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Second-order scheme for quadrature-based
velocity high order moment methods for disperse

two-phase flows

By D. Kah, A. Vié, C. Chalons AND M. Massot

1. Motivation and objectives

The physics of particles and droplets in a carrier gaseous flow field is described in many
applications (fluidized beds, spray dynamics, alumina particles in rocket boosters, . . . ) by
a number density function (NDF) satisfying a kinetic equation introduced by (Williams
1958). Solving such a kinetic equation relies either on a sample of discrete numerical
parcels of particles through a Lagrangian–Monte-Carlo approach or on a moment ap-
proach resulting in a Eulerian system of conservation laws on velocity moments possibly
conditioned on size. In the latter case investigated in the present contribution, the main
difficulty for particle flows with high Knudsen numbers (i.e., weakly collisional flows),
where the velocity distribution can be very far from equilibrium, is the closure of the
convective transport at the macroscopic level. One way to proceed is to use quadrature-
based moment methods where the higher-order moments required for closure are evalu-
ated from the lower-order transported moments using quadratures in the form of a sum
of Dirac delta functions in velocity phase space (see (Yuan & Fox 2011; Kah 2010) and
the references therein).

The same problematic has been raised in another component of the literature devoted
to multiphase semi-classical limits of the Schrödinger equation. In this context, a se-
ries of solutions that converge to measure solutions of the Liouville equation have been
characterized. Such an equation can generate multiphase solutions globally in time. Two
approaches have been used to solve this equation with a moment approach, either the
Heaviside closure (Brenier & Grenier 1998) as it is called in (Jin & Li 2003; Gosse et al.
2003), or the one that is related to the present work, the delta closure (see (Jin & Li
2003; Gosse et al. 2003) and references therein). It leads to a weakly hyperbolic system of
conservation laws by taking moments of a Liouville equation, identical to the Williams-
Boltzmann equation studied in gas-particle flows. Such approaches naturally degenerate
toward the pressureless gas system of equation in the context of monokinetic velocity
distributions (Massot et al. 2009; Kah 2010; Runborg 2000).

In our case of interest, quadrature-based or delta closure numerical algorithms have
been proposed in Jin & Li (2003); Gosse et al. (2003) and Desjardin et al. (2008) in-
dependently, from (Bouchut et al. 2003), using a first order kinetic-based finite volume
method. The computation of the cell-centered fluxes by means of the quadrature ab-
scissas and weights ensures realizability and singularity treatment. Such a quadrature
approach and the related numerical methods have been shown to be able to capture par-
ticle trajectory crossing (PTC) in a direct numerical simulation (DNS) context, where
the distribution in the exact kinetic equation remains at all times in the form of a sum
of Dirac delta functions. Several attempts have been conducted in order to extend such
methods to either partially or fully high-order numerical schemes. In the latter case,
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quadrature weights and abscissas for each peak are reconstructed independently (Gosse
et al. 2003), ensuring conservation of only the zeroth and first-order moments, but not
for the higher-order moments, which are very nonlinear functions of abscissas. Although
this would not be too critical for smooth solutions, even if not satisfactory, where the
dynamics of the two peaks are decorrelated, this would be critical in the description
and stability of the method near singularities. On the other hand, partially high-order
moment methods introduced in (Vikas et al. 2011) ensure conservation of the whole mo-
ment set, but introduce high-order only in the weights where the linear character of the
dependency allows a simple and efficient quadrature. However, remaining issues prevent
the design of a fully high-order transport scheme. The first is related to its ability to pre-
serve the vector of moments inside or at the frontier of the moment space, thus leading to
several possibilities of degeneration from a given number of abscissas to a lower integer
number. Secondly, in most cases the numerical schemes have to tackle the possibility of
singular solutions when the dynamics complexity goes beyond the one allowed by the
model. Both issues have been addressed recently in (Chalons et al. 2011b) in the context
of mathematical theory of PDEs and for first-order numerical methods; this has set the
background for the design of a fully second order scheme in time and space.

As a next step, this paper introduces a fully second-order in time and space transport
scheme for the quadrature-based closure, with linear reconstructions for both weights and
abscissas. Whereas realizability is ensured, we suggest an algorithm in order to ensure
both conditions: maximum principle for velocity and moment vector conservation, in one
or two-dimensional configurations.

The remainder of the paper is organized as follows. The principal features of the
model are recalled in section 2. The numerical scheme is explained in section 3 and in
section 4, respectively in one and two dimensions. Finally the model is tested in three
configurations. The first two, one dimensional, assess the numerical order and highlight
the advantage of this scheme compared with a partially second order scheme in case of
singularity formation. The last case, a two-dimensional version of the second one, shows
that the scheme can be extended to multi-dimensional configurations.

2. Eulerian multi velocity moment model

We recall here the essential results of moment quadrature in a one-dimensional config-
uration. The complete developments can be found in (Chalons et al. 2011b).

2.1. Quadrature

Consider the solution f = f(t, x, v) of the free transport kinetic equation

∂tf + v∂xf = 0, t > 0, x ∈ R, v ∈ R, f(0, x, v) = f0(x, v). (2.1)

The exact solution is given by

f(t, x, v) = f(0, x − vt, v) = f0(x − vt, v).

Defining the l-order moment

Ml =

∫

v

f(t, x, v)vldv, l = 1, ..., N, N ∈ N,

the associated governing equations are easily obtained from (2.1) after multiplication by
vl and integration over v, and write ∂tMl +∂xMl+1 = 0, l ≥ 0. For the sake of simplicity,
but without any restriction, we focus our attention hereafter on the four-moment model,
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with M = (M0, M1, M2, M3)
t and F(M ) = (M1, M2, M3, M4)

t, and

∂tM + ∂xF(M) = 0. (2.2)

This model is closed provided that M4 is defined as a function of M . In quadrature-
based moment methods, the starting point to define this closure relation consists in
representing the velocity distribution of f(t, x, v) by a set of two Dirac delta functions,
that is a two-node quadrature :

f(t, x, v) = ω1(t, x)δ(v − U1(x, t)) + ω2(t, x)δ(v − U2(x, t)), (2.3)

where the weights ω1(t, x) > 0, ω2(t, x) > 0, and the velocity abscissas U1(t, x), U2(t, x)
are expected to be uniquely determined from the knowledge of M(x, t). Dropping the
(x, t)-dependance to avoid cumbersome notations, such a function f has exact moments
of order i = 0, ..., 4 given by ρ1U

i
1 +ρ2U

i
2. The next step then naturally consists in setting

M4 = ω1U
4
1 + ω2U

4
2 , (2.4)

where ω1, ω2 and U1, U2 are defined from M by the nonlinear system Ml =
∑2

k=1
ωkU l

k.
System (2.2)-(2.4) is well-defined on the convex set Ω, also called the moment space,

given by Ω = {M = (M0, M1, M2, M3)
t, M0 > 0, M0M2 − M2

1 > 0}. Moreover, setting
U = (ω1, ω2, ω1U1, ω2U2)

t, the function U = U(M) is one-to-one and onto as soon as
we set for instance U1 > U2. Moreover we have 0 < ω1 < M0 and 0 < ω2 < M0. This
can be extended to the more general case of a 2N -moment models, N > 1. The velocity
distribution is represented in this situation by a set of N Dirac delta functions, leading
to Ml =

∑N
k=1

ωkU l
k, l = 0, ..., 2N − 1, and M2N =

∑N
k=1

ωkU2N
k . The quadrature and

the above mentioned proposition are valid at the interior of the moment space. Therefore
a thorough study of how to perform the quadrature at the border of the moment space
has been done in Chalons et al. (2011b). We want to be able to switch continuously
from two-node to one-node quadrature without pathological behavior on the abscissas
and weights. Moreover, when the velocity distribution at the kinetic level has compact
support in the initial distribution, such a property (also called maximum principle) will
be preserved throughout the dynamics of the system†. Besides, it can be shown that it
is naturally verified in one-dimension by the first-order kinetic scheme (Chalons et al.
2011b).

2.2. Challenges for a numerical scheme

In order to write an advection scheme for system (2.2) with a second order reconstruction,
two difficulties have to be addressed. First, a maximum principle on velocity arising from
system (2.2) has to be enforced. Second, the weights and abscissas affine reconstruction
for such a finite volume method needs to be conservative relative to the moment mean
values in a cell. Using two single-node quadrature independent reconstructions leads to
the conservation of M0 and M1. However the nonlinear expression of the higher order
moments M2 and M3 results into a shift in their means owing to the reconstruction and
introduces potential errors and unstable behavior in the singularity treatment where the
two quadrature nodes are strongly coupled.

† Such a property can be proved in the context of smooth solution. This comes from the fact
that, for system (2.2) (2.4), the abscissas satisfy a transport equation: ∂tUk + Uk∂xUk = 0, so
that ∀t, minx U(0, x) ≤ U(t, x) ≤ maxx U(0, x) for smooth solutions. Such a property has been
proved in the framework of single quadrature pressureless gas dynamics by F. Bouchut but is
still a conjecture in the context of multiple quadrature node and related systems
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3. One-dimensional second-order numerical scheme

This section is devoted to the discretization of (2.2)-(2.4). Given the conservative
nature of the equations, a finite volume scheme appears to be natural. The kinetic-based
time solver is first presented, followed by the proposed second order reconstruction.

3.1. Flux computation via kinetic schemes

The flux computation uses a kinetic scheme as in (Kah et al. 2010; Chalons et al. 2011b);
it is briefly recalled for the sake of completeness.

Let us introduce a time step ∆t > 0 and a space step ∆x > 0 that we assume to be
constant for simplicity. We set λ = ∆t/∆x and define the mesh interfaces xi+1/2 = i∆x
for i ∈ Z, and the intermediate times tn = n∆t for n ∈ N. In the sequel, M

n
j denotes

the approximated average value of M at time tn and on the cell Ci = [xi−1/2, xi+1/2].

For n = 0, we set M0,i = 1

∆x

∫ xi+1/2

xi−1/2
M0 dx, i ∈ Z, where M0(x) is the initial condition.

Given (Mn
i )i∈Z a vector of approximate values at time tn in Ω, in order to advance to

the next time level tn+1, the kinetic scheme is decomposed into two steps. We first set
U i = U(Mn

i ) and define the function (x, v) → fn(x, v) by

fn(x, v) = ωn
1,iδ
(

v − Un
1,i

)

+ ωn
2,iδ
(

v − U2,i

)

, ∀ (x, v) ∈ Ci × R, i ∈ Z.

We then solve the transport equation
{

∂tf + v ∂xf = 0, (x, v) ∈ R × R,
f(t = 0, x, v) = fn(x, v),

(3.1)

the solution of which is given by f(t, x, v) = fn(x − vt, v). At last, we set fn+1−(x, v) =
fn(x − v∆t, v). Under the natural CFL condition

∆t max
i∈Z

(Un
1,i, U

n
2,i) ≤ CFL ∆x,

with CFL ≤ 1, integrating (3.1) over (t, x, v) ∈ (0, ∆t)×Cj×R and against U i, i = 0, ..., 3
easily leads to the equivalent update formula

M
n+1
i = M

n
i −

∆t

∆x

(

F
n
i+1/2 − F

n
i−1/2

)

, i ∈ Z,

where we us a flux-splitting algorithm where F
n
i+1/2 = F

n+

i+1/2
+ F

n−
i+1/2

and where the

flux F
n±
i+1/2

writes

F
n+

i+1/2
=

1

∆t

+∞
∫

0

∆t
∫

0

Uf(ξ, xi+1/2, v) v dξdv, F
n−
i+1/2

=
1

∆t

0
∫

−∞

∆t
∫

0

Uf(ξ, xi+1/2, v) v dξdv,

(3.2)
where U = (1, v, v2, v3)t. Applying the classical change of variable performed in (Bouchut
et al. 2003), the final expression of the flux, with Uk = (1, Uk, (Uk)2, (Uk)3)t, writes

F
n−
i+1/2

= −
1

∆t

2
∑

k=1







∫

xi+1/2−drk

xi+1/2

Uk Uk(x)ωk(x) dx






, F n+

i+1/2
=

1

∆t

2
∑

k=1







∫

xi+1/2

xi+1/2−dlk

Uk Uk(x)ωk(x) dx






,

where dlk and drk respectively write, with U+
k = max(Uk, 0), U−

k = min(Uk, 0) :

dlk = ∆t
U+

k (xi+1/2)

1 + ∆tDU1,i

, drk = ∆t
U−

k (xi+1/2)

1 + ∆tDU1,i+1

.
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Considering a first order spatial reconstruction, the flux writes

F
n±
i+1/2

=
(

Mn
1,i+1/2, M

n
2,i+1/2, M

n
3,i+1/2, M

n
4,i+1/2

)t
, Mn

l,i+1/2 = Mn−
l,i+1/2

+ Mn+

l,i+1/2
,

with Mn−
l,i+1/2

=
2
∑

k=1

ωn
k,i+1U

n−
k,i+1

(Un
k,i+1)

l−1, and Mn+

l,i+1/2
=

2
∑

k=1

ωn
k,iU

n+
k,i (Un

k,i)
l−1.

It is easy to see that this scheme is conservative and preserves the moment space Ω,
see for instance (Desjardin et al. 2008). Moreover, provided the set of abscissas computed
from the quadrature respects the maximum principle, it is further ensured by the scheme.
However, a first order scheme is limited in terms of numerical accuracy. To increase the
precision and thus avoid the use of refined meshes leading to expensive computations,
one needs to increase the order of the scheme.

3.2. Second-order reconstruction

The novelty of this paper is to exhibit a fully second order scheme, i.e. with linear
reconstruction applying to the weights and the abscissas. Therefore, it goes further in
complexity than the scheme proposed in (Vikas et al. 2011) where the weights alone are
linearly reconstructed, the abscissas being constant. Because the moments are linear in
the weights, the conservation of the spatial averages through the reconstruction process
is easily obtained in such cases.

Given the value of the moment vector in a cell M i = (M0,i, M1,i, M2,i, M3,i), the
corresponding set of weights and abscissas writes: ω1,i, ω2,i, U1,i, U2,i. In the context of a
linear reconstruction, the weights and abscissas write

ωk(x) = ωk,i + ∆ωk,i + Dωk,i
(x − xi),

Uk(x) = Uk,i + ∆Uk,i + DUk,i
(x − xi) + ∆0Uk,i.

(3.3)

In system (3.3), the terms Xi represent the mean cell value and DXi the slope of the
quantity X . A minmod limiter is used for the slopes computed from neighbors determined
by the convention U1 ≥ U2, so that their expressions are

Dωk,i
=

1

2
(sgn(ωk,i+1 − ωk,i) + sgn(ωk,i − ωk,i−1)) min

[

ωk,i+1 − ωk,i

∆x
,

ωk,i − ωk,i−1

∆x
,
2ωk,i

∆x

]

,

DUk,i
=

1

2
(sgn(Uk,i+1 − Uk,i) + sgn(Uk,i − Uk,i−1)) min

[

Uk,i+1 − Uk,i

∆x(1 − Dωk,i
∆x/(6ωk,i)

,

Uk,i − Uk,i−1

∆x(1 + Dωk,i
∆x/(6ωk,i)

,
2Uk,i

∆x

]

.

These terms are classical in such a reconstruction. The term ∆0U appearing in the
abscissa equations represents the correction added to Ui for the reconstruction to be
conservative in the case where the distribution is mono-modal. In this case, the sys-
tem reduces to the pressureless gas dynamics, with a unique velocity, and ∆0U is the
correction brought to Ui (Bouchut et al. 2003):

∆0Uk,i =
Dωk,i

DUk,i
∆x2

12ω2
k,i

. (3.4)

This correction of the mean value ensures that the spatial averages for M0 and M1 are
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preserved, but is not sufficient for higher-order moments, such as M2 and M3, which
require further corrections. For the sake of legibility, let us write

ω̃1,i = ω1,i + ∆ω1,i, ω̃2,i = ω2,i + ∆ω2,i,

U1,i = U1,i + ∆0U1,i, U2,i = U2,i + ∆0U2,i.

Ũ1,i = U1,i + ∆U1,i + ∆0U1,i, Ũ2,i = U2,i + ∆U2,i + ∆0U2,i.

(3.5)

In order to ensure conservation of the whole set, the corrections ∆Xi must be evaluated.
These terms are solved by writing the non linear system of equations for the conservation
of the four moments:

Ml,i = 1

∆x

∫ xi+1/2

xi−1/2

2
∑

k=1

(ω̃k,i + Dωk,i
(x − xi))(Ũk,i + DUk,i

(x − xi))
l, l = 0 . . . 3.

(3.6)
After some algebra, the system of equations reduces to

2
∑

k=1

ω̃k,i =
2
∑

k=1

ωk,i,
2
∑

k=1

ω̃k,iŨk,i =
2
∑

k=1

ωk,iUk,i,

2
∑

k=1

ω̃k,i(Ũk,i)
2 =

2
∑

k=1

ωk,iU
2
k,i + ω̃k,i

∆x2

12
(Dωk,i

)2 + ω̃k,i
∆x2

12
(Dωk,i

)2,

2
∑

k=1

ω̃k,i(Ũk,i)
3 =

2
∑

k=1

ωk,iU
3
k,i − (Ũk,i)

2 ∆x2

4
Dωk,i

DU1,i − ω̃k,iŨk,i
∆x2

4
(DU1,i)

2

The system can be solved by direct Newton algorithm, which has been implemented.
However, a modified method can be envisioned that is somewhat simpler and involves a
series of matrix-vector products and no inversion. We approximate the system by

M i(δ̃i) = M i(δi) + ∆M i(δ̃i) (3.7)

where, in system (3.2), M i(δ̃i) corresponds to the left-hand side, M i(δi) to the first term
of right-hand side, ∆M i to the remaining terms in the right-hand side as a function of
δ̃i = (ω̃1,i, ω̃2,i, Ũ1,i, Ũ2,i)

t. Because we expect the corrections to be small perturbations
around the vector δi = (ω1,i, ω2,i, U1,i, U2,i)

t, the linearization consists in approximating

∆M i(δ̃i) by ∆M i(δi) and to write a linearized inversion algorithm

δ̃i − δi = (∂Mδ)i∆M i = (∂δM )−1
i ∆M i, (3.8)

where δ̃i − δi = (∆ω1,i, ∆ω2,i, ∆U1,i, ∆U2,i)
t and with (without cell index for the sake

of legibility) a matrix that is evaluated once

(∂δM )−1 =



































(3U1 − U2)U2

2

(U1 − U2)3
−

6U1 U2

(U1 − U2)3
3(U1 + U2)

(U1 − U2)3
−

2

(U1 − U2)3

(U1 − 3U2)U1

(U1 − U2)3
6U1 U2

(U1 − U2)3
−

3(U1 + U2)

(U1 − U2)3
2

(U1 − U2)3

−
U1 U2

2

ω1(U1 − U2)2
(2U1 + U2)U2

ω1(U1 − U2)2
−

U1 + 2U2

ω1(U1 − U2)2
1

ω1(U1 − U2)2

−
U2 U1

2

ω2(U1 − U2)2
(2U2 + U1)U2

ω2(U1 − U2)2
−

U2 + 2U1

ω2(U1 − U2)2
1

ω2(U1 − U2)2



































.
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We define then the following iterative scheme, for k ≥ 1, with δ̃
0

i = δi and δ̃
1

i = δ̃i :

δ̃
k+1

i = δ̃
k

i + (∂δM)−1
(

∆M i(δ̃
k

i ) − ∆M i(δ̃
k−1

i )
)

. (3.9)

The convergence of this algorithm is observed to be quick and as few as one to three
iterations are enough to obtain a converged solution and to preserve strict conservation
of moments in the scheme. In the numerical cases presented in the following both the full
Newton and this more efficient method have been tested and lead to the same solutions.
This algorithm has to be efficient because, once we get the corrected values, we have to
eventually go through a test in order to check that the maximum principle is verified by
the corrected expressions of the velocities. In the cells where the test is negative, slopes
are recomputed in order not to generate any local extremum and enforce the maximum
principle. New corrected values with the new velocity slope values are determined through
(3.9) until the maximum principle is satisfied everywhere.

4. Two-dimensional second-order numerical scheme

In two-dimensions, the CQMOM quadrature is used (Yuan & Fox 2011):

f(t,x,v) =

2
∑

k=1

2
∑

l=1

wk,lδ(u − Uk)δ(v − Vk,l) (4.1)

where x = (x, y) and v = (u, v). So the moments are

Mm,n =

2
∑

k=1

2
∑

l=1

wk,lU
m
k V n

k,l =

2
∑

k=1

ρkUm
k

2
∑

l=1

ρc
k,lV

n
k,l =

2
∑

k=1

ρkUm
k {V n

k } (4.2)

where {V n
k } is the conditional moments on direction Uk of order n. As a dimensional

splitting is used, the two-dimensions scheme is derived for convection in direction x only.
The transport equation for moments is then

∂tMm,n + ∂xMm+1,n = 0, m, n ≥ 0.

As it is demonstrated in one-dimension, the main issue for building a kinetic scheme
is to define a conservative reconstruction of the moments. So here we detail the two-
dimension reconstruction only, the exact definition of the two-dimension kinetic scheme
being easily emphasized from theone-dimensional kinetic scheme of section 3. As in one-
dimension, it is not sufficient to add the correction proposed in (Bouchut et al. 2003).
All y quadrature points are coupled, and furthermore their reconstructions are highly
sensitive to the reconstruction of x quadrature. To avoid having to solve such a coupled
system, we propose reconstructing the x quadrature (ρk and Uk) with the algorithm of
subsection 3.2, as the convection is dominated by this quadrature. For the y quadrature,
it is interesting to note that conditional moments are passive scalar with respect to x
convection. So instead of reconstructing the full quadrature, we proposed to reconstruct
the conditional moments, by means of the central conditional moments to ensure that
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the reconstruction is realizable:

vm
k (x) =

{

V 1
k

}

{V 0
k }

= v̄m
k + Dvm

k
(x − xi), (4.3)

ek(x) =

{

V 2
k

}

{V 0
k }

−

(

{

V 1
k

}

{V 0
k }

)2

= ēk + Dek
(x − xi), (4.4)

qk(x) =

(

{

V 3
k

}{

V 0
k

}2
−
{

V 1
k

}3
)

− 3
{

V 1
k

}

(

{

V 0
k

} {

V 2
k

}

−
{

V 1
k

}2
)

{V 0
k }

3

= q̄k + Dqk
(x − xi), (4.5)

where the slopes are defined using a minmod limiter. The reconstruction of the conditional
moments is then

{

V 0
k

}

= 1 (4.6)
{

V 1
k

}

= v̄m
k + Dvm

k
x (4.7)

{

V 2
k

}

= ēk + (v̄m
k )2 + (Dek

+ 2vm
k Dvm

k
)x + D2

vm
k

x2 (4.8)
{

V 3
k

}

= q̄k + 3v̄m
k ēk + (vm

k )3 + x
(

Dqk
+ 3Dvm ē + 3Dek

v̄m
k + 3(v̄m

k )2Dvm
k

)

(4.9)

+x2
(

3Dvm
k

Dek
+ 3D2

vm
k

v̄m
k

)

+ x3D3
vm

k
(4.10)

Thus the conditional moments are now polynomials functions {V n
k } =

∑n
p=0

αk,n
p xp.

Under the constraints that M0,n and M1,n are conserved, the algorithm gives three 2× 2
linear systems to solve for each n:

M0,n =

2
∑

k=1

n
∑

p=0

Ak,pα
k,n
p , M1,n =

2
∑

k=1

n
∑

p=0

Bk,pα
k,n
p , (4.11)

where:

Ak,p =
∆xp

2p+1

[

ρ̄k

(

1 − (−1)p+1
)

(p + 1)
+ Dρk

∆x

(

1 − (−1)p+2
)

2(p + 2)

]

(4.12)

Bk,p = ŪkAk,p +
∆xpDUk

2p+1

[

ρ̄k∆x

(

1 − (−1)p+2
)

2(p + 2)
+ Dρk

∆x2

(

1 − (−1)p+3
)

22(p + 3)

]

.(4.13)

For n = 1, a linear system on v̄m
1 and v̄m

2 is obtained. For n = 2, the linear system is
on ē1 and ē2 and depends on v̄m

1 and v̄m
2 , which are already found. For n = 3, the linear

system on q̄1 and q̄2 depends on v̄m
1 , v̄m

2 , ē1, and ē2, which are also already defined by
the two previous systems. So the reconstruction is fully defined, and we just have to use
the kinetic scheme to evaluate the fluxes.

The proposed reconstruction ensures the realizability of the moments. For the maxi-
mum principle, we still have to provide a potential extra limitation in order to ensure
the maximum principle in the y direction for the abscissas. Whereas it is shown in the
following that the method provides excellent results in the proposed test case, we still
have to provide a firm mathematical background as well as further studies in order to
deal with such a second-order reconstruction at the frontier of the moment space for
both smooth and singular solutions. Indeed it has been shown in Chalons et al. (2011b)
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that the numerical scheme should preserve a cone in the (e, q) phase plane in order to be
consistent with the original system of PDEs.

5. Results and discussion

5.1. Order accuracy study

The first series of test cases assesses the second-order numerical accuracy in space and
time of the scheme presented in section 3.2. This result is based on a simple one-
dimensional case for which an analytical solution exists. L1 errors relative to the an-
alytical solution are calculated for each moments. These errors are computed for three
schemes: first and second order, and also the scheme presented in (Vikas et al. 2011)
which is only partially second order. The initial weight and abscissa fields are given by















ω1 = exp

(

(x − 0.5)2

σ2

)

, U1 = 0.5 + 0.5x, ω2 = 0, U2(x) = 0, x < 1,

ω1 = 0, U1(x) = 0, ω2 = exp

(

(x − 1.5)2

σ2

)

, U2 = −1 + 0.5(x − 1), x > 1,

where σ = 0.1. The initial conditions are displayed in Fig. (1)-left. The fact that both
fields are not constant enables us to evaluate the reconstruction done by each of the
second order schemes. The kinetic solution of this problem is such that the two initiated
clouds cross each other so that the dynamics of each cloud is independent from the
other. Meanwhile, given the initial velocity profile, they are expanding waves. Indeed
their density decreases at a rate proportional to the velocity gradient, see Fig. (1). The
final and plotted reconstruction is chosen at time t = 0.5.

Numerically, the CFL number is set to 1, and computations are run for 25, 50, 100, 200
cell grids. An issue already studied in (Chalons et al. 2011b) has to be tackled in order to
reproduce the kinetic solution. Considering velocity gradients inevitably introduces nu-
merical diffusion at points where |U | < Umax. This means that, if the velocity distribution
was mono-modal at these points, one convection step introduces a bi-modal distribution
through numerical diffusion. The smaller the gradient is, the closer the abscissas are.
In the case studied in (Chalons et al. 2011b) as well as in this present case, the abscis-
sas difference is negligible, but still exists. This velocity dispersion concerns both clouds
of this test case. However the four-moment quadrature can describe only two abscissas
at the most. Therefore, when both clouds cross, the four-node resulting distribution is
projected on a two-node distribution. This creates singularities, called δ-shocks in the
context of kinetic methods, characterized by important density concentration.

To prevent δ-shock from occurring in this case, a criteria is introduced in order to
nullify the velocity dispersion (which is accounted for by M2−M2

1 /M0) due to numerical
diffusion, which is neglibible compared with the dispersion due to the clearly distinct
cloud velocity values when clouds cross. Therefore, the small parameter ǫ, introduced in
(Chalons et al. 2011b) in order to discriminate between a one-abscissa and a two-abscissa
quadrature, is set as low as possible to fulfill this objective while not impacting the cloud

dynamics. An empirical relation that has been proven to work is ǫ = ∆x2

2
. Nevertheless,

being able to a priori set the value of ǫ given the mesh resolution and the velocity
gradients is still an area of research. Another potential way to circumvent this issue is
to consider a further level of bi-modal quadrature where two Gaussian distributions are
reconstructed instead of two Dirac distributions, see (Chalons et al. 2011a).

Results of the grid convergence study are displayed in Table (1), Fig. (2) and Fig. (3).
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Scheme First order Second order from (Vikas et al. 2011) Second order
m0 0.88 1.03 1.52
m1 0.93 1.09 1.49
m2 0.89 1.08 1.53
m3 0.93 1.04 1.5

Table 1. L1 error and numerical order of accuracy of the three tested schemes.
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Figure 1. Dynamics of two crossing clouds in terms of weights (solid line) and abscissas
(dashed line). Left: Initial conditions; Middle: solution at t = 0.5; Right: solution at t = 1.
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Figure 2. Dynamics of two crossing clouds in terms of weights at t = 1. Left: Analytical solution
(solid line), and numerical solutions for a 200 (squares), 100 (crosses), 50 (circles) and 25 (dashed
line) cell grid. Right: Focus on the interest zone

The principal conclusion is that the numerical order of our scheme is close to the theo-
retical second-order. For example, if we consider the density, the numerical order is 1.52,
i.e., 1.73 times the numerical order for the first-order scheme. This study secondly shows
that the scheme designed in (Vikas et al. 2011) has an accuracy order much closer to
one, but involves a simpler algorithm.

5.2. Dynamics of colliding jets

This second one-dimensional test case emphasizes the importance of having an accurate
transport scheme, in order to stay close to the kinetic solution. Whereas the initial fields
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Figure 3. Error curves with respect to grid refinement in logarithmic scale: first order scheme
(solid line), partially and fully second order scheme (dotted and dashed line). Left: results for
M0; Right: results for M3.
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Figure 4. Dynamics of colliding jets. Left: Initial conditions for abscissas (solid line) and weights
(crosses). Right: Results at t = 0.2 for abscissas (right). Analytical solution (solid line), second
order solution (crosses), partially second order solution (dashed line).

or weights are ω1 = ω2 = 1, those for the abscissas write










U1(x) = 1, U2(x) = −1, x < 0.2,

U1(x) = −2/0.6(x− 0.2), U2(x) = −1 + 2/0.6(x− 0.2), 0.2 < x < 0.8,

U1(x) = −1, U2(x) = 1, x > 0.8,

(5.1)

and are shown in Fig. (4)-left. Given the negative slope of U1, the first quadrature node
is a compaction wave, meaning that ω1 is increasing in areas of negative gradient of U1,
whereas the second quadrature node is an expansion wave, with ω2 decreasing in areas of
positive gradients of U2. Fig. (4)-right, (5), and (6) displays the kinetic solution at time
t = 0.2 (black curve), focusing on the center of the domain, which is the interest zone.
Two numerical solutions are displayed, given by the second-order scheme presented here
and the partially second-order scheme of (Vikas et al. 2011).

Let us remark that this case is symmetrical to the one-dimensional cases studied in
(Vikas et al. 2011), where the fields of velocity are assumed constant, and the fields of
weights are initiated with gradients. The computation is performed with a CFL equal
to one, in a 50-cell grid. At the domain center, as in the previous case, numerical dif-
fusion leads to a tri-modal distribution, thus creating a δ-shock. More precisely, two
δ-shocks are created, transported with the velocity resulting from the two node quadra-
ture of the initial tri-modal distribution. These singularities correspond to the two pics
observed in Fig. (6)-left at the domain center. Because the second-order scheme reduces
numerical diffusion, these singularities, although existing, are considerably attenuated.
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Figure 5. Dynamics of colliding jets, at t = 0.2 for ω1 (left) and ω2 (right). Analytical solution
(solid line), second order solution (crosses), partially second order solution (dashed line).
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Figure 6. Dynamics of colliding jets, at t = 0.2 for M0 (middle) and M1 (right). Analytical
solution (solid line), partially and fully second order solution (crosses and dashed line).

This difference of accuracy is also highlighted in Fig. (5) representing the weights and in
Fig. (4)-right representing the abscissas at time t = 0.2. This case is complementary to
the first case where regular solutions were studied and in this case, the accuracy of the
partially second-order scheme is of same order as our second-order scheme for a coarse
mesh (≤ 50 cells). When singularities occur, the accuracy enhancement of the second-
order scheme is shown to be a real asset and leads to results much closer to the analytical
solution than the partially second-order scheme, even for coarse grids.

5.3. Two-dimensional case

This two-dimensional case is based on the same x velocity and density profiles for the x
quadrature as in subsection 5.2, with ρ1 = ρ2 = 1.0. For the y quadrature, ρ1,1 = ρ2,2 =
0.7 and ρ1,2 = ρ2,1 = 0.3, and











V1(x) = 1, V2(x) = −1, x < 0.2,

V1(x) = 1 − 2/0.6(x− 0.2), V2(x) = −1 + 2/0.6(x− 0.2), 0.2 < x < 0.8,

V1(x) = −1, V2(x) = 1, x > 0.8.

(5.2)
The solution is homogeneous in the y direction, so the transport is solved for x direc-
tion only. For the partially second-order scheme, we also use the linear reconstruction of
the conditional moments. Results are shown on Fig. 7 for CFL = 1 and with 50 cells.
Concerning the x quadrature (M00, M10, and abscissas), previous results are retrieved,
as they are independent of the y quadrature which is seen as a passive scalar. For the
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Figure 7. Dynamics of colliding jets in two-dimensions, homogeneous in y direction: moments
M00, M10, M01, x abscissas, {V 1
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2 } at t = 0.2 for the analytical solution (solid line), the
partially second order scheme (dashed line), and the fully second order scheme (line with circle).

y quadrature, we can see that moment M01 (which depends on the weights of the x
quadrature, and the y quadrature) is also sensitive to our reconstruction strategy. The
pure V moments are also sensitive to the reconstruction, this sensibility being either due
to the convection of those moments as a passive scalar with respect to the x velocity,
or the reconstruction of the conditional moments. So we demonstrate that fully recon-
structing the quadrature in the convection direction is mandatory and also important if
we want to reproduce the moments in other directions, as they are highly coupled to the
reconstruction in x direction.

6. Conclusion and perspectives

A fully second-order scheme for a high-order moment method is presented. It relies on
the quadrature method explained in (Chalons et al. 2011b) and (Yuan & Fox 2011). The
proposed scheme is designed so that the maximum principle for velocity abscissas and
moment conservation is enforced despite the strongly nonlinearity involved. Its second-
order numerical accuracy is assessed and proves to be highly beneficial compared to first
order or partially second order schemes. In the perspective of extending this scheme to
multi-dimensional configurations, the ability of the scheme to capture moment dynamics
is proven on a preliminary two-dimensional test case, paving the way for further devel-
opments. We still need a detailed study at the boundary of the moment space, especially
in the framework of the multi-dimensional quadrature, as well as a further optimization
of the proposed algorithms. Moreover, an interesting perspective consists in applying
the ideas developed here to multi-Gaussian reconstruction of velocity distributions in-
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troduced in Chalons et al. (2011a). This type of model is more complex but has the
advantage of preventing unphysical δ-shock occurrence. It naturally yields a powerful
tool for the large eddy simulation of particle flows by accounting for a subgrid velocity
dispersion in addition to the ability of allowing the particle trajectory crossing.
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