
‘are implied by the existence of a utility function and are therefore
necessary conditions for the existence of such a function. - 5.2 1s

eguivalent to:




~13-

Y/
6., if P(a,b) > 1/2 then P(a,c) > P(b,c).

Consider three fixed alternatives, and label the three relevant

841_9 8.2, 3.3
probabilities P(al,aa) =P, P(32333) = Dy P(a3,al) = Pye The two kinds

of transitivity condition applied to the set con51st1ng of a can

1’ 2’ 8

then be expressed in the following symmetric form:

T.1. Weak transitivity: pl, pe, p3 not all > l/E or < 1/2°

Ts2. Btrong transitivity:

P, > 1/2 if and only if P, -—I—.p3 <1,

P, > 1/2 if and only if Py + Py < 1,

p3,2’1/2 if and only if p, + p, < 1.

In the experiment reported in this paper; we are concerned with
triples of alternatives. It is therefore interesting to note that if
the set of alternatives consgists of exactly three elements, a, b, c,
then the condition of strong.stochastic transitivity is not only necessary
for the existence of a utility function (as mentioned at the end of the
preceding sub-section (5)) but also sufficient. For, under strong transi-
tivity, we may assume without loss of generality that P(a,c) > P(a,b)

> P(b,c) > 1/2. The corresponding inequalities between utilities

f/ Proof: To show that 5.2 implies 6, assume P(a,b) > 1/2 and ‘show
. that, by 5.2, Pla,ec) > P(b,c) for each of the three possible cases:
(1) P(b c) > 1/2; then P(a,c) > max [P(a,b), P(b,e)] > P(b,c);
(2) P(b,c) < 1/2 < P(a,c); then Pla,c) > P(b,c);
(3) P(b,c) < 1/2, Pla,c) < 1/2; then P(c,a) > 1/2 hence P(c,b) >
max [P{c,a), P{a,b)] > P{c,a), P(a, c) > P(b, c) It may be left
to the reader to prove the converse: that 6 implies 5.2.
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(Definition 1) are: wu{a) - u(c) > u(a) - u(b) > u(db) - ule) > 0. These
inequalities are satisfied, for example, by the folliowing numbers:
u(a) = 1, u(c) = 0, u(b) = any number between, and including, O and l?

In Table 1, the upper three cards show how we tested strong (and weak)
transitivity experimentally. fhe subject made choices between the two
columns on a card; the syllables on the left represent events determining
the outcome of a wager. -0n the three cards there are altogether three
alternatives (wagers) paired in each of the three possiblé ways. By
© testing whether condiition 7.2 holds for a sample consisting of a number
of such triples of alternatives, we obtain evidence for or against the
hypothesis that a utility Tfunction exists on the set A Irom which the

gsample ig drawn.

III. . STOCHASTIC THEORY OF CEOICE BETWEEN SUBJECTIVELY EVEN-CHANCE WAGERS

In this section we deal with a special case of the stochastic theory
of choice, exploiting some possible properties of choices between wagers
of a special sort, namely those created by chance events with a "subjective
probability of one half." The theoretical and experimental importance of
the non-stochastic theory of choice for such Wageré was Tirst pointed out
by Ramsey [14]; a formalization of the theory applied to finite sets, and
reportslof.several experimental applications {(inclvding one with stochastic
aspects) are given in Davidson, Suppes and Siegel [3].

-We assumed in Section II that the set A of alternatives might

_éontain wagers as well as sure outcomes; however, the formal developments

made ne use of this assumption.

e e
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Some additional primitive noticns are needed.

1. A set X of states of the world. The subsets of X are called

events, denoted by E, ¥, ... and forming a set ét .

2. If a, b arein A and E 1is in éi then aEb i1s the wager
which consists in getting a if E happens and getting b if E does

not happen.

Definitions 3-6 of Section I are applicable to wagers; for example
when P(aEb, ¢Fd) = 1/2 we say that aEb and c¢Fd are (stochastically)
indifferent. We may presume that in certain cases absolute preference
occurs. In particular, if 81, 85 Elj 92 are in A and

P(al,bl) =1= P(az,be) then Tor any event E in & 5 P(alE b.Eb,) = 1.

fp2 P1Vp!

Definition 3. An event E in gi is an even-chance event if and

only if, for every & and b in A,
P{aEb, bBa) = 1/2

If E 1is an even-chance event, we call aEb an even-chance wager. IL 1is

obvious that the notion of even-chance involved in this definition 1s
subjective; it makes no sppeal to the objective probablility of ¥. The
jﬁstification for our terminology is simple. Suppose a subject prefers a
to b. If he thinks E is more likely to happen than nHgt, he will choose
aBh more often than bEa; if he thinks E less likely to. happen than
not; he will choose aEb less often than -bEam Herce he will choose aFb
and bEa équally often if and only if he thinks E is as likely to happen

as not, i.e., E has a "subjectively even chanceﬁ"—/

f/ The next three pages (16-18) give, in the form of a footnote, an

' alternative reading of the original text (p. 19.l), Since Profesgor
Marschak has not been able to review the contents of this footnote,
he cannot be held responsible for it.
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Definition-h, The subject is said to be unbiased if and only if, for
any two even-chance events E and F in é; and any a and b in A:
P(aEb, aFb) = 1/2 .

The chief concern of this section may be stated by giving a more

‘restrictive version of Definition IT.1:

Definition 5. A real valued function u is an even-chance wager

utility function {or a utility function in the sense-leDefinition_III.5)

on A if and only if:

(&) u is a utility function on A in the sense of Definition II.1,

(b) for every a and b in A and E in gl, u{akb) = E%?lf+3%?l

5(a) énd (b) together express in stochastic form the usual hypothesis that
a subject prefers the wager with the higher expected utility (applying this
hypothesis to the case of even-chance wagers);

Now we wish to state conditions sufficient for the existence of an
even-chance wager utility function. To this end we define the following

condition;

Definition 6. -The even-chance midpoint condition holds ir A if and

only if for every & sand B in A and E in Ei 5
P(a, aEb) = P(aEb, b),

Definition 6 says that for any chance event E in Ei,, akEb is a

stochastic midpoint between a and b (sce Definition 1.6). Next we show

v
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that if the quadruple condition (II.3) and the even-chance midpoint
condition hold, then all events in Ei are even-chance events and the
condition of unbiasedness (Definition 4) obtains. First we prove an

elementary lemma Which depends only on the qﬂadruple condition.

Lemma 6.1. For &1l a, b, ¢ and 4 in A, if P(a,b) = P(b,d)

and P(e,c) = P(c,d) then P(b,c) = 1/2.

Proof': Suppose Lemma 6.1 were false, that is, its antecedent true
and its consequent false. Then P(b,c) # 1/2, and hence, by the quadruple
condition,

(1) P(b,d) # P(e,d).

Then either P(b,d) > P{c,d) or P(c,d) > P(b,d). Assume, first, that

P(b,d) > P(c,d)}. Then, by the quadruple condition, we have
(2) P(b,e) > 1/2

But from_our assumption and the antecedent of the lemma, we have

P(a,b) > P{a,c} and hence, by the quadruple condition,
(3) 1/2 > P(b,c},

which contradicts (2). Assume, second, that P(c,d) > P(b,d). Then, by the

guadrupie condition, we have,
(#) P(ec,b) > 1/2.

But. from our assumption and the antecedent of the lemma, we have

P(a,c) > P(a,b) and hence,

(5) 1/2 > P(e,;b),
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which contradicts (4). Therefore if the antecedent of the lemmais true,

(1) is false, which proves the lemma.

Theorem 6.2. If the guadruple and even-chgnce midpoint conditions

hold in A, then every event E in 6§ is an even-chance event.

Proof: For every E in @_, and a and b in A,

(1) P(b, bEa) = P(bEa, a) (even-chance midpoint condition)
(2) P(a, bEa-) = P(bEa, b) ((l) and quadruple concj.itiﬁn)

(3) .P(_a,, afb) = P'(_a-;,Eb, b) {even-chance midpoint condition)
(¢) P(aFb, bEa) = 1/2 | {(2), (3) and Lemua 6.1) .Q.E.D.

Theorem 6.3. If the quadruple and even-charce midpoint conditions

hold in A, then the subject is unbiased.

Proof+ By the even-chance midpoint condition we have, for any

a and ‘E in A and ‘E and F in e

(1) P(a, aEb) = P(aEb, b) ‘and

3

(2) P(a: an)

P(aFb, b).
Hence, using Lemma 6.1,
(3) P(aFb, aFb) = 1/2. Q.E.D.

Since the even-chance midpoint .condition limits the wagers under

consideration to even-chance wagers, _‘;Jre may, in what follows, simply write

'ab' for ‘'aEb.! (End of footnote)
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Deflnltlon u Thé'sﬁbjéctiis.said £0 be unbissed if and only if, for any

two evenwchance events E and . and any a and b in A: P(aFb, aFb)=1/2.

It is obV1ou5‘that 1f thls condltlon is satlsfled and there exists a utility

:functlon u on A,féthen for any two even -chance events E and F and any
a and b in A, u(aEb) u(bEa) u(an)-au(bFa)  This justifies writing

_simply ab' for -'aEb’ where E 15 an even- chance event; since we explic-
S1mp Y _ B Y

1tly con51der no other wagers, symbols for chance events need not enter our

fOfmallsmot'ﬂZ:“
~The chlef concern of thls sectlon may be stated Yy gilving a more

restrletlve ver51on of Definltlon II l

'Definition.5:: A réﬁlivaluédsfunctiOn u is an‘even-chancé wager utility

'functlon (or a utlllty functlon in the sense of Definition ITI.5) on A
if and only 1f
(a) n 1s & utlllty functlon on A in the sense of Deflnltlon IT.1,

(b) for every a and b ln-.A and every even-chancée event By

2 _“é?_).

'u(aEb) =
(a) ana (b) together expreés in stochastlc form the usual hypothesis that a

subJect prefers the wager w1th the hlgher expected utlllty (applying this

hypothe81s to the case of even chance Wagers) 'Clearly these conditions imply

that u(aEb) has the éame value% for all even-chance :.events E in EL 5

. and that ‘the subJect 1s unblasedpx;

NOW'we WlSh to state condltlons suff1C1ent for the ex1stence of an even-

'cﬁancg‘wager utll;ty,funct;on@ 'Torﬁhls.end we define the follow1ng condition:

”Definitioh'G; LThe even-chénce'miapoint condition holds in A if and only

if the subgect 1s unblased and, for every a and b in A, P(a,sb)=P(ab,b).

(Deflnltlon 6 says ab is a, Stochastlc m16901nt between a and b; see Def.1.6.)
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We may now state a theorem analogous to II.4:

Theorem 7. If A is stochastically continuvous then gg_even—chance

wager utility function on A exists if and only if the quadruple condition

(1I.3) and the even-chance midpoint condition hold in 4.

Proof: Suppose A 1s stochastically continuous. Then a function u
on A such that P(a;b) > P(c,d) if and only if u(a) - u(b) > ule) - u(d)
exists if and only if the gquadruple condition holds (Theorem II.%). Hence
- the gquadruple condition is a necéssary ;ondition for the existence of an
even-chance wager utility function. And if the quadruple conﬁition is
:satisfied then a utility fﬁnction in the sense of Definition II.liexists;

hence:

P(a,ab) = P(ab,b) if and only if wu(a) - u(ab) = u(ab) - u(b},

that is;

-Therefore the quadrupie and even-chance midpoint conditions together

-provide necessary and sufficient conditions that a utility function in the

sense of Definition IIT.3 exist, provided A 1is stochastically continuocus.
An alteinative'statement.of sufficient conditions may now be

considered., We define:

.Definition 8. The even-chance guadruple condition holds in A if

and only if, for every a, b, ¢ and 4 1in A:

P(a,b) > P{c,d) if and only if P(a,bc) > P(bc,d);

and assert:
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Theoren 9ﬁ--;£ A is stochastically continuous then a ubtility

function on A in the sense of Definition III.5 exists if and only if

*
-the-even-change quadruple condition holds in .A.—/

We now establish an interesting consequence .of the even-chance

guadruple condition:

- Theorem 10.  If the even-chance guadruple condition holds in A then

for all a, b, ¢ and 4 in A

P(a,b) > P(c,d) if and only if P(ad;be) > 1/2.

We establish Theorem 10 by noting that if the even-chance guadruple
condition holds, then P{a,b) > P(e,d) is equivalent to P(a,bc) > P(be,d),

which in turn is eguivalent to P(ad,bc) > P(be,ad).

f/ Proof: It follows directly from Definition ¥IT.95 that if a ubtility
' function in the sense.of that definition exists the even-chance
guadruple condition holds. -We prove the sufficlency of the even-
chance guadruple condition by showing that it implies both the
even-chance midpoint condition and the gquadruple condition, and then
applying Theorem 7. By the even-chance quadruple condition we have
(replacing o' by ‘a', and 'c' and ‘d' by 'b'):

(1) P(a,a} = P(b,b) if and only if P(a,ab) = P(ab,b).
The right side of (1) (i.e. the even-chance midpoint condition) is
true since the left side is true by I.2(b}. Using the even-chance
quadruple condition again and assumption I.2{a) the following steps
lead to the quadruple condition: : r

(2) P(a,b) > P(c,d) if and only if P(d,bec) > P(be,a)

(3) P(a;bc) > Pfbc,a) if and only if P(a,c) > P(b,d).
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We have seen (in the proof of Theorem 9) that the even-chance
quadruple conditioﬁ implies fhe quadruple as well as the even-chance
midpoint cordition. .On the othéxr hand, these two conditicons in conjunction
do not impiy the even4chance guadruple condition since they do not imply
its conseqguence stated in the conclusion of Theéfem lO,f/ Theorem lO.
thus states a strong principle. It interlocks, in effect, the ﬁtility

scales obtained by comparing.differences in wtility by two separate methods.

11. Definition of stochastic transitivity for utility intervals. We

say that weak stochastic transitivity for utility intervals holds in A

if and only if, for a, b, ¢, 4, e and £ in A,

11.1. if P(bf,de) > 1/2 and Plae,cf) > 1/2 then P(ab,cd) > 1/2.

We say that strong stochastic transitivity for utility intervals holds in

A if and only if, for all &, b, ¢, d, ¢ and £ in A,

11.2. P(bf,de) > 1/2 if and only if P(sb,cd) > P(ae,cf).

f/ To ‘show this, suffice it towonsider the inequalities:
P{a,b) > P(c,d) > P(bc,ad).> 1/2 > P(ad,bc) > B(d,c) > P(v,a},

which contradict the conclusion of Theorem 10. Yet they are
congistent with the conjunction of the quadruple and the even-chance
midpoint condition, for the only relations to which those ceonditions
in conjurction can apply in the present case are (apart from trivial
repetitions): P(a,b) > P(ad,bc) and P(c,d) > P(be,ad). .The former
relation yields P(a ad) > P(b,bc) and hence P(ad,d) > P(bc,c),
P(ad,bc) > P(d,c), consistent with the assumed chain of inequalities;
the latter relation yields, by similar steps, P(bc,ad) > P(b,a),
‘also consistent with the -assumed inequalities. '

[




2D -

The analogy between: the transitivity conditions for aiternatives (II.5)

and transitivity .conditions for intervals (III.1l) may be brought out as
follows. If-a_utility funetion in the sense of Definition ITT.5 exists
then 11.1 is,equivalént to the statement (holding identically for any six

numbers ) ;
.'i,f. .[U..('b)z-f- w(£)] - [u(d) + ule)] 20 and
[u(a) + u(e)] - [u(e) + u(£)] > 0 then
[u(a) + u(®)] = [ule) + u(@)] >0 ,

and hence. to:

12.1. if u(bj.;iu(é) >ufe) - u(f) and ule) - u() 2 u(c) - u(a)

then u(b) - u(d) > ufc) f_ﬁ(a) .

__Similarly, 11.2 is equivalent to:

12.2, u(b) - u(d)>ule) - u(f) if and only if

Tul®) - w(@)l- [ufe) - u(a)l > [u(e) - w(r)] - [u(e) - u(a)l.

Now let the length of the utility,interval u(b) - u(d) = I, u(e) - u(f) =J

and u(c) - ﬁ(a) = K. Then 12.1 and 12.2 become similar in form to

II.5.1 and II.6:

13.1. 4f I>J and J>K then I>K

13.2.. 1> J if and only if I-K > J-K.

‘Thus 11.1 and.ll.Q,may be interpreted as stating conditions on utility

intervals.analogqus to the conditions stated by II.5.1 and 5.2 for

alternatives (whether or not these alternatives happen to be wagers).
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However, it should be emphasized that in testing the transitivity of
intervals we ﬁustfmake use of wagers; while we-did use wagers in testing
the transitivity of aliernatives, this is not essential to the theory.
From 12.1 and 12.2 it is clear that the transitivity conditions for
utility intervals are neéessary for the existence of a utility function
in the sense of Definition III.5.f/ To obtain evidence whether such a
funetion exists for a limited set of cutcomes consisting of winning and
losing small amounts of money, we tested certain impiications_of 11.1 and
11.2 Tor sextuples df outcomes which may be regarded as saﬁples from the
total set of outcomes. Lét,us designate six specific money ocubcomes
8y By a3, gu, a5, 8¢ arranged in ascending order by monetary value.
For reagons given in the next section we considered the following

probabilities only:
l}'l'. pl. = P(alah_,agaa); P2 = P(a'6a3’a5al|.)‘; P3 = P(a'58"2}a'6a‘l)'

For thege three probabilities the implications of 11.1 and 1i.2 are just:

15.1. Weak transitivity .of ubility intervals:

Bys Bys Py mOb 2ll > 1/2 or < 1/2.

X

It was conjectured by the authors that if the set of aiternatives is
stochastically continuous then the conjunction of weak transitivity
of alternatives and of weak transitivity ¢f intervals is necessary
ang sufficient for the existence of a utility function in the sense
of Definition III.5. While the manuscript was in preparation the
conjecture was proved by G. Debreu using his definition of stochastic
continuity - see Section II case (4) above.
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15.2. Strong transitivity of utility intervals:

Pl‘z'l/E if and only if p2,+ PS <

Py, > 1/2 if and only if p3.+ p; <1,

I A
:__J

p3 2_1/2 if and only if pl + Py

It will he noted that conditions 15.1 and 15.2 are ldenticsl with conditions
I1.7.1 and II.7.2 where, of course, the three relevant probabilities are
differently defined. If a wbtility function for the six outcomes

a --es Bg exists, 15.1 and 15.2 will be éatisfied; but the converse is

l)
not in general true. The existence of a utility function in the sense of

Definition IIT.5 implies, even for six outcomes, more than is implied by

the transiiivity of intervals condition (for example, III1.10 is implied by

the existence of a utility function but not by the transitivity of intervals

condition}; and the transitivity of intervals condition aione implies more,
for six oubtcomes, than is tested by checking the relations given in 15.1

and 15.2 with Py Py p., a8 defined above.

3
The second line of gpecimen cards in Table 1 illustrates the method

used in testing 11.1 and 11.2. Before the three pairs of wagers on these

cards were offered the subject it was verified that the chance events

,underlyiﬁg the designed money-wagers were even-chance events in the sense
* ‘ :

of Definition,3,—/ This justified assuming that all wagers on the cards

were {for the given subject) even-chance wagers; and therefore it could be

tentatively assumed that whenever the subject chose a wager (a column of a

card) he could be interpreted as comparing two utility intervals,

f/ A more precise statement of the procedure used will be given in the
next section.




25~

represented by-the rows of the card. .On the three cards Illustrated there
ére three pairs of identical rows; they correspond o the intervals I, J
and ¥ in 13.1 snd 13.2. (From 12.1 and 12.2 it is clear that interchange
of rows or of columns in a given card does not matter nor the interchange

of alternatives in one column.)

IV.. EXPERIMENTAL DESIGN
The experiment to be described was designed to test the plausibility

of the nhypothesis that (for given individuals) there exists a utility
function in the sense of Definition III.5 (and therefore in the sense of
Definitién I1.1), defined over a set of élternatives consisting of winning
and losingrsmall amounts of money and of even-chance wagers constructed
from the basic alternativeé. The individuals were 17 students from an
.élementary logic class at.Stanford University. The general hypothesis was
tested by testing certéin of its consequences: siochastic transitivity
{weak and'strong) of alternatives as applied to triples of alternatives
(interpreted here as wagers); and stochastic transitivity (weék and strong)

of utility intervals as applied to sextuples of alternatives.

The cbvious way of testing & stochastic theory of choice is to estimate

probabilities of choice from frequencies of choice observed when the subject

is repeatedly offered the same alternatives. This method, common from

psychophysical experiments, has been used with spparent success by a number

of workers in decision theory. These workers (who include Mosteller and
Nogee, Ward Edwards.and Papandreou)} were, of course, aware of the memory

effect, and used various techniques in the attempt to cope with it. In a
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pilot study for the present experiment we feund that with wagers of the
sort we wished to use the subject almost always makes the same cholce when
- offered the same_pair of'altérnatives; thus we would be forced to estimate
almost every probability as O.gr 1. The wagers between which the subjects
had to choose had the same actuarial value; the wagers could therefore be
assumed to-be_CIpse_in'subjective utility. Remarks by the subjects led to
the suspicion thét,the cause of the unforeseen consistency was.the subject's
ability to remember his preﬁious éhoices {although various masking
procedures were attempﬁéd such as reversing the order in which the wagers
in a pair were'dffered, and inserting other offers between repetitions of
the identical pair of wagers). In psychophysiéal experiments memory cannot
have this effecﬁ since the subject is giver no way of identifying the
repetition of a stimulus.

Therefore'in.ofdef ﬁo gvold the effect of ﬁemory, the same pair of
wagers was never pfféred twice to a subject. The method used for testing
dur_hypofhesis un@er this restfiction is explained in.the next éection.

Each subjeé£ ﬁﬁs asked %o make'319 cheices; a choice consisted in a.
verbal response (fAﬁ or ‘B') to a stimzlus-card of the kind illustrated in
.Table 1. In 107 caseé_selected (With certain limitations to be mentioned
later) at random, and unknown in advance to the subject, the reséonse of
the subject-was_foilowed.by playing off the wager selected, and the subject
lost or won the appfopriate amount of money.

-The 319-stimulus-cards vwere designed as followé; Every card displayed
four figures (positive_or negative) representing a possiblé outcome consist-
ing of losing or winning the amount of money shown. On the left were two

nonsense syllables.(WUH and -XEQ; Z0J and ZEJ; QuJ and;QUG) which stoed for




-2

chance events, The events were created by the subject tossing a die with

one nonsense syllable on three faces and ancther nonsense syllable on the

cther three faces. In an effort to offset recency and memory effects three
different dice were used. The Ttwo right haﬁd columns , marked 'A' énd 'B!
represent the wagers between which the subject was to choose.

For testing hypotheses concerning. the existence of an even-chance
wager utility function it was necessary tc ascertain whether the events
created by the three dice just described were even-chance events. In
practice this was tested indirectly by assuming, for any money amounts

m and n (in cents):

P(nEn, nfm) = 1/2 if and only if P{mEn, n-1 Em) > 1/2 and

P(mEn, n+tl E m) < 1/2.

Previous experiments had shown that, given this modified interpretation,
subjects generally accept the nonsense.syllable dice as generaﬁing aven-
'chance.events; therefore we teéted each die oniy a few times with each
subjéct (see Davidson, Suppes and Siégél [3],7p° 56 and Table 1, p. 57).
In a1l1, lé stimulus-cards were used to test the dice; three additional
cards were added to this group to familidrize the subject with othef sorts
éf chbice.

The femaining cards were inteﬁded to test the transitivity of
alternatives and of intervals (II.5 and III.11). Thirty-eight sequéﬁcés
of seven money amounts were chosen such that the money amounts, in the
iight of previous experiments (Mosteller and Nogee; Davidson, Suppes and

HSiegel), would be approximately evenly spaced in utiliﬁy for most subjects.

Table 2 gives the first 19 sequences; the other 19 sequences were produced
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from the first bj-reversing the signs {thus wins become losses and vice
—vérsa). This symmetry provides a simple guarantee that the actuarial value
of the complete'set of wagers is zerce; why this 1Is desirable will be
explained below. -Eight cards were made for each T-tuple of money amounts,
yielding 8338 = 304 cards in all. .Using the letters at the top of Table 2,

the elght cards showed the following patterns:

1.2-3_#5678

abl cdjablbcecjacide bec|bd

del felfeled|fdlgblgfige

It will be Obsefved that the tryisds -3, h, 5 and 2, 7, 8 each contain
Just three alternatives (wagers, represented as columns) and thus may be
used to test ﬁhe.tfansiﬁivity of alternatives. Triads 1, 2, 3 and

L, 6,7 eaéh compare, in,effect, three intervals (represented by rows)

and thus may be used to test the tranéitivity of intervals. Because of
.this,overlap between triplés we have achieved some economy irn the number
.of observations: the total of 304 cards yields 76 triples'designed to test
the transitivity of alternatives and 76 triplesrdésigned to test the
transitivity of intervals.

The assignment of one of the three dice to a sfecific card_was'random.
Because certain wagefs (not cards) were repeated once, the colum (A or B)
on which a wager appeared was randdmized; the row (top or bottqm).assigned
to an outcome in a wager was élso randomizedar Finally; the order in which
the cards éppeared was randomized, except that the fifteen cards used for

learning and to test that the dice created even-chance events preceded all
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cthers, and all three cardé from a given triple appeafed during the -same
session.

‘We may now make explicit two rules employed in limiting the offers
appearing on the stimulus cards. No sure thing alternatives were allowed
on the ground that these might distort the results should there exist a.
specific utility or disutility of gambling. The second ruie is intended to
.eliminate cases of absclute preference. In any given triple of cards there
are six distinct outcomes. Let us assign the numbers 1, 2, ..., 6 toc the
six outcomes in order-of monetary value; the'number'assigned an outcome

denotes its rank. The rule is this: on any given card, the sum of the

ranks of the two outcomes in one wager must be equal to the sum of the ranks

- of the two outcomes in the other wager (see III.14). ‘Since the cutcomes
are chosén to be approximately evgnly spaced in utility, the rule is
'designed to Insure that two wagers which are compared shall not differ too
strongly in-gxpected utility. In application, no twd wagers on one cayd
differed by more than #% cents in actuarial value. -When the transitivity
~of intervals is tesﬁed for six outcomes the two rules just mentioned limit
the pairs of wagers to be compared to exactly three.

Of the 17 subjects 6 were women and 1l were men. Subjecis Were.tested
individually. ‘Tach spbject came to three sessions, spaced a few days
_apart; two ses?ions were ngver on the_same day fqr a given éubject, nor
more than five days apart. A session lasted between 35'and 55 minutes.

"Subjects were asked not to discuss the experiment during the testing; none

of them had any detailed knowledge of game theory or declsion theory.
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AL the beginping_of the first sessidn a subject was shown the three

nongense gyllable dice and the game he -was to play was explsined. -The

-subject.was,given:SEgOO credit_(in chips) and told that this was his stake

for the three segsgions. At the end of the three sessiong, his chips would

be redeemed in cash; if he had WO 5 he would receive $2.00 plus his

winnings; losses would come cut of the $2,00; greater losses would have to
be paid out of his own pocket.

The first 15 stimulus cards have been described; of these, 12 tested
whether the subject accepted the dice as creating even-chance eventg, and

three were for learning purposes. In effect, every subject did accept the

~dlce as "fair.' All of the first 15 cards were played off: .alter the

subject gave his response by choosing wager A or B, he put the

indicated die in a leather cup, shook, and rolled. Depending on the

.ouﬁcome, the experimentef'then-collected from or paid out to the SUbject‘

the appropfiate number of chips. The rest of the first session consgisted
in responses to 88 more stimulus cards testing the two sorts of transi-
tivity. OFf these, 25 choices were played off; the subject did not, of
course; know whether a card would be played until after he had made his
choice. The cumulative expected win for a subject who always.chose-the
wager with the higher actuarial value was +4#4¢ for the 25 cards which were

played off. Bubjects were urged to take as long as they wished to make a

decigion.

-During the second gession the subject was asked to make 112 decigions;
of these, 36 were played off. The cumulative -expected win for thé actuarial

chooser was +39¢.




-31-~

The last session called for 104 decisions of which. 31 with an expected
win of +55¢ were played off. During this last session the. experimenter
could play off additionsl wagers to increase the winnings of an unlucky
subject .

As mentioned above, the actuarial value of the total of all wagers
offered was zero. 'Sincé the wagers between which a subject was to choose
-seldom had exactly the same actuarial value, a consistent "actuarial
chooser"” could have expected to win if every choice had been played off.
The cards chosen for playing had a small positive actuarial value for the
HMrandom chooser' and a higher actuarial value for the actuarial chooser.
-The hope was that the average subject with agverage luck would slowly
increase the sum at his disposal; its size would not vary enough to
infiluence choices substantially. It may be doubted whether thié hope was
entirely realized. In any case for many subjects, the sum at thelr
disposal changed fairly radically during the play, and verbal comments by
subjects suggested that this influenced choices. The highest total win
(for all three sessions) was g4%,87 (including the original-SQDOQ stake);
the least fortunate subject received a few cents less than $2,00, However
geveral subjectg hdad their winnings 'artificially' increased during the
last session by the experimenter naming for playoff certain cards on which
both wagers had high positive actuarial value; unknown to the subject,.it
had been decided in advance that no subject would average less than 51,00

an hour for his time.

S,

e Y e
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V. STATISTICAL DECISION RULES

Transitivity regiong. Congider the three related probabilities Pys

Bys p3 as defined for the statement of conditions IX.7.1 and II.7.2, or

‘ag defined for the statement of conditions TII.15.1 and III.15.2. Let us
i i i i .t _ , R

denote by p =< El’ Pg’ p3 > the 1 ordered triple of probabilities

so defined. pl is a point in the unit cube U, since each component of

is between 0O and 1.

‘We now define two sub-regions of U:

~Region W: pi obeys condition II.7.1 {or IIT.15.1) {region of weak

transitivity).

Region -S; _pl obeys conditiOanI.7.2'(or I11.15.2) (region of strong

transitivity).

Obviously region § 1s included in region W. The hypothesis pairs to be
tested may be stated:

Hypothesis HW: Foyr all i, -pl is in W;

Hypothesis Hz: There exists an i such that ‘pl is in U-W;

Hypothesis HSE For all i, pl ig in 8;

Hypothesis H:: There exists an 1 such that pi- is in U-S.
Note that each'of'the hypotheses has two empiricsl interpretations; one
concerns stochastie transitivity of alternatives, the other stochastic

transitivity of ubility intervals. We need not distinguish between the

two interpretations in discussing the method cf' statistical testing.
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Since a given choice was presented to a subject only once, it was
impossible to estimste the probability triples pi. from cbserved.
fregquencieg. Corresponding to a glven pi we made one observation
consisting of the three responses of a subjeet to a tripie of related
stimulﬁs cards. Suppose, for the sake of simplicity of exposition, that
the pairs of wagers on a related triple of stimulus cards are arranged in
the order suggested by the definitions of Pys Py p3 in Sections IT and
I1T (this has been done for the Ltriples of cards shown in Table l), Then
if the subject chooses column A on the first card, there is greater
Jikelihood that Py > 1/2 thar that Py < 1/2; if he chooses columﬁ A

on the third card, there is greater likelihood that p., > 1/2 than thai

3

p3 <_l/2l An observation is an ordered triple of responsés; there are

Just eight possiblie observations:

= < A,AA > 0. = < B,AA >

0, = 5

0, = < A,A,B > Og = < B,A,B >
0, =< A,B,4 > 0, = < B,B,A >
0y = <4,B,B> 0g = <B,B,B >

In a non—stochastic'theory observations Ol and O8 would be cases

of intransitivity. .In a stochastic theory they merely strengthen the

evidence in favor of {stochastic) intransitivity. To avold confusion we
call such observations cyclical because, e.g., < A,AA > means that a
certain wager a was chosen in preference-to b; b to ¢; and c in

preference to a, thus forming a cycle.

i
|
i
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In its strict formuiation, cur problem 1s analogous-to the follbwing.
simpler (one- instead of three-dimensicnal) problem: 'Test the hypothesis
that each éoin_made by a certain coin-making machine has a bias, not
necessarily an egually strong one for all coins, in favor of falling heads.
You are permitted to take a finite nurber of coins-and to toss each coin
Jjust once." ‘Each coin of this .example corresponds to.a triple of choices

from three pairs of our wagers. The parameter-gpace is, respectively, the

unit-interval (0,1) or the unit-cube U. The interval (1/2, 1) which
contains the probability of a biased coin falling heads corregsponds to our
transitivity reglon W (or 8) which containg all probabllity-triples if the'
subject satisfies the transitivity coﬁdition. Should this formulation be
(accepted; then, out of the infinite set of potential observations (coins,
~triples of choices) it would suffice for a single one to be outside of a
specified reglon (the bias-interval for coins, the transitivity reglon for
responge-triples), in order to rule out the hypothesis in'questionl But
such a fact cennot bhe ascertéined empirically, from a finite nuwber of .
observations. -The problem becomes accessible to empirical test if it is
reformuilated as follows: "A coin-making machine is characterized by an
unknown probability distribution of the chance variable p ({probability of

g coin falling heads); one is permitted to toss coins, each only once, in

order to get evidence about the distribution of p." The chance variable p

corresponds; in the theory of stochastic choice, to the triple:

< Pis Poo 93 > defined shove.

For example, one might test the following hypothesis sbout the

distribution of p: +the proportion of coins (or of triples of wagers)
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whose p falls into a specified region is at least 95%1 ‘This approach has
been used in a later study, by H. D. Block and J. Marschak [21; with
regions like S, this statistical problem is rather complicated. In the
present study; we chose a simpler though more arbitrary approach by adding
the following sssumption: p  is uniformly distributed sbout an unknown
region which is. either the whole space of possible p's {the unit cube, in
our case) or a specified region (such as W or AS). We have thus two

‘pairs of alternative hypotheses:

H: p is distriduted uniformly over W, and Prob(p” eW) = 1
H: p-  is distributed uniformly over U, and Prob(p” eU) = 1
B : P is distributed uniformly over &, and Prob(p €3) =1
H_: p  is distributed uniformly over U, and Prob(p eU) = 1.

It turns out that for testing the statistically reformulated
hypotheses, all that matters (the "sufficient statistic™) is the number of
cyclical observations. Computations yield the following probabilities of

a cyclical observation:

Probability of a Cyclical Observation

If HO is true o) = 25,00 %
, 15

If HW is true o = 18.75 %
. . l_,_l o

If _HS is true : ag = 13- %

it et e e e e
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The reasoning leading to the first figure (25%) is obvious: if pl is

distributed wniformly over the unit cube, each of the eight possible

observations Ol, e n g O8 is equi-~probable. Since two of these are

cyclical, the probability that a given observation is cyclical if _HO is
*

true ig 1/4. The other two figures (15/80 and 11/80) were obtainede/ by

integrating over the specified region (W or S, respectively) the

-e¥Xpression

pyPPy * (L-p, )(1-p,)(1- 93),

(ifec, the probsbility that O1 or O8 will ocecur), and dividing by the
volume of That region.

The decision rule used was this (we state it for HW; that for HS

is analogous): Accept Hw if the number r of cyciical observations is
less tha@ ¢, where ¢ {a number obtainable from tables of binomial
distribution) is such that Prob {(r < ¢, when H, 1s true) = Prob (r > ¢,
when HW ie true)l The two probabilities just written are, respectively,
that of commitﬁing.the error of accepﬁing HW when HO is true, and that
of committing the error of accepting Ho when ‘Hw is true. By making

them equal, we mike the larger of the two error probabilities a minimum,

rThe significance level of test 1ls equal to both of them. IT instead of

this "minimax™ principle that takes 1nto sccount both kinds of error we had
followed the custom of merely "testing the null hypothesis," the decision

could have been made, given our number of observations, with a much lower

f/ - With the help of Karol Valpreda Walsh and Robert C. Mercer, which we
' gratefully acknowledge.
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probability of errors of Type I {called "significance level). The latter
would then have been defined as the probability of rejecting HO when it is
true. However, the nature of the problem forces us to treat the null
hypothesis and its alternative symmetricaliy.

In the present experiment we made on each subject a total of 76
observations for each hypothesis; 26 observations for each hypothesis were
made during the last session. Applying our computations and decision rule

to these figures we obtain:

Number of Observations

n = 76 {all sessions) n = 26 (Session III)

Decidion rules

Accept HW if r is less than: 17 6
Significance level: 249 35

Accept. Hs if r is less than: 15 5
SBignificance level: 10% 23%

One obtains, of course, much lower significance levels if one is
permitted to regard the resgponses of all subjects as belonging to the same
statistical population; thus increasing the sample size by the factor of

17(the number of subjects). Using the normal @istribution formula, one .can

e e e

compute the decision rules at which the probabilities of errors of both
kinds are equated; these ruies are, for sampies of this magnitude: reject
Hw if and only if the proportioﬁ of cyclical observations is larger than
21.7 percent; reject Hs if and only if this proportion is larger than

18.7 percent_(;ompare these figures with the last line of Table 3)}. The
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significanee levels are as follows: for Session III, . .055 for I-IW and
001 feor HS; for the total of all sessions, .003 for Hw and
negligible for HSL

Finglly, we observe that if the proportion of cyclical chservations
falls very much below the probability indicated above for weak or strong
transitivity, we shall presume that the assumption of uniform distribution
over ther(weak or strong) transitivity region is to be corrected: we shall
have to assign lower welights to those points of the region that lie near
itse boundaries other than the facets of the unit cube.

As another and possibly preferable way of exploiting the information
more fully,'Herman Cherneff and Roy Radnerf/ suggested computing the
likelihood ratio for each pair of hypotheses and each possible set of

observations. Let P (r,n) be the probability that, out of n responses,

cexactly r are cycliecal if Ho is true. With a corresponding nctation

Tor the cages when HW or Hs are true, we can use the ratios
LW(I';_H) = ,Pw(r,n)/Po(r,n) and Ls(r'}n) = Ps{rjn)/Po(I“,n)

to convey the confidence that one ﬁay attach, on the basis of observations,
to the hypothesis Hw or Hs’ each against the_hypothesis Ho' Using the
binomial distribution formulas, one derives from the probabilities of
cyclical observations: (20/80 for H_, 15/80 for H_ and 11/80 -

for H_), the two likelihcod ratios

L (r,n) = (9/13)" - (13/12)" and L (r,n) = (11/23)7 . (23/20)"

In an oral communication

L*
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These numbers are tabulated below, for n = 76 and n = 26 {with
ranging from O‘ to; respectively, 17 and T), and can he used to
interpret, subject by subject, the results shown on Table 3 for the total
of observations and for Session III.f/

Likelihcod ratios (approximate)

No. of cyclical Hw against.HO Hs against HO
responses:
r = ‘n=T6 n =26 n="7% n=206
0 430 8.0 40 000 38
1 300 5.5 20 0C0 18
2 210 3.8 -9 300 8.7
3 140 2.7 L 500 b
i 100 1.8 2 100 2.0
5 69 1.3 1 000 0.9
6 k9 0.9 490 0.5
7 33 0.6 240 0.2
8 23 0.4 : 110 0.1
9 16 5k
10 11 26
11 7.6 12
12 5.3 5.9
13 3.6 ' 2.8
14 2.5 1.3
15 1.7 0.6
16 1.2 0.3
17 0.8 | 0.1
f/ Again, if we regard all subjects aé belonging to the same gtatistical

population, the likelihood ratios are naturally much higher: they
are of the order of many thousands, for both H_ and H ; even if
the proportion of gyclieal observations is as hggh as-lBSpercenta
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‘VI. RESULTS OF EXPERTMENT

Table 3 summarizes Lhe main experimental finﬁings, For a large
majority of éubjects9 the number of cyclical responses falls far helow the
expected frequency under strong transitivity (both of &lternatives and of
intervals). .Under the null hypothesis, one out of four triples could, on
the average, be expected to be cyclical; this would result in 38 cyclical
responses Tor the total of 152 triples, or 19 for the 76 triples which.
tested each of the two varieties of fransitivity. The highest total number
of cyclical responses for any subjiéct was 28 (Subject J), while Subject F
had the highest number of cyclical responses.(l?)‘for a set of 76 triples.
The expected numbers of cyclical responses in 76 triples for HW‘ ang Hs
are 1%4.25 and 10.45 respectively. Two subjects (J and N) in the- case of the
transitivity of alternatives, and two subjects (C. and ¥) in the case of the
transitivity of intervals; exceeded The number of cyclical responses
expected on the assumption that Hw is true. .The average number of
cyclical responges for all subjects-on-the 76 triples testing transitivity
ot alternativés is 10t while %he average on the triples testing transi-
tivity of intervals is 10.7. These figures ére close to the prediction of
10.45 cyelical responses if strong transitivity holds.

The last line of Table 3 should be related to what was said in
Section 5 dbout wsing the responses of all subjechs as a samplerfroﬁ the
same population. On this basis (ard under the assumptions of Section 5
regarding a pridri distribution) weak as weil as strong transitivity, for

both alternatives and intervals, should be accepted at a guite low
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(i.e., strict) significance level}f/

Table L applies the Decision Rules of Section V toc each subject (using
the results Trom all sessions)% For all subjects, Hypothesis Hw of weak
transitivity had to be accepted with respect both to alternatives and to
intervals (though at & very modest, i.e., high, signifidance level: 24%h).
For all but two subjects, strong transitivity had to he accepted (at a
slgnificance level of 10%), but the two subjects were not the samé for
alternatives and for intervals. The correlation of .49 betwean behavior:

- with respect toc alternatives and behavior with respect to intervals is just
significant at the 5% level for 17 observation-pairs; howevefg it. should not
be judged significant at that level if one considers the Tact that some of
the data were used in two ways as described in Secticn IV.

An interesting feature of the data displayed in Table 3 is the change
in the proportion of cyclical cbservations from session to session. While
not always evident for individual subjects, when the results for all
subjects are averaged theré is a systematic decrease in the percentage of
cyclicel observations from session to session both for alternatives and for
intervals. During the first session the overall proportion of .cycles is. .

13,4%; during the second session 10.56; during the third 7.4%.

f/ . If-weak transitivity is accepted Tor both alternatives and intervals
and if the set of even-chance money-wagerse can be regarded as
stochastically continuous then--as remarked in a footnote in

“Bec., IIT--a utility function in the sense of Definition III.5

exists. -The size of the sample used for the joint test of ftransi-
tivity of alternatives and of intervals is somewhat reduced by. the
overlapping between the setg of cards used for these two tests
separately (see Sec. IV); this raises the significance level somewhat.

|
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For the third seseion, the Decision Rule indicates that the null
hypothesis must be accepted for .one subject (N) for transitivity of
alternatives, and for one subject (J) for transitivity of intervals. There
1s also one subject in each category {Subjects J and C respectively) for
- whom weakx but not strong transitivity must be accepted. In every other case
the hypothesis of strong transitivity may be accepted.

During the three sessions tﬁere was an increase:in the correlation
between performance with respect to alternatives and perfoymance with

respeet to intervals, as Tollows:

Session I IT IrT Total

Correlation .00 52 .58 49

The change from I to II is significant at the % level.

VII. DISCUSSION

Assuming a uwtility function of money unigque up to a linear trans-
formation exists for a subject, it is possible to make some rough inferencee
from the data concerning the shaﬁe of the utility curve (a curve which plots
ﬁtility against the money amount of the basic alternatives). .Table 5
elessifies the responses of each sﬁbject to the 304 cards used to test
'transitivity. On 249 cards the two wegers had different actuarial values;
the second and fifth columns in Table 5 show in how many cases the subsect
chose the Wager with the higher actuarial value (‘actuarial respcnses’) and
in how many cases the subject chose the wager with the lewer_aetuarial

value ('counter-sctuarial responses'). On every card, one wager involved
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both the highest and the lowest money amount, while tﬁe cther wager involved
outcomes of intermediate money value; see III.14. Responses may therefore
be classified sccording as the subjects chose the wager with the greater or
the lesser dispersion (the dispersion of an even-chance wager is the
difference in money value between the two outcomes). The second and third
columns of figures in Table 5 show how often the counter-actuasrial choices
Tavored high ér low dispersicn. 55 cards showed wagers of equal actuarial
value; these responses are classified to indicate whether the high cr the
low dispersion wager was chosen. In evaluating the figures in Table 5‘it is
necessary to know that of the 2&9 cards with wagers cof unequal actuarial
value, 124 paired the higher actuarial value with the higher dispersion and
125 paired the higher actuarial value with the lower dispersion.

A subject for whom utility was linear in money ard with absolute
‘preferences between all pairs of wagers offered would always choose the’
wager with the higher actuarial wvalue. There is no subject who did this.

Subjects A and O come closest with 22 and 33 counter-actuarial answers.

Both these subjeéts show some preference for low dispersion when they depart
Trom the actuarial choice.

‘We may call a subject conservative who, when departing from the

actuarial answer, more often than not chqse the wager with the lower
dispersion, for such a subject would, from an insurance point of view, be
payiné for the privilege of taking,the smaller risk. In the same way we
may call a subject venturescme who, when departing from the actuarial
answer, more often than not chose the wager with the higher dispersion.

Using this criterion, five subjects were conservative and twelve were
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ventureseme. In the light of previous experimental results with college
students (vid. Mosteller and Nogee [11] .and Davidson, Suppes and Siegel [3]),
.the percentage of venturesome subjects is perhaps surpi‘ising° Part of the
explanation may lie in the fact that the subjects were volunteers and knew,
before they volunteered, that the experiment involved some financial risk.

‘A subject who invariably chose the higher or the lower dispersion would
yield no cyclical observations (no pair of wagers showed the same dispersion
- a5 this would lead to absolute preference ), while the consiétent actuarial
choosey would be certain to show no more than six cyclical triads of
responses {there were six triples of cards where each pair of wagers had %he
-same actuarizl value). Itris therefore an interesting guestion to what
.extent the results obtained were due to actuarial, conservative;or venture -
some strategies (conscious or otherwise) on the part of the subjects.
Table 5 makes it obvious that no subject consistently foliowed any of the
.thlee policies. Comparison of Tables.3 and 5 brings out the fact that {the
Tour suﬁjects with the largest number of cyclical observations_(ﬁubjects C,
D, F and J) include none of the five subjects with the largest number of
counter-actuarial responses. .On the other hand; Subject L, with the lowest
nutber (4) of ecyclical triples, seems to owe this score in. part to a
conservative taste for low dispersion wagers, while Subject A, with only
Tive cyclical triples, has the fewest countereactuarial responses.

We may also ask whether the frequency of cyclical observations depends
on the size of the differences in the actuarial values of each pair of
wagers. One would expect cyclical observations to occcur relatively more

often in cases where these differences are small and thﬁs provide no
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guidance, or only a weak one, for the choice between two wagers and the ' k

fanking‘of three wagers. In Table 6, four groups--4, B, G, D--of triples

are defined, the number of cbgervations (i.e., the number of triples
times 17, the number of subjects) is entered for each group, and the
frequency of cyclical vs. non-cyclical observations given. A finer
grouping of.triples was precluded by sample size limitations. In fact;
the distinction betwéenfdroups A and B proﬁed to be statistically
insignificant (and hence the unexpectedly %EEEE percentage of c¢yclical
Qbservations-in Group A compared with Group B is not statistically
significant). Significant and interesting results are obtained by
comparing Group (A,B) (which is the union of A and B and thus consists ;
of 211 triples with actuarial differences not exceeding 1/2 cent on any
card) either with Group C (actwarial differences not smaller than 1 cent
on any card) or with the composite group (C,D)(actuarial difference

exceeds 1/2 cent on at least one card). These comparisons tend to

o e ey e o © e e

conf'irm the hypothesis that small actuarial differernces favor the
oceurrence of cyclical choices.

©. 1t may be asked whether the decresse in the.ﬁropdffion of ecyclical
observations from session to session was accompanied by an increase in
the proportion of actuarial responses. The following figures show that

it was.
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Seseilong
I 1T .o 11T
Number of cards with
wagers of different :
actuarial value 1241 1568 139k
Number ¢f actuarial
choices 810 1106 979
(Percentage) (65.3 %) (69.2 %)  (70.2.%)
Yuwber of triples , h8 952 88k
Number of non-cyclical _ .
observations 648 845 819
(Percentage) (86.6 %) (89.5 %) (2.6 %)

The inecrease in the proportion of actuarisl choices was stabistically
gignificant (P < ,05) from Session I to Session II and definitely not
gignificant (P > .50) from Session II to Session III. On the other hand,
the proportion of non-cyglical observations increased highly significantly
(P < .01) from Session II to Session ITI, although it did not increase
significantly .(P > .2) from Session I 4o Session II. This suggests that,
to. the extent to which there was an increase in nonucyéiiéal observations if
should not be explained by the increase in actuarial choices. However, a
more detailed analysis would be nécessary to clarify this point;

In the table just given, the proportion of non-cycliecal observations to

the total number of triples of cards is, in each of the three sessions,
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consistently higher than the proporticn of actuarial choices to the total
nugber of cards. -A formal test shows the difference between the proporticns
.to be statistically highly significant. Thus, considerihg all subjects to
belong to the same population, the probability that a subject's response to
.a triad of cards will be non-cyclical is higher than the probability that
his response to a single card Wiil be actuarial.

Broadly speaking the present experiment shows that in its context
-decigions are better explained by certain implications of a stochastic
decisicn theory than by the assumption that choices are méde at random.

-Thé interest of this result would be impugned if the same dabz could be as
well or better egplained by alternative hypotheses. -For this reason we

-have been considering the plausibility of the claim that, to the extent that
subjects avoided cyclical triads of responses (and hence tended_tq verify
the hypotheses under testj, tﬁié was.dué.fﬁ the.mgfe §r iess c5ﬁé;s£én£
employment of actuarial, venturescome or congervative policies by the subjecis.
In Table 7 we attempt a direct comparison of three alternative thecries as
predictors of certain observed choices.

Assume that a related triple of cards was always arranged in the “"normal
form® shown in Table 1 and that the three cards were presented to the subject
in order from left to vight. If a subject chose one left and one right
column for the first two cards, the hypotheses HW‘(or Hs) as well as H
would predict equal probabilities of choice for each wager on the third card.
 The interesting cases arise when the left column or the right column is
chosen on both.the first two cards; then the hypotheses HW and HS will

‘give the higher probabllity of choice to the opposite column on the third

g e e
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card {for example, if column A is chosen on each of the first two cards,
column B is more apbt to be chosen on the third card if the-hypotheées are
true)q- |

‘The first two columns of figures in Takle 7 show how often the subject
chose the more probable wager on the third card for those cases where both
of the first two choices were wager A or wager B. The third and fourth
columns show how often, -for tﬁe same cards for which results are given in
the first two columns, the subject chose the wager with the higher actuarial
value. The total number of predictions is lower becszuse some cards had two
wagers with equal actuarial values. The last two. columns show, for the same
cards again, how often the subject chose in accord with his general tendency
to favor low or high dispersion wagers. This tendency was determined from
the figures in Table 5 showing how often the counter-actuarial responses of
the subject favored low or high dispersion.

At the bottom of Table 7 the three theories are compared with respect
to the percentage of correct predictions. The expected utility theory is

superior to the other two with 8106% correct predictions; the actuarial
theory is slightiy better than the dispersion theory with 72.2% correct
predictions as compared to 69.0% correct predictions. Each of the differences
between these proportions (taken pairwige) is statistically significant

(P < .0L). It is also worth noting that for every individual subject the
-expected utility theory predicted betier than the dispersion'theory; however

the actuarial theory was very slightly superior to the expected utility

theory for two subjects {Subjects € and J). .-
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- A remark is called for concernlng the marked decrease in the proportion
of cyclical observations from session to session. It.seems_attractive to
call this & learning phenomencn.  However, what was learned was certainly
not connected with specific cards, wagers, money amounis, or triples of
cards, for none of these was repeated in two sessions {specific cards and
triples were not repeated even in the same session). The evidence indicates
that the subjective probability of the chance events was firmly establiched
from the start. We may say that the subject learned transitive behavior or
that he learned {o maximize expected utility (at least in the sense of our
stochastie definitions of thése terms). There is also evidence that some
subjects learned to make actuarial choices. The matbter seems worthy of

fuller study; both theoretical and experimental.

VIII. -SUMMARY

The experiment was designed to test whether certain conditions hold
which are necesgary for the existence of a utility funetion over the set of
money wagers as well as over thé set of money amounts. Seventeen subjects
were tested individually in three sessions each. Rvery choice involved a
risk since subjects did not know in advance ﬁhich choices would be played
.off, that is, would result in actumlly paying (or receiving) money. The
main results may be summarized as follows:

1. .For allrsubjEcts, the number of intransitive triads of responses
(called 'cyclical observations') was, as required by the hypotheses, less

than the number expected by chance.




2. A statistical test, based on responsesg to non-repeated choice
situations, indicates the acceptance, for all subjects, of the hypotheses
of weak stochastic transitivity of alternatives and weak stochastic
transitivity of utility intervals.

3. For fifteen subjects in each case, the acceptance of the_hypotheses
of strong stochastic transitivity of alternatives and of intervals is
indicated.

4. Both in testing the transitivity of alternatifes and the trensitiv-
ity of intervals; there was a systematic decrease in the number of ecyclical
responses from session to session.

5. A comparlson shows the superiocr accuracy of a stochastic theory
of decision in predicting certain cheoices as compared to two alternative
theories. On the whole the evidence does not appear to support thé claim
that the low number of cyclical observations can be wholly éxplained by
simple policies Based on the actuarial values of wagers, or on the degree of

risk (dispersion).
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TABLE 1

Specimen Btimulus-Cards , "

Yor testing tfansitiVity of alternatives:

A | B A B A B | |
Z0J | ~5¢ | +364 QUG | +364| -5he WUH| -54¢| - 5¢] f
ZES —21¢ ~384 QUT | -38¢| +22f XEQ! +22¢| -21f

For testing transitiviity of uitility intervals:

A B o A B A B ’

| zoF | - 6% + 54 | QUG| +38¢| +314 WUH{ +31¢| +38¢

7ES | +24d | +13¢ | qur| #13¢] ok XmqQ| + S5¢| - 6f
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TABLE 2
Money Amounts (Wing and Losses) Used in

Constructing Stimulus-Cards

- Bequence a b c d e T g
1 17 -l2 -5 42 +8 417 421
2 -20 -16 -11 -k w3 +10 7 +15
3 -12 -5 + 2 + 9 ESLt +19  +e3
L 22 -18 -1k -9 -2 + 5 'fle
5 -1k -8 -4 + 5 +13 +20 +26
6 -36 -17 -8 + 2 +10 +21 +27
7 -13 - 8 -5 -1 + 4 + 7 412
8 35 -28 . 22 -15 - 8 -2 + 6
9 27 -16 L+ 7 421 43k .+#7
10 -6 + 1 + 8 +15 +22 +30 +34
11 -39 -25 -9 + 6 +23 +40 +56
12 ~37 -2 -6 + 5 21 +38 +54
13 -7 -k -1 +3  +6 + 8 +11
14 -1k -9 " -2 +3 + 6 +11
15 -6 + 2 +12 +21 - +29 +36 +ho
16 24 =20 -1k -7 +1 + 8 +13
17 =31 ~17 -5 + 8 +21 +33 +h6
18 -11 -3  + 4 +12 +19 +2k +28
19 =17 -6 +5 +13 +2k +31 +38
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TABLE 3

Number of. Cyclical Observations for each Subject

Testing Transitivity _ Testing Transitivity
of Alternatives of Intervals

Sessions: I II  III  Total T I III  Total %
Number of triples _ é
offered 22 28 26 76 22 28 26 76 !
Expected number Number of Cyclical Observations }
under uniform {
distribution over - :
the region of: 3
‘ i

unit cube 5.50 T.00 6.50 19.00 5.50 7.00 6.50 19.00 ‘

‘Weak transitivity %.13 5.25 4.88 1k.25 L.13 5.25 k.88 14.25
strong transitivity 3.03 . 3.85 3.8 10.45 3.03 3.85 3.58 10.k5

Subject

A L o] 0 I3 0 0 1 1

B 3 5 2 10 1 6 3 10

- C 5 3 3 11 6 5 5 16

D b 7 0 11 b 5 2 11

E 1 o) 0 1 0 3 3 6

F 3 6 0 g 5 10 2 17

G 2 1 2 5 3 0 0 3

H 2 1 1 i ! 2 1 7

I 1 2 1 by 3 3 0 6
J 2 9 5 16 3 3 6 12 L

K i 2 2 8 3 5 3 11

L 1 1 0 2 1 1 0 2

M 2 2 1 5 7 5 1 13

N 6 3 7 16 2 0 3 5

0 L 2 1 7 3 2 0 5

P 1 3 3 7 2 1 3 6

Q T 5 2 1k 1 L 2 7
Average ho. of 3.06  3.06 1.76 7.88 2.8 3.24h 2.06 8.12 |

gyclical

observations: :
|
Percentage of 13.9 10.9 6.8 10.4 12.8 1.6 7.9 10.7 :
cyclical ' |

. Observations:




_ TABLE 4
All Sessiocns (76 Triads); Distribution of Subjects by the Number of Cyelical

Observations. {Correlation Coefficient = .kg)

No. of cyclical _ No. of
observations for No. of cyclical observations for intervals: subjects:
opticng:
21l .2 3.k .5.6.7.8.9.10.11 .12 .13 1% .15 .16 .17
L i ' 1
2 L 1
3 0
b oA I H 3
5 G M 2 5 &
6 0 g‘@
. 3 o
.7e 0 P 2 g 2
8° K 1 §:§ !
9 PooL il }
- L
10 B 1 g8
11 D C 2
12 0
13 e
B Q 1
. Les
16 N J ﬁ'ﬁ
17 0 g:g
g
No. of 1 1 1 0 P 3 2 0 0 L 2 1 1 0 o 1 1
sub - '

Jects: Accept Strong and Wesk Transitivity ' lhccept Weak Transitivity Only
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TABLE 5

Responses for each Subject According to

Actuarial Value and Dispersion

(Total number of wagers = 304)

Subject Pairs of wagers of.unequal Pairs of wagers All ?airs
actuarial value of equal of wagers
actuarial value
Actuarial Counter-actuarial
rPespornses regponses

Dispersidn Total Digpersion ‘Dispersion

chosen chosen chosen
High Low High Low High Low
A 227 10 12 22 13 Ll 134 170
B 149 75 25 | 100 41 1h 213 91
c 162 5l .33 87 37 18 184 120
D 165 5 9 8k 43 12 234 70
E 17k 45 30 5 29 26 168 135
F 161 73 15 88 b 14 203 81
G 1kg 79 21 | 100 43 12 205 79
H 175 65 9 Th 56 9 225 79
1 200 36 13 | kg 3h 21 181 123
J 162 50 37 | 87 27 28 16k 140
K 167 5l 28 82 3k 21 18k 120
I 182 15 52 67 18 37 103 201
M 136 kg Bl | 113 28 27 137 167
N 160 53 36 8g 37 18 177 127
0 216 12 21 | 33 12 i3 127 177
P 165 23 61 8k 18 37 104 200
Q 145 58 W6 | 104 3k 21 169 135
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Actuarial Characteristics. of Triples Qffered
and the Frequency of Cyeclical Obeervations

Character of triples offered

Humber of observations

(d = difference between the

actuarial values

of the two

wagers on a card.)

A. d =0 on all

B. 0<dc<1i/eg

(4,B). 0<4

I A

1/2¢

three cards

on all three
cards

on all three
cards

C. 4> 1¢ on all three cards

‘D. Al other tri

Ples

(C,D). &> 1/2¢ on at least one

of the

thiree cards

TOTAL

Varistion of frequency between

A against B

C agasinst D

(&,B) against C

(A,B) ageinst (¢;D)

groups

Percentage
Non'- © of c¢yclical

Total Cyclical cyclical in total

102

272

(374)

Lho
1768

(2210)

2584

e

1.3

3.2
13.7
43

17 85 16,7
59 213 21.7

(76) (298) (20.3)

ho 393 11.1
147 1621 8.3
(196)  (201k) (9.3)
272 2312~ 10.5
P Significant?

> .25 No
> .05 Hardly
< .0C5 . Yes
< .005 Yes
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TABLE 7T

Comparison of Expected-Utility, Actuarial, and

Dispersion Theories as Predictors

Subject | Expected Utility Actuarial Theory Dispersion Theory
Theory
Correct Incorrect | Correct |Incorrect | Correct Incorrect
predic-
tions
A 8k 5 T 5 56 33
B 63 20 39 29 60 23
c 46 27 4o 20 Ll 29
. D 86 22 69 ok 8iv 24
B 76 7 56 19 50 33
F - 8o 26 68 28 I 32
G 86 8 b7 33 8o 14
H 100 11 7h 22 % 19
I 1 10 66 8 50 3L
J 4o 28 L3 25 Lo 35
K 52 20 b3 17 kg % 25
L. .83 L 60 17 6l 23
M 57 18 43 25 50 25
N 63 21 53 op 59 25
0 76 12 69 8 57 5 31
P 70 13 50 ol 8 15
Q 70 21 51 35 8 | 43
Totals 1213 273 939 361 1026 460
sziigzige 81.6 72.2 69.0
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