Proceedings of FGVienne:
The 8th Conference on
Formal Grammar

Gerald Penn (ed.)

August 16–17, 2003

CENTER FOR THE STUDY
OF LANGUAGE
AND INFORMATION
Contents

Introduction vii

1 k-Valued Link Grammars are Learnable from Strings 3
Denis Béchet

2 MCSGs for Estimating Maximum Entropy Parsing Models 13
David Chiang

3 Automating the Generation of an LFG 29
Lionel Clément and Alexandra Kinyon

4 An Asymmetric Theory of Peripheral Sharing in HPSG 45
Berthold Crysmann

5 Discourse Plans and Linguistic Meaning 65
Alexander Dikovsky

6 A Learnable Class of Classical Categorial Grammars 81
Daniela Dudau-Sofronie, Isabelle Tellier, Marc Tommasi

7 A Note on Countercyclicity and Minimalist Grammars 95
Hans-Martin Gärtner and Jens Michaelis
8 Graph Properties of HPSG Feature Structures 111
 Stephan Kepser and Uwe Mönnich

9 At First Blush on Tenterhooks 123
 Jan-Philipp Soehn and Manfred Sailer

10 A New Application for Raising in HPSG: Complex
 Prepositions 139
 Beata Trawiński

11 Regular Approximations through Labeled
 Bracketing 153
 Anssi Yli-Jyrä

Index 167
Introduction

The Formal Grammar conference series began in 1996 as a forum for new and original linguistics research within formal frameworks, to give linguists and mathematicians an opportunity to interact, and thereby foster precise linguistic analyses along with new generations of empirically relevant models for use in characterizing the structure of natural languages. Although the representation of mainstream linguists at the European Summer School of Logic, Language and Information (ESS-LLI), with which Formal Grammar is usually co-located, has indeed waned over the years, Formal Grammar has so far managed to maintain a very pleasing balance between theory and practice that continues to attract an impressive range of scholarship from around the world.

The 8th conference, held in Vienna on the 16th and 17th of August, 2003, was no exception, with contributions to syntax in the areas of grammar engineering (Clément and Kinyon), coordination and linearization (Crysmann), countercyclic adjunction (Gärtner and Michaelis), selectional restrictions by modifiers (Soehn and Sailer), and complex prepositions (Trawiński), and to formal methods in the areas of learnability (Béchet; Dudau-Sofronie, Tellier, and Tommasi), statistical parsing (Chiang), formal meaning representation (Dikovský), finite model theory (Kepser and Mönnich), and formal language theory (Yli-Jyrä).

The newly appointed organizing committee for Formal Grammar asked the attendees of the 7th conference (Trento) for feedback on improvements they should make to the series, and there was a unanimous consensus that the proceedings of the conference should be published. On behalf of the other organizers, I am therefore very proud to present these proceedings of the 8th conference under the impressum of CSLI Publications, in the hope that this will be the first of many Formal Grammar conferences to offer them.
Acknowledgments

I thank the other members of the organizing committee, Gerhard Jaeger, Paola Monachesi, and Shuly Wintner, for their assistance with organizing the Vienna conference. A special thanks is also due to our programme committee without whose volunteer efforts such a conference would not have been possible: Gosse Bouma (Groningen), Chris Brew (Ohio State), Miriam Butt (Manchester), Philippe de Groote (Nancy), Maarten de Rijke (Amsterdam), Mark Hepple (Sheffield), Ruth Kempson (London), András Kornai (Northern Light), Geert-Jan Kruijff (Saarbrücken), Guido Minnen (Motorola), Uwe Mönnich (Tübingen), Michael Moortgat (Utrecht), Mark-Jan Nederhof (Groningen), James Rogers (Earlham), and Anoop Sarkar (Simon Fraser). We are likewise very grateful to our other reviewers for their contributions: Nissim Francez (Technion), Thilo Goetz (IBM), Nizar Habash (College Park), Sandra Kuebler (Tübingen), Jonas Kuhn (Austin), Rob Malouf (San Diego State), Philip Miller (Lille), Stephan Müller (Bremen), Ed Stabler (UCLA), and Yoad Winter (Technion).

Los Angeles, July, 2007
Index

approximations
 regular, 153
subset, 154, 163
superset, 154, 163
argument raising, 128, 130
Becker, T., 100
binding
 Principle C, 96
bracketing
 full, 157
 labeled, 155
 reduced, 157, 164
bracketing grammars, 154, 155
 canonically obtained, 156
 canonically obtained flat, 160
 flat, 155, 159
brackets of a CFBG
 angle, 156, 157
 square, 156, 157
categorial grammar, 98
 classical, 83
center-embedding depth, 154
Chomsky, N., 95
coll, see collocation
Collins, C., 103
colocation, 127, 131
combinatorial explosion, in parsing, 153, 154, 164
constraints
 bracketing restriction, 160
 constraint languages, 154
collection
 of MGs, derivational, strong, 96, 100
context restriction, 159
Construction Grammar, 126
CONTENT, 130, 134
c context-free grammars
 bracketed, 157
 bracketing grammars, 154–156, 159, 160
 extended, 155
context-free languages, structured, 155
corpus data, 133
countercyclic(ity)
 adjunction, 96
 merge, 103
 move, 103
cranberry word, 131–133
CW, see cranberry word
Dobrovol’skij, D., 125
Dyck language, 159
Erbach, G., 130
feature forest, 15
Fillmore, C., 126
finite-state intersection grammars, 154
Fleischer, W., 125
Frey, W., 95
generative capacity
 of MGs, derivational, strong, weak, 96, 100
strong, 20
generative-enumerative theory, 112
German, 124
grammar extraction, 20
graph, 115
 expressions, algebra of, 117
 operations, 116
graphs
 context-free set of, 117
 recognisable, 118
grid, 119
Harkema, H., 101
idiom, 126
Janssen, T. M. V., 102
Joshi, A. K., 98
Keenan, E. L., 100
Krenn, B., 130
late adjunction, 96
Lebeaux, D., 96
LEXEME, 129–131
licensing theory, 112
linear context-free rewriting
 system, 17
maximum-entropy model, 13, 14
Meurers, W. D., 129, 130
MGs, see minimalist grammar
mildly context–sensitive grammars, 95
minimalist grammar, 95, 112
 with generalized adjunction, 98
MOD, 128
model-theoretic syntax, 112
monadic second-order logic, 118
negation, 134
phrasal lexical entry, 125
polarity item, 131
Rackowski, A., 103
range-concatenation grammar, 24
regular expressions, 155
 generalized, 162
 star-free generalized, 162
regular languages
 compact representations of,
 153, 163
 dot-depth of, 162
 star-free, 162
 state complexity of, 163
Relational Speciate Re-entrant Language, 135
relative clause(s)
 Bach-Cooper, 102
 extraposition of, 102
 restrictive, 102
representation theorem
 Chomsky-Schützenberger, 154, 159
 for Dyck languages, 159
 with bracketing restriction,
 154, 161
Richter, F., 134
Riehemann, S. Z., 126, 127, 134
root sign, 134
RSRL, see Relational Speciate Re-entrant Language
satisfiability, 164
Schabes, Y., 98, 101
scrambling, rightward, 102
selection, 126
 external, 128–130
 of lexemes, 129–131
self-embedding, 163
Shieber, S. M., 101
SPEC, 128
Stabler, E. P., 95, 100
statistical parsing, 13
structural examples, 81
structured languages, 153
subcategorization, 126
Travis, L., 103
tree-adjcenting grammar, 19, 21
 98, 112
treewidth, 117
types
 canonical, 84
 semantic, 82

UNC, see unique nominal complement
unique nominal complement, 123–126

verbal complex, see argument raising
Vijay-Shanker, K., 101

xsel, 128, 134