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Wall-modeling in large eddy simulation: length
scales, grid resolution and accuracy

By J. Larsson AND S. Kawai

1. Motivation and objectives

The promise of large eddy simulation (LES) is that it constitutes a more-or-less op-
timal compromise between predictive accuracy and computational cost. The energetic,
dynamically important and flow-dependent motions are solved directly, leaving only mo-
tions with small energy and supposedly universal behavior to be modeled; this leads to
predictive accuracy. Moreover, an increase in Reynolds number Re changes the spectrum
only at the smallest scales, and hence the computational cost of LES (which is due to
solving the large scales) is independent of Re.

This favorable picture of LES is true in many situations, but changes completely when
LES is applied to turbulent boundary layers. Boundary layers (BLs) are multi-scale
phenomena where the energetic and dynamically important motions in the inner layer
(the innermost 10-20% of the BL) become progressively smaller as the Reynolds number
(Re) is increased. For the case of computing the flow over an airfoil, Chapman (1979)
estimated the required number of grid points as Niotal ~ Rel8, where Re. is the chord
Reynolds number. This is close to the cost of direct numerical simulation (DNS), and
effectively prevents LES from being used on realistic wall-bounded flows at realistic (high)
Reynolds numbers for the foreseeable future.

The solution to this “near-wall problem” has been clear for a long time: the inner
layer must be modeled rather than resolved (cf. Deardorff 1970; Schumann 1975). When
directly resolving only the outer layer, Chapman (1979) estimated a drastically lower
Niotal ~ Reg'4 for his airfoil example. There have been many proposed methods for
modeling of the inner layer in LES (cf. the reviews by Piomelli & Balaras 2002; Spalart
2009). In the present study it is convenient to divide existing methods into two general
approaches: 1) methods that model the wall shear stress 7, directly, and 2) methods
that switch to a RANS-like description in the inner layer. The second category includes
hybrid LES/RANS and detached eddy simulation (DES).

The most basic and rudimentary requirement on a wall-model for LES is that it accu-
rately predicts the skin friction in an equilibrium BL. A survey of the literature on both
wall-stress models and hybrid LES/RANS (or DES) shows that most models do not do
this. Nikitin et al. (2000) showed clearly how DES is affected by an artificial buffer layer
that results in 10-15% underprediction of the wall shear stress 7, (i.e., the skin friction).
Later studies have shown how artificial forcing can remove this error, but at the price of
introducing additional modeling parameters that must be tuned (cf. Piomelli et al. 2003;
Larsson et al. 2007). While DES and hybrid LES/RANS generally underpredict 7, wall-
stress models may over- or under-predict depending on details of the wall-model, the LES
subgrid-model, and the numerics (e.g. Cabot & Moin 1999; Nicoud et al. 2001; Pantano
et al. 2008). The reason for this behavior is that the LES is necessarily underresolved in
the first few grid points, and hence numerical and subgrid modeling errors can not be
avoided in those first few points. This argument was given by Cabot & Moin (1999), and
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was given as a major reason by Nicoud et al. (2001) for developing a wall model based
on control theory. In fact, the idea that numerical and modeling errors are unavoidable
in the first few grid points, and, crucially, the idea that these errors necessarily lead to
errors in the computed flow field (e.g., the computed skin friction), is now broadly agreed
upon in the wall-modeling community (cf. Pantano et al. 2008).

The purpose of the present Brief is to show that while numerical and subgrid-modeling
errors in the first few grid points are unavoidable, it is possible to ensure that they have
negligible impact on the computed flow (specifically, the predicted skin friction). In a
certain sense, the proposed method is similar to the use of explicit filtering in LES, in
that it, by removing the numerical errors, exposes the errors due to the wall-modeling.
We note that the present study applies only to models in the wall-stress category, and
not to hybrid LES/RANS or DES methods.

We begin by briefly introducing the governing equations and the wall model. This is
then followed by a discussion about turbulence length scales and grid resolution; these
concepts then directly lead to the proposed method.

2. LES and wall-model equations

The arguments and ideas presented in this Brief apply to wall-stress models, i.e., where
a model is used to estimate the instantaneous wall-stress 7, that is then applied as a
boundary condition to the LES equations. The basic reasoning holds for a wide range
of wall-stress models, including equilibrium models (e.g., the famous log-law) and more
elaborate approaches that solve the thin boundary layer equations on an auxliary grid
near the wall (cf. Cabot & Moin 1999; Wang & Moin 2002; Kawai & Larsson 2010).
To simplify the presentation, we consider only a simple equilibrium model here. Given
our interest in high-speed flows, the wall-model and the arguments leading to the pro-
posed method are presented for compressible flow, but everything extends trivially to the
incompressible case. The equilibrium wall-model used in this study is given by

0 ou

oy |:(N+Nt) a_y] =0, (2.1a)
0 ou I pe \ 0T
oG, (5 + 52 ) 5] =o. (2.10)

which was derived from the conservation equations for streamwise momentum and total
energy with use of the standard approximations in equilibrium BL flow (cf. Pope 2000).
The eddy-viscosity is taken from a mixing-length model as
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where we note that /7, /p is the velocity scale in a BL with varying mean density. The
modeling parameters are taken as k = 0.41, Pr; = 0.9, and AT = 17. A “4” superscript
implies normalization by viscous wall quantities, as per usual.

The wall-model given by (2.1) and (2.2) is completed by boundary conditions on u
and T, taken here as adiabatic no-slip at the wall and equal to the instantaneous LES
solution at a grid point above the wall. The wall-model is a system of 2 coupled ODEs
that is solved numerically in the present implementation (the computational cost of doing
this is minimal). In the incompressible limit without heat transfer, the wall-model can
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be analytically integrated to (v + v;)0yu = u
inviscid region.

It is important to note the “input-output” character of the wall-model. The wall-model
takes information from the LES in the form of instantaneous data at some grid point
above the wall; this becomes the upper boundary condition for the wall-model, given in
this study by (2.1) and (2.2). The wall-model then returns the wall shear stress and heat
flux to the LES, which becomes the boundary condition for the LES at the wall at y = 0.

which yields the famous log-law in the

3. Length scales and grid resolution

Having introduced the wall-model, we next discuss the numerical and subgrid-modeling
errors in the first few grid points. Consider LES of a boundary layer of thickness ¢ at
high Re. A wall-model models the processes between the wall (y = 0) and a location y.,
(which is typically taken as the first grid point off the wall). The location y,, must be
fixed in outer units in order to lead to a computational cost that is independent of Re.
Moreover, since the classic picture of a BL (cf. Pope 2000) suggests that the inner layer
y/6 < 0.1 —0.2 is independent of the free-stream (e.g., the pressure gradient), it is clear
that y.,,/d =~ 0.1 is a good choice (since it implies that a supposedly “universal” inner
layer is modeled). We also assume that the first grid point is located in the (inviscid)
log-layer, i.e., that yf 2> 50. This assumption simplifies the analysis, and is reasonable
for wall-modeled LES at high Re. Using only conservation of momentum, it is easy to
derive the average shear-stress balance in the log-layer (i.e., 50 < y+ < 0.26) as

Tlags Oyl — PV =74, , (3.1)
which shows that the mean velocity gradient is a result of a balance between the total
stress 7y, the resolved stress —517/17/ , and the average subgrid eddy-viscosity Jig,s.

The size of the energetic and stress-carrying motions in the log-layer is proportional
to the wall-distance y (cf. Pope 2000). It is reasonable to assume different sizes in the
different directions, and hence one can take the length scale of the stress-carrying motions
as L; = C;y, where C; is a (different) constant for each direction ¢. To resolve motions
of size L; accurately, a grid with grid-spacing Az; < L;/« is needed, where the value of
« (i.e., the number of grid points per wavelength) depends on the particular numerical
method used for the LES. Thus the stress-carrying motions are well resolved only if

Consider a uniform grid with y; = j Ay. The standard approach is to estimate the
wall-stress (and wall heat flux) by solving the wall-model (2.1)-(2.2) between the wall
and the first grid point at y;. The criterion (3.2) in the ¢ = 2 direction implies that
the stress-carrying motions at y; in the LES are accurate only if CoAy 2 aAy, ie., if
Cy 2 «. This is highly unlikely: the numerical Nyquist criterion gives a@ > 2, and the
kinematic damping by the wall makes Cy < 2 a very reasonable upper bound. Hence the
LES is underresolved at the first grid point y;. Since the wall-model takes as input the
instantaneous solution from the LES at the first grid point, it is clear that the wall-model
is fed underresolved information. Therefore even a perfect wall-model would not be able
to accurately predict the skin friction (when the wall-model is applied between the first
grid point y; and the wall).

The reasoning up to this point is simply a repeat of the arguments given by Cabot &
Moin (1999), Nicoud et al. (2001) and others to argue that wall-models are unavoidably
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FIGURE 1. Mean velocity (van Driest-transformed) compared to the log-law In(y*)/0.41 + 5.2
(dashed line). Fixed ym/d = 0.05, varying m and near-wall grid-spacing Ay with (increasing
m corresponding to lower curves): m = 1, Ay/é = 0.05 (black); m = 2, Ay/é = 0.025 (blue);
m =3, Ay/d = 0.0167 (red); m =4, Ay/é = 0.0125 (green); m =5, Ay/§ = 0.01 (cyan).

affected by numerical and subgrid modeling errors, but from here on we depart in a
different direction. All previous studies (to our knowledge) always implicitly used y,,, =
Y1, i.e., used information from the first grid point to feed into the wall-model. The crucial
point in the proposed method is to realize that there is nothing requiring the wall-model
to be applied between the first grid point y; and the wall: the wall-model equations are
valid for any interval from the wall and up (provided the upper point is within the inner
portion of the BL). Let us allow y,, # y1 or equivalently m > 1; the criterion (3.2) then
yields that the LES is well-resolved at height y,,, only if

Im o> & 12,3,
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In the wall-parallel and wall-normal directions this becomes
Ym 5 @ Ym 5 @ 3.3
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respectively. The value of « is related to the numerical method while the values of C;
are dictated by flow physics, specifically the structure of the energetic motions in the
log-layer.

Note that the criterion (3.3b) in the wall-normal direction is closely related (in spirit)
to the technique of explicitly filtered LES (cf. Bose et al. 2010): for a given y,, = m Ay,
it says that the wall-normal grid-spacing Ay must be refined (while keeping y,, fixed)
until a point where numerical and subgrid modeling errors at y,, are sufficiently small.
In other words, the grid must be refined while still applying the wall-model at the same
height above the wall.

We emphasize the overall reasoning here: that the wall-model can only be expected
to function properly if fed accurate information from the LES, which in turn implies
that the LES must be well resolved at the point y,, where information is fed into the
wall-model. Note that the wall (the bottom boundary in both LES and the wall-model
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FIGURE 2. Resolved normal stresses (left) and shear stress (right). Fixed ym /6 = 0.05; varying
m and near-wall grid-spacing Ay with identical line styles as in Fig. 1. Compared to experi-
ments (circles, Souverein et al. 2010), DNS at Mach 2.28 and Reg = 2300 (squares, Pirozzoli &
Bernardini 2010), and incompressible DNS at Reg = 900 (plusses, Wu & Moin 2009).

equations) is still located at y = 0. We next turn to numerical experiments to verify these
arguments.

4. Results

The numerical experiments were performed using the FDL3DI finite-difference code
with 6th order accurate compact schemes and a gentle dealiasing filter. Details of this
method can be found in Kawai & Larsson (2010). The dynamic Smagorinsky model was
used to model the the subgrid stresses (Moin et al. 1991). We note that a subset of
these numerical tests were also performed in a different code with very different numeri-
cal characteristics (non-dissipative through use of split-form derivatives), with the same
convergence trends but at different critical values of the parameters y,,/Az;. Thus the
conclusions reached in this Brief are dependent on the numerics only insofar as exact
numerical values of the parameters are concerned, but not in the larger qualitative sense.

The supersonic flat plate boundary layer experiment by Souverein et al. (2010) is con-
sidered in this study. The free-stream Mach number is 1.69 and the Reynolds number is
Rep = 50,000 (based on momentum thickness) and Res = 620,000 (based on BL thick-
ness). We emphasize that this is a much higher Reynolds number than what traditional
wall-resolved LES is capable of computing. The computational domain is 15 x 15 x 3
in terms of the thickness of the BL at the inlet J§p in the streamwise, wall-normal, and
spanwise directions, respectively. The boundary layer thickness ¢ at the station where
statistics are compared is § &~ 1.25p. A recycling/rescaling procedure is used to produce
realistic turbulence at the inlet. The grid resolution in the wall-parallel directions is held
constant at Az = Az = 0.0424 for all simulations presented here.

The first test uses a fixed location ¥, = 0.050 at which information is fed to the wall-
model, but with varying near-wall grid-spacing Ay and hence varying values of m. The
computed mean velocity from this test is shown in Fig. 1. There is clearly a convergence
process as m increases and Ay decreases. Further evidence is given in Fig. 2 which shows
the resolved turbulence fluctuations for this test.

It is clear that the result for m = 1 (using the wall-model from the first grid point in
the traditional manner) yields an overprediction of U{,F p- This is trivially connected to

the wall shear stress 7, through U‘J}D = Uy p/+\/Tw/pw, and further to the skin friction
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FIGURE 3. Mean velocity (van Driest-transformed) compared to the log-law In(y*)/0.41 + 5.2
(dashed line). Fixed grid with Ay/é = 0.01, varying m and y,, with (increasing m corresponding
to lower curves): m = 1, ym/d = 0.01 (black); m = 2, ym/d = 0.02 (blue); m = 3, ym/d = 0.03
(red); m =4, ym /6 = 0.04 (green); m =5, ym/J = 0.05 (cyan).

coefficient Cy = 27, /(pocUZ2). An overprediction of Uy, is therefore directly related to
an underprediction of 7, and Cf.

The results (both mean velocity and turbulence statistics) with m = 2 are substantially
improved, while m > 3 appears essentially converged with minor differences. This test
confirms the criterion on the wall-normal grid-spacing (3.3b) and the reasoning leading
up to it (since the quantities in the wall-parallel criterion are held constant).

The next test is to use a fixed grid but to vary m. One purpose of this test is to vary
ym/Az and y,, /Az, thereby testing criterion (3.3a). A second purpose, which is actually
of greater practical importance, is that this test is closer to the decision one would face
in reality: given a fixed grid (related to what is computationally affordable), can the
accuracy be improved by increasing m? The results of this test are shown in Figs. 3
and 4. Again there is clearly convergence, with much improved results for m = 2 and
grid-converged results for m > 4.

The tests so far have shown how the computed statistics, especially the skin friction,
are improved by abandoning the established practice of applying the wall-model at the
first grid point off the wall. We next show that the method yields physically realistic
turbulence near the wall. Fig. 5 shows a snapshot of the instantaneous streamwise velocity
very near the wall; note the absence of unphysically smooth regions as commonly seen in
hybrid LES/RANS and DES-type methods (cf. Piomelli et al. 2003; Larsson et al. 2007).

5. Summary

This Brief addresses one of the basic problems encountered when modeling the wall
shear stress in large eddy simulation on grids that do not resolve the viscous layer: the
inevitable presence of numerical and subgrid modeling errors in the first grid point off
the wall. In this Brief the wall-model is viewed as taking an input from the LES (in-
stantaneous data at some height y,,) and returning an output back to the LES (the
instantaneous wall shear stress 7, at y = 0). In this view, all prior work (to the authors’
knowledge) using a wall-stress model have taken the input to the wall-model from the
first grid point off the wall, which leads to inevitable errors in the predicted skin friction.
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FIGURE 4. Resolved normal stresses (left) and shear stress (right). Fixed grid with A/§ = 0.01;
varying m and y, with identical line styles as in Fig. 3. Compared to experiments (circles,
Souverein et al. 2010), DNS at Mach 2.28 and Rey = 2300 (squares, Pirozzoli & Bernardini
2010), and incompressible DNS at Reg = 900 (plusses, Wu & Moin 2009).

FIGURE 5. Instantaneous snapshot of u’, taken from the second test with m = 5 and Ay/§ = 0.01.
Note that 7, and u at the wall-model input location are correlated by design for the equilibrium
stress model used here. The size of the figure corresponds to the full computational domain, i.e.,
15 x 3 in terms of the incoming boundary layer thickness.

The main purpose of this Brief is to point out that there is nothing in the wall-modeling
approach that requires LES information to be taken from the first grid point. The second
purpose is then to show how the error in skin friction can be removed by feeding infor-
mation to the wall-model from the second or third grid point in the LES, where the LES
is well resolved and hence more accurate. This result stems directly from considerations
of how turbulence length scales behave in the logarithmic layer. In other words, while
the proposed solution is simple, it is based solidly on physical reasoning.

In this Brief we only considered an equilibrium BL and an equilibrium wall-model.
However, the basic idea of increasing accuracy by taking the input to the wall-model
farther away from the wall can be used much more broadly. For example, Kawai &
Larsson (elsewhere in this volume) use this idea in the context of solving the full RANS
equations near the wall, with a dynamic procedure to compute the appropriate RANS
eddy-viscosity.
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