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1. Motivation and objectives

In this study, strategies are proposed for modeling the input uncertainties in combus-
tion calculations under chemical-rate uncertainties using as an example hydrogen-oxygen
kinetics. For this purpose, this report is divided into the following sections. In Section
2, an assessment is made to ascertain the limitations of state-of-the-art treatments of
experimentally-derived chemical-kinetic uncertainties. Based on these limitations, Sec-
tion 3 proposes a number of modeling strategies and, in particular, an “active-chemical
mechanism” concept that is able to treat chemical uncertainties in a general manner
and can be used in conjunction with combustion formulations. Finally, conclusions are
drawn in Section 4. A follow-up article in this same volume (Urzay et al. 2012) provides
a turbulent-combustion model that takes the input-uncertainty descriptions proposed in
this investigation and uses them in numerical calculations subject to chemical-kinetic
uncertainties.

2. Limitations in the use of uncertainty factors for quantifying input

uncertainties from chemical-reaction rates

2.1. State of the art

Uncertainties in elementary reaction rates of detailed chemical mechanisms have tradi-
tionally been reported in terms of temperature-independent and statistically-independent
numerical prefactors, which are usually termed “uncertainty factors” or UFs (Baulch
et al. 2005; Konnov 2008). These uncertainty factors have been used for uncertainty
quantification in relatively simple combustion systems and for optimization of chemi-
cal mechanisms by assuming that all measurement uncertainties are uncorrelated and
temperature-independent, and by lumping all the uncertainties in the exponential pref-
actors (Reagan et al. 2003; Davis et al. 2005; Najm et al. 2009; Mueller et al. 2012).
According to classic definitions of UF, the forward rate constant of the reaction step
j, kf,j becomes uncertain within the bounds ln kf,j ± ln UFj . An example of a detailed
hydrogen-oxygen chemical mechanism subject to uncertainty factors is shown in Table 1,
which will be used in Part II for numerical calculations.

The values of the uncertainty factors are typically reported to account for observed data
dispersion in kinetic-isolation measurements, and in particular, for the scatter observed
in {1/T, ln kf,j} plots (Baulch et al. 2005; Konnov 2008), such as the one depicted in
Figure 1(d), which are used conventionally for tabulating rate constants as a function of
the temperature T of the tested mixture. Additionally, the probability density function
assigned to UFj is rather arbitrary and very rarely has an experimental justification. As
a result of those approaches, an ad-hoc probabilistic description of ln kf,j is obtained, in
which its variability -which is proportional to ln UFj- neither depends on temperature
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Figure 1. Sketch of a typical sequence followed to derive a rate constant kf of an elementary
step from shock-tube kinetic-isolation experiments. Details of each stage are given in the main
text.

in a physically meaningful manner nor is correlated with any other reaction steps in the
chemical mechanism.

The objective of the remainder of this document is to identify the main conceptual
flaws of these approaches and to propose more accurate methodologies for quantifying
uncertainties in chemical reaction rates.

2.2. The Arrhenius approximation and uncertainties in chemical mechanisms

Consider a chemical mechanism given by the set of j = 1, 2...M elementary steps
∑N

i=1 ν′
ijRi ⇋

∑N
i=1 ν′′

ijRi, with R the chemical symbol of species i, N the number
of species, ν′

ij the stoichiometric coefficient of the reactant i in the step j on the reac-
tants side, and ν′′

ij the stoichiometric coefficient of the reactant i in the step j on the
products side. The net rate of mass production of species i and the rate of thermal power
released by chemical reactions are given by
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, (2.1)

and

ẇT = −
N
∑

i=1

h0
i ẇi, (2.2)

respectively, where ρ is the gas density. In this formulation, Yi, Wi and h0
i are, respectively,

the mass fraction, molecular weight and enthalpy of formation of species i. Additionally,
the constants kf,j and kb,j are, respectively, the forward and backwards specific reaction-
rate constants of the reaction j, which are related by the equilibrium constant Kj as
Kj = kf,j/kb,j . In the Arrhenius approximation, the reaction-rate constants follow the
expression

kf,j = AjT
nj e−Ea,j/R0T , (2.3)

where Aj is the exponential prefactor, nj is the temperature exponent, T is the tem-
perature, R0 is the universal gas constant, and Ea,j is the activation energy. In this
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Reaction UF Reference

Hydrogen-oxygen chain
1. H + O2 ⇋ OH + O 1.1 Hong et al. (2011)
8. H2O + O ⇋ OH + OH 1.5 Konnov (2008)
9. H2 + O ⇋ H + OH 1.3 Konnov (2008)
10. H2 + OH ⇋ H2O + H 2.0 Konnov (2008)

Direct recombination
2. H + O2 + M ⇋ HO2 + M 1.3 Konnov (2008)
7. H + OH + M ⇋ H2O + M 2.0 Konnov (2008)
18. H + H + M ⇋ H2 + M 2.0 Konnov (2008)
19. O + O + M ⇋ O2 + M 2.0 Konnov (2008)
20. H + O + M ⇋ OH + M 3.0 Konnov (2008)

Hydroperoxyl reactions
5. HO2 + OH ⇋ H2O + O2 1.3 Hong et al. (2011)
11. HO2 + H ⇋ OH + OH 2.0 Konnov (2008)
12. HO2 + H ⇋ H2O + O 3.0 Konnov (2008)
13. HO2 + H ⇋ H2 + O2 2.0 Konnov (2008)
14. HO2 + O ⇋ OH + O2 1.2 Konnov (2008)

Hydrogen-peroxide reactions
3. H2O2 + M ⇋ OH + OH + M 1.2 Hong et al. (2011)
4. H2O2 + OH ⇋ H2O + HO2 1.3 Hong et al. (2011)
6. HO2 + HO2 ⇋ H2O2 + O2 2.5 Konnov (2008)
15. H2O2 + H ⇋ HO2 + H2 3.0 Konnov (2008)
16. H2O2 + H ⇋ H2O + OH 2.0 Konnov (2008)
17. H2O2 + O ⇋ HO2 + OH 3.0 Konnov (2008)

Table 1. Reactions and uncertainty factors in measured reaction constants for the reference
mechanism (Hong et al. 2011). Note that the uncertainty factor UFj of a rate constant kf,j is

such that kf,jUFj and kf,j/UFj are upper and lower bounds of kf,j . This mechanism has 3
parameters ×11 Arrhenius steps + 12 parameters ×6 recombination non-Arrhenius steps + 6
parameters ×3 non-Arrhenius steps = 123 kinetic parameters.

model, AjT
nj is proportional to a collision frequency that depends on the effective colli-

sion cross-section, and exp(−Ea,j/R0T ) is proportional to the fraction of gas molecules
moving with a kinetic energy larger than the Arrhenius activation energy.

In most instances, the parameters Aj , nj and Ea,j are subject to uncertainties. In
theoretical calculations, there are uncertainties in parameters for collision-integral cal-
culations. In experiments, uncertainties are induced by the transience and complexity
of the systems, which often prevent isolation of individual rate parameters. Nonetheless,
the accuracy of rate measurements has increased to a level in which uncertainties can be
lowered to 10% in important elementary reactions (Hong 2010). The uncertainties in the
Arrhenius parameters render the chemical source terms (2.1) and (2.2) uncertain, the
treatment of which is deferred to Part II.

In order to ascertain the effects of the uncertainties of the kinetic parameters on the rate

constant, consider a dimensionless version of (2.3) given by k̂f = Â⋆θn̂e−β̂/θ, where θ =
T/Tfl is a dimensionless temperature normalized with the flame temperature Tfl (which

needs not to be specified at this point), β̂ = β −β is the nondimensional variation of the
activation energy with respect to its mean value β = Ea/R0Tfl, n̂ = n−n is the variation

of temperature exponent referred to the mean value n, Â⋆ = A⋆/A
⋆

is the uncertain
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collision frequency normalized with its mean value A
⋆
, with A⋆ = AT n̂

fl, and k̂f is the

uncertain reaction rate normalized with the reference reaction rate kf = A
⋆
θn exp(−β/θ)

based on the mean parameters and on the reference-temperature. In this way, k̂f = 1 in

nominal conditions, which correspond to β̂ = n̂ = 0 and Â⋆ = 1. The parameter β is
typically referred to as the Zel’dovich number in combustion literature. Because of the
large value of the overall β in combustion systems, small variations in temperature above
or below a critical crossover temperature can cause order-unity variations in the reaction
rates, which tend to be sufficient for extinguishing or igniting flames. Here the effect of
temperature is set aside. Instead, attention is paid to uncertainties in kinetic parameters
that produce uncertainties of order unity in the rate constant, k̂f,j − 1 = O(1), thereby
potentially making the combustion system uncertainly close to critical points.

Based on this formulation, uncertainties of O(UF) in the dimensionless pre-exponential
factor Â⋆ produce uncertainties of the same order of magnitude in the dimensionless rate
constant, k̂f = 1 + O(UF). For inducing uncertainties of O(UF) in k̂f , the uncertainties

in the activation energy need to be such that β̂/θ = O(ln UF), or equivalently, the
variations in the Zel’dovich number β caused by activation-energy uncertainties need to
be β − β ∼ (T/Tfl) ln UF. In dimensional notation, standard deviations σEa

of order
R0T ln UF in the activation energy produce the same overall uncertainty in the rate
constant kf that would be obtained by varying the pre-exponential factor A in amounts
of O(A · UF). A characteristic temperature Tr = σEa

/R0 ln UF can be defined such
that, for T < Tr, the effect of the activation-energy uncertainty in kf,j overwhelms
the effect of the uncertainty of O(A · UF) in the pre-exponential factor, as depicted in
Figure 1(d). Additionally, since the chemical time becomes longer and more sensitive to
Ea for decreasingly small temperatures, the effects of the activation-energy uncertainty
in kf,j are larger at low temperatures.

In addition to parametric uncertainties, there exist epistemic uncertainties associated
with the Arrhenius formula (2.3). Even though (2.3) can be derived from first principles
of statistical mechanics for n = 1/2 and for collision processes that actually occur at
the molecular scale, the rates of many elementary steps do not follow the Arrhenius
formula (2.3), as for instance the rates of the steps 2-4, 6, 7, 9, and 18-20 in Table 1.
Additionally, an underlying hypothesis of the Arrhenius approximation (2.3) is that local
thermodynamic equilibrium occurs, in that it is assumed that a unique local temperature
can be defined; the accuracy of this assumption is degraded in high-speed, very hot
reacting systems such as strong detonations or atmospheric-reentry flows.

Chemical-kinetic mechanisms are also subject to structural uncertainties. In well-
researched mechanisms, such as the hydrogen-oxygen mechanism shown in Table 1, this
degree of epistemic uncertainty is relatively small, in that the overall structure of the
kinetics has been successfuly tested in many studies (Konnov 2008). However, the use of
reduced hydrogen-oxygen combustion kinetics - of interest for saving computational cost
in direct numerical simulations - can introduce a large degree of structural uncertainties
if, for instance, the reduced description does not account for high-pressure dissociation
effects that in particular scenarios may be important for reignition. In fact, the effects of
epistemic uncertainties may as well overwhelm any influences of aleatory uncertainties
in the mechanism; for many heavy hydrocarbons such as JP-7, whose surrogate has ap-
proximately 111 species and 784 steps, the chemical mechanisms are still under structural
development and much research on them remains to be done.
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2.3. Chemical-kinetic measurement uncertainties in shock tubes

As noted above, the uncertainty factors UFj are introduced to represent the data scatter
in experimental results (Baulch et al. 2005; Konnov 2008). A typical instrument used
for determining reaction rates is the shock tube (Davidson & Hanson 2004). In shock
tubes, a driver section is filled with an inert high-pressure gas separated by a diaphragm
from the driven test mixture. When the diaphragm is relieved, a shock wave propagates
into the driven mixture. The incident or reflected passage of the shock wave leaves the
mixture at the test pressure and temperature, which eventually leads to autoignition
in a mostly transport-less environment. That the experiments should preferably be free
of advection and diffusion transport (which is present in flames) is motivated by the
fact that uncertainties in mixing and fluid mechanics would add more complexity in the
uncertainty-propagation dynamics. The hypothesis that transport phenomena in shock
tubes are negligible during the short test times (.1-3 ms) has generally be found to be
valid, though turbulence and boundary-layer effects can become significant in some cases
at longer test times (Davidson & Hanson 2004).

Kinetic rates can be determined in shock tubes by measuring concentration time-
histories through laser-absorption spectroscopy techniques (Hong 2010). Figure 1(a)
shows a sketch of a typical concentration time-history of the monitored species Yp,j

during an kinetic-isolation experiment at temperature To. Note that the choice of the
monitored species Yp,j depends on the step j which rate is to be measured. After the
measurements {t, Yp,j}T=To

have been collected, numerical calculations of an isochoric
accumulation-reaction problem of the type

DsYi = ẇi and DeT = ẇT (2.4)

are performed, with i = 1, . . . N , and where ẇi and ẇT are given by (2.1) and (2.2).
Equations (2.4) are subject to Yi = Yi,o and T = To at t = 0. In this formulation, Yi is
the mass fraction, T is the temperature, Ds = ρd/dt, De = ρcpd/dt, and ρ is the mixture

density. Similarly, cp =
∑N

i=1

∫ T

Tref
Yicpi(T )dT is the constant-presure specific heat of

the mixture. This formulation describes a homogeneous explosive mixture at rest, which
is, to some extent, representative of the region downstream from the shock wave in a
reference frame moving with the velocity of the gas behind the shock wave.

To obtain a value of the measured rate constant kf,j , in a first step equations (2.4) can
be integrated with a reference mechanism to ascertain the level of impurities in the shock
tube, in such a way that the initial conditions for the radical pool are varied to achieve
matching between the numerical curve and the experimental profile of the monitored
species at the rising point, as depicted in Figure 1(b). The second step involves performing
numerical calculations of the same problem (2.4) with the reference mechanism and the
initial concentration of impurities calculated in the previous step, by varying the target
rate constant kf,j to fully match the experimental profile. It should be emphasized that
this procedure requires that i) a reference rate constant kr

f,j is known and can be used
initially in the steps depicted in Figure 1(b,c), and ii) the time evolution of the monitored
species Yp,j is most sensitive to the target rate constant kf,j . See, for instance, Davidson
et al. (1996) and Hong (2010) for practical implementations of this sequence.

A usual method for retrieving uncertainties from shock-tube measurements of rate
constants consists of identifying the experimental variable which the target result is
most sensitive to, and then calculating the solution to the problem (2.4) with a reference
mechanism, in which the experimental variable is perturbed by the maximum uncertainty
of the corresponding instrument that measures it. For a characteristic temperature, the
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perturbation in the resulting value of the modified reaction rate is typically listed as the
uncertainty factor UFj of that reaction (Hong 2010).

2.4. Limitations of uncertainty factors

In summary, the following limitations L1 −L4 should be kept in mind when using tabu-
lated uncertainty factors:

Limitation L1) The uncertainties in the Arrhenius activation energies and tempera-
ture exponents are typically ignored in the reference literature. In particular, the impor-
tance of uncertainties in the Arrhenius activation energies of rate-determining steps may
be of some relevance near critical phenomena in combustion, in which small variations of
temperature can lead to extinction or ignition events because of the strong exponential
non-linearity of the chemical rate.

Limitation L2) The techniques used for rate measurements, which usually rely on the
detection of radical traces by using laser absorption spectroscopy (Davidson et al. 1996),
are applicable only in a limited range of temperatures, in that the population of radicals
becomes increasingly small for decreasing temperatures. Additionally, for measurements
performed near crossover temperatures, the residence time of the shocked mixture in the
shock tube becomes increasingly large, which results in the measurements being influ-
enced by non-ideal pressure-rise effects (Hong 2010), thereby adding more uncertainty in
the low-temperature data.

Limitation L3) Residual impurities, which may inadvertently remain from previous
experiments in the shock tube, can degrade the accuracy of rate measurements based on
radical-absorption diagnostics (Davidson & Hanson 2004). Kinetic-isolation experiments
are typically performed in dilute conditions. As a result, the presence of small amounts
of impurities in the shock tube can interfere with the chemical kinetics of the main
reactants.

Limitation L4) Experiments for isolating the kinetics of specific steps can be designed
to give accurate rates under negligible influences of the remaining steps. Despite the
existence of these observation windows, cross-correlations among the errors in the mea-
surements of elementary rates become important when the timescale of the target step
becomes of the same order as the time scales of the competing steps, in which case the
measurement of the target rate necessitates of an accurate measurement of the compet-
ing rates. In hydrogen combustion, this interference becomes evident at near-crossover
temperatures at which the branching kinetics are as slow as the recombination of rad-
icals (Hong 2010). The mathematical definition of the cross-correlations among uncer-
tainties in reaction rates is given in the following section. The extent to which these
cross-correlations have an impact in overall combustion calculations under chemical un-
certainties is still under discussion (Sheen & Wang 2011).

With all these limitations in mind, a general framework for inferring uncertainties in
reaction rates is proposed in what follows.

3. Methods for quantifying uncertainties in chemical rates

Consider, without any loss of generality, a chemical mechanism in which the kinetic
parameters are given by the general expression

S = F(ξ), (3.1)

where S = [S1,S2, . . . ,SM ] is a vector that concatenates all the individual vectors
Sj = [lnBj , nj , Ea,j , . . . ], which contain all kinetic parameters of each elementary step.
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Here Bj = AjT
nj
c , with Tc an arbitrary characteristic temperature used for reducing Aj

to avoid physical inconsistencies in (2.3) when Aj and nj are random (i.e. Aj changes
physical units as nj varies). In general, the covariance matrix of S is full, with the off-
diagonal terms indicating cross-correlations among kinetic parameters. Similarly, ξ is
a vector of independent random variables -which need not be specified in this general
formulation-, and F is an operator which is nonlinear in the most general setting. The
vector of rate constants K = [kf,1, . . . kf,M ] is obtained by using the transformation

lnK = G[S(ξ), p, T ], (3.2)

where p is the pressure and lnK indicates the logarithm of the components of K. Similarly,
G is generally a non-linear operator.

For steps that follow the Arrhenius law (2.3), the operator G becomes linear and
pressure-independent,

ln kf,j = Gj [Sj(ξ), T ] = lnBj(ξ) + nj(ξ) ln(T/Tc) − Ea,j(ξ)/R0T. (3.3)

For steps that do not follow the Arrhenius law (2.3), the operator G is non-linear and
can become as complicated as

ln kf,j = Gj [Sj(ξ), T ] = ln

[

Aj,1(ξ)e−
Ea,j,1(ξ)

R0T + Aj,2(ξ)e−
Ea,j,2(ξ)

R0T

]

, (3.4)

for steps 4, 6 and 9 in Table 1, and

ln kf,j = Gj [Sj(ξ), p, T ] = ln

(

ηMkf,j,0F
{1+[(0.75−1.27 ln Fc)

−1 ln(kf,j,0[M]/kj,∞)]2}−1

c

1 + [M]kf,j,0/kj,∞

)

(3.5)
for the direct-recombination reactions in Table 1, where ηM(ξ) and [M ] = p/R0T are,
respectively, the collision efficiency and concentration of the background collider, kf,j,0 =
Bj,0(ξ)(T/Tc)

nj,0(ξ) exp[−Ea,j,0(ξ)/R0T ] is the rate constant at low pressure, kf,j,∞ =
Bj,∞(ξ)(T/Tc)

nj,∞(ξ) exp[−Ea,j,∞(ξ)/R0T ] is the rate constant at high pressure, and Fc

is a Troe fall-off factor that helps matching the high and low pressure rates and is normally
given by Fc = a(ξ) exp[−T/T1(ξ)]+ [1−a(ξ)] exp[−T/T2(ξ)]+ b(ξ) exp[−T/T3(ξ)]. Note
that expression (3.5) contains 12 potentially aleatory parameters.

The obtention of the operator F in (3.1) is central to uncertainty quantification in
chemical rates. In some cases, an expression of F can be obtained in closed form, but
in general F needs to be evaluated numerically. For instance, F could be given by a
polynomial-chaos expansion for each component of the random vectors Sj in terms of
ξ, or by using a Cholesky decomposition of the covariance matrix. Alternatively, the
expression (3.1) can be evaluated numerically by using a Markov-Chain Monte Carlo
(MCMC) method to construct a posterior distribution, as described below. In order to
overcome the limitations L1 − L4 outlined above, four different methods M1 −M4 for
obtaining F and inferring uncertainties in reaction rates are proposed in what follows. It
is shown below that the first three approaches M1 −M3 are particular cases of a more
general framework M4, which is herein referred to as the active chemical mechanism.

Method M1) The simplest approach consists of collecting uncertainty factors from
existing literature (Baulch et al. 2005) for each rate constant kf,j and assuming a
temperature-independent, uncorrelated noise ǫj , whose standard deviation is propor-
tional to UFj , and which spans along the ln kf,j axis in the {1/T, ln kf,j} plane, as
depicted in Figure 1(d). By doing this, the operator F in (3.1) becomes linear and the
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Figure 2. Conditional probability density function (PDF) P (kf,j |T ) of the forward rate con-
stants kf,1 and kf,3,0 (in cm3/s·mol) of steps 1 and 3 in Table 1. The PDFs were obtained by
using method M2 to infer the statistical distributions of A1, Ea,1, A3,0 and Ea,3,0. The dark
regions indicate high probability. The white dashed lines indicate one standard deviation with
respect to the mean. The white dots correspond to shock-tube measurements taken from Hong
(2010).

covariance matrix of S becomes diagonal, where its only non-zero terms are of the form
(1/4) ln2 UFj . If ǫj is taken to be Gaussian, then kf,j has a lognormal probability density
function with mean kf,j and variance σ2

ǫj
= (1/4) ln2 UFj , which gives

kf,j = ξjkf,j , with ln ξj ∼ N

(

0,
ln2 UFj

4

)

, j = 1, . . . M. (3.6)

In this formulation, ξj is a lognormal random variable and N indicates a normal proba-
bility distribution. The symbol kf,j denotes the nominal rate constants in Table 1, but
it is also the conditional median of the distribution of rate constants (not to be confused
with the mean). The random variables ξj , j = 1, ...M , are taken here to be statistically
independent. This model is intended to represent uncertainties for isolated reactions in
which the data scatter is mostly temperature-independent in the {1/T, ln kf,j} plane, in
such a way that the deviations with respect to the nominal values become multiplicative
in the {T, kf,j} plane; this is clearly not always the case (Davidson et al. 1996). Note
that, depending on the analyzed data set, the unbiased variance estimator of the data
may not be equal to the variance given by the uncertainty factor, since the former only
accounts for data scatter and the latter is expected to account for all experimental un-
certainties. If the unbiased variance estimator is much larger than the variance given by
the uncertainty factor, then the former should be used as a variance in (3.6).

Method M1 provides the probability density function of the rate constant P (kf,j), with
each realization of kf,j being a temperature-uniform multiplicative factor of the previous
ones. This method is limited by L1 − L4 listed above, in that it does not take into
account measurement-uncertainty variations with temperature, it does not account for
cross-correlation among measurement errors of different elementary rates, it assumes as
certain the values of the activation energy and temperature exponent for every step, and
it does not model the effects of residual impurities in the rate measurements. Additionally,
in this model the uncertainty of kf,j is biased towards values of the rate constant larger
than the nominal value kf,j because of the normality of the noise. This model has been
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widely used to generate input chemical uncertainties in earlier works on combustion
calculations (Reagan et al. 2003; Mueller et al. 2012).

Method M2) This second method builds on M1 by assuming that the three Arrhenius
parameters Aj , nj and Ea,j in (2.2) become uncertain. In this way, the rate constant is
given by

kf,j = Bj(ξj)(T/Tc)
nj(ξj)e−Ea,j(ξj)/R0T , j = 1, . . . M. (3.7)

where ξj = [ξj,1, ξj,2, ξj,3]
T is a vector of random variables. Equation (3.7) implies that

the operator Gj defined in (3.2) is linear in the kinetic parameters, and additionally, that
lnBj = lnAjT

nj
c , nj , Ea,j and ξj have Gaussian probability density functions if the noise

ǫj along the ln kf,j axis in the {1/T, ln kf,j} plane is Gaussian. Under these assumptions,
the operator F in (3.1) is linear and the covariance of the vector of kinetic parameters S

becomes block diagonal, with the zeros indicating the absence of cross correlations among
kinetic parameters of different steps. In particular, since (3.7) becomes linear after a
logarithmic transformation, the vector of kinetic parameters Sj can be expanded as Sj =

Sj + αjξj , where Sj = (Gj
T
Gj)

−1Gj
TXj is the least-squares estimator, and αj is an

upper-triangular matrix that results from the Cholesky decomposition of the covariance
matrix cov(Sj) = σ2

ǫj
(Gj

T
Gj)

−1, namely, cov(Sj) = αjαj
T. In this formulation, Gj is a

R
K×3 coefficient matrix which rows are given by (3.3) evaluated at the test temperatures,

and Xj = [ln kf,j,1(T1), . . . ln kf,j,K(TK)]T is a vector composed of the K measured data
points. Note however that, since the noise has been modeled to have a constant variance,
this linear regression model provides a reaction-rate variance var[ln kf,j ] which depends on
temperature. The kinetic parameters in Figure 2(a,b) were obtained using this method.

The operator G is non-linear for the recombination steps and for the steps 4, 6 and
9 in Table 1, so that the individual Arrhenius parameters are not necessarily Gaussian-
distributed and the strategy outlined above is not applicable. Similarly, the operator F in
(3.1) is non-linear for these steps, and more general techniques are required to obtain the
statistical description of the kinetic parameters. For this purpose, the Bayesian method
can be employed to infer the probabilistic distributions of the kinetic parameters as
follows. The objective of the Bayesian method is to find the input-parameter vector Sj

that brings the model into agreement with the measurements up to the imposed noise
ǫj . In mathematical terms, this can be expressed as Gj(Sj) = Xj + ǫj , thereby implying
that Gj(Sj) − Xj has the same distribution as the noise ǫj , in accord with Figure 1(d).

The inference of the input parameters can be performed by using Bayes’ rule,

P (Sj |Xj) = cP (Xj |Sj)P (Sj). (3.8)

In this formulation, P (Sj |Xj) is the posterior density, or equivalently, the occurrence
probability of the parameter-vector Sj conditioned on the data set Xj . Similarly, the
symbol P (Xj |Sj) denotes the likelihood function, or equivalently, the occurrence prob-
ability of the measurements Xj conditioned on the input-parameter vector Sj . Addi-
tionally, P (Sj) is the prior or occurrence probability of Sj , which can be assumed to
be given by a uniform density in the input-parameter space. Finally, c is a normalizing
constant that ensures that the product of the likelihood and the prior is a probability
density function. Since both P (Sj) and c are constants over the parameter space, we can
rewrite Bayes’ rule as P (Sj |Xj) ∝ P (Xj |Sj), where P (Xj |Sj) is the likelihood function

P (Xj |Sj) = (2πσ2
ǫj

)−
K
2 exp

(

−
||Gj(Sj) − Xj ||

2

2σ2
ǫj

)

. (3.9)
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Note that, if the noise ǫj is Gaussian-distributed with zero mean and constant variance
σ2

ǫj
= (1/4) ln2 UFj , the distribution (3.9) is a multivariate Gaussian function with mean

vector Gj(Sj) and scalar standard deviation σǫj
. A Markov-Chain Monte-Carlo method

(MCMC) can be used to sample (3.8) and to yield the probability description of the
vector-parameter space Sj , as detailed somewhere else (Kseib et al. 2011). Examples of
input uncertainties obtained by using this method can be found in Najm et al. (2009)
and Kseib et al. (2011).

It is worth emphasizing that in method M2 the uncertainty in kf,j is split into the three
Arrhenius parameters. This implies the following subtle difference with respect to method
M1. While a single realization using M1 gives a rate constant whose logarithmic value
may become increased or decreased uniformly along the entire range of temperatures, a
single realization in method M2 provides a rate constant whose value may vary with tem-
perature in a substantially different manner from the way that the nominal rate constant
does, especially if the activation energy contains a large degree of uncertainty. How-
ever, this method is limited by L2-L4, in that it does not account for cross-correlations
between measurement uncertainties, it assumes temperature-independent uncertainties,
and it cannot represent the influences of residual impurities in shock-tube measurements.

Method M3) Methods M1 and M2 rely on the assumption that the noise ǫj along
the ln kf,j axis in the {1/T, ln kf,j} plane is known. The final response of the combus-
tion system depends on the choice of this noise representation. However, the justification
for this assumption cannot be found in any physical grounds. A different approach is
to superpose a given representation of the noise along the Yp,j axis in the experimen-
tal concentration time-history {t, Yp,j}T=To

of the monitored reactant in Figure 1(a). A
noise model can be superposed on the concentration, in such a way that -for instance-
σǫj

∼ (Y ′2
p,j)

1/2. The assumption of a Gaussian noise model in the {t, Yp,j} plane may
be justified on the grounds that the concentration time-history is retrieved directly from
laser measurements, but it may not be justifiable after operations have been made to the
experimental data as those required to translate them into a {1/T, ln kf,j} plane of the
type depicted in Figure 1(d). If, additionally, the noise ǫj is assumed to be stationary,
its variance may be calculated -for instance- from the mean of the square of the concen-
tration fluctuations, σ2

ǫj
(To) ∼ Y ′2

p,j |T=To
. Therefore, although a model distribution for ǫj

needs to be specified, in this method the variance of the noise is naturally characterized
directly from the data and is allowed to vary with temperature. Additionally, no previ-
ous knowledge of the uncertainty factor UFj is needed. Furthermore, the effects of the
residual impurities in the shock tube are automatically accounted for.

Since the conservation equations (2.4) are non-linear, the operator F in (3.1) be-
comes non-linear as well. In order to infer the probability density functions of the Ar-
rhenius parameters from the uncertain concentration time history at each temperature,
{t, Yp,j}T=To

, a Bayesian inference strategy can be used. Consider the input-parameter
vector Sj = [lnBj , nj , Ea,j , Y

0
R,j ]

T, where Y 0
R,j is the initial concentration of the equiva-

lent species that simulates the effects of the impurities, and the experimental data vector
X = [Yp,j(t1), . . . Yp,j(tK)]T that is composed of the K measured data points at T = To

(and possibly also P = Po for termination reactions). If F (Sj , t) represents the solution to
(2.4) for a given set of kinetic parameters Sj for step j, then the Bayesian-inference tech-
nique can be used to find the parameter vector Sj that brings the model into agreement
with the measurements up to the imposed noise ǫj , or equivalently, F (Sj , t) = Xj + ǫj .
The inference of the input parameters can be performed by using Bayes’ rule (3.8) and
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Figure 3. Schematics of method M4 -the active chemical mechanism- for quantifying
uncertainties in reaction rates.

by sampling the likelihood function (3.9). From the MCMC method, the mean vector Sj

and the covariance matrix cov(Sj) at each test temperature To can be calculated.
This method is limited solely by L4, in that it does not account for cross-correlations

between measurement uncertainties. Earlier work (Miki et al. 2012) used a similar ap-
proach, without accounting for residual impurities, to characterize the uncertainties in
step 1 of Table 1 by using experimental {t, Yp,j} data from Hong (2010).

Method M4) All three methods M1 −M3 described above belong to a generalized
inference approach that is not limited by any of the L1−L4 restraints outlined in Section
2.4. Figure 3 shows a schematics of such an approach, which is referred to as the active
chemical mechanism. Subject to the existence and availability of sufficient experimental
data, the active chemical mechanism updates the nominal values and uncertainties in the
kinetic parameters through a cyclic procedure.

Experimental data from transport-less experiments can be injected through the cycle to
infer the kinetic parameters. Numerical calculations of (2.4) are performed in conjunction
with the active mechanism to reproduce the experimental concentration time-history of
the monitored reactant Yp,j(t). By using equations (2.4) to represent the complex gas
dynamics in the shock tube, the concept of “gate” in uncertainty quantification (Iaccarino
et al. 2012) is being implicitly used, in that a model reduction is being undertaken based
on physical grounds and all uncertainties in the experiments are being transferred into
effective uncertainties in the source terms (2.1)-(2.2).

Using equations (2.4) and the active mechanism, a global sensitivity analysis assists in
dimension reduction by identifying the critical kinetic parameters that influence the con-
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Limited by
Method L1 L2 L3 L4 Describes the input uncertainty in terms of

M1 yes yes yes yes P (Aj), j = 1, . . . M .

M2 no yes yes yes P (Aj), P (nj), P (Ea,j), P (Aj , nj), P (Aj , Ea,j),
P (nj , Ea,j), for j = 1, . . . M .

M3 no no no yes P (Aj), P (nj), P (Ea,j), P (Aj , nj), P (Aj , Ea,j), P (nj , Ea,j),
at T = To and p = po, and for j = 1, . . . M .

M4 no no no no P (Aj), P (nj), P (Ea,j), P (Ai, nj), P (Ai, Ea,j), P (ni, Ea,j),
at T = To and p = po, and for i = 1, . . . M , j = 1, . . . M .

Table 2. Summary of methods proposed in this study for modeling input uncertainties in
chemical rates. The symbol P denotes the probability density function.

centration time history {t, Yp,j}. The global sensitivity to the parameter Si, with Si the
i-th component of the vector of kinetic parameters, is given by Ri = var[E(Yp,j |Si)]/σ2

ǫj
,

where E denotes the expectation operator. Note that Ri is, in general, a function of time
t and of the thermodynamic conditions To and po. Additionally, Ri provides the weighted
measure of the sensitivity of Yp,j(t) to the parameter Si, in that its definition accounts
for the amount of variability in Si. For this reason, the calculation of Ri requires the
knowledge of the probabilistic distributions of the kinetic parameters. If these distribu-
tions are unknown, as for instance when the cycle starts, local sensitivities of the type
ri = (Si/Yp,j)(∂Yp,j/∂Si) can be used in a first approximation as traditionally done in
the design and assessment of kinetic-isolation experiments (Davidson et al. 1996; Hong
2010). Once the set Sr of most sensitive kinetic parameters has been isolated, Bayesian
inference methods can be used to infer their updated values and uncertainties as de-
scribed in method M3, by simply substituting Sj in that formulation by Sr, thereby
automatically yielding the cross-correlation structure among all the retained kinetic pa-
rameters. In this method, the operators F and G in (3.1)-(3.2) can be fully nonlinear.
This strategy is not affected by any of the limitations L1 − L4.

4. Conclusions

In this study, four main limitations of state-of-the-art approaches for quantifying un-
certainties in rate constants were outlined, which concerned L1) the lack of modeling of
uncertainties in all three Arrhenius parameters, L2) the temperature-independence of the
uncertainty, L3) the lack of modeling of the effects of residual impurities on the measure-
ments, and L4) the resulting uncorrelation among the uncertainties in elementary rate
constants. To suppress these limitations, four methods M1 −M4 of increasing complex-
ity were proposed to quantify uncertainties in reaction rates, the outputs of which are
summarized in Table 2. These methods provide physics-based formulations for modeling
uncertainties in reaction rates, and further research is being undertaken to compare their
performances.

As detailed in Urzay et al. (2012), non-intrusive methods of chemical-kinetic uncer-
tainty quantification in high-speed turbulent combustion utilize as inputs single realiza-
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tions of the stochastic space of rate constants K. It should not be denied that, in addition
to high-fidelity calculations, serious endeavors in uncertainty quantification also require
high-fidelity inputs if physically-meaningful analyses of the effects of the uncertainties are
pursued. In particular, suitable methods for quantifying input uncertainties in chemical
kinetics need to satisfy realizability constraints in the rate constants kf,j which must be
in accord with the corresponding physics. It is known from the kinetic theory of gases that
the rate constants vary smoothly with temperature and pressure (Vincenti & Kruger Jr.
1965). In all methods M1 −M4 outlined above, implicit realizability conditions on the
derivatives ∂kf,j/∂T |p and ∂kf,j/∂p|T are automatically enforced by equations (2.4) and
(3.3)-(3.5), which are mathematical representations of the rate-determining experiments
and of some of the underlying gas-kinetic phenomena. Whether or not these constraints
are sufficient is a topic of current research. However, methods M1 −M3 do not satisfy
any physical realizability constraints related to cross-correlations among the uncertain-
ties in rate constants. Further research is needed to quantify these cross-correlations and
to assess their relevance in combustion calculations under chemical-kinetic uncertainties.
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