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1. Motivation and objectives

In this study, a flamelet-based framework is proposed for quantifying the uncertainties
induced by chemical-kinetic rates on the aerothermochemical field in numerical simula-
tions of high-speed turbulent combustion. For this purpose, this report is divided into
the following sections. In Section 2, a short background on flamelet physics is provided.
In Section 3, the RANS formulation of the outer problem is summarized. In Section
4 the flamelet progress-variable approach (FPVA) for modeling turbulent combustion
(Pierce & Moin 2004) is extended to treat uncertainties in chemical kinetics. In Sec-
tion 5, a strategy for propagating input uncertainties in the main aerothermochemical
variables is proposed. Section 6 is focused on a short assessment of the potential effects
of chemical-kinetic uncertainties in the hydrogen-fueled Hyshot-II SCRAMJET engine.
Finally, conclusions are drawn in Section 7. This work is founded upon another article
that appears in this same volume (Urzay et al. 2012) for quantifying uncertainties in
chemical-kinetic rates.

2. Background

It is well known that, in addition to the closures needed for turbulent fluxes, the
chemical-source terms need closure in turbulent reacting flows when the filtering or av-
eraging operators are applied to the conservation equations; the reasons for this are that
combustion typically occurs in subgrid scales that are filtered out (in the case of LES),
and that ensemble or time-averaging of the combustion process leads to thickened flames
where chemical reaction takes place in the mean (in the case of RANS). In both cases,
it is widely accepted that the averaged or filtered chemical-production term is not quite
given by eq. (2.1) in Urzay et al. (2012) if directly written in terms of the averaged or
filtered aerothermochemical variables.

Among many other turbulent-combustion models used for attaining closure of the
chemical-production terms, the steady non-premixed flamelet model (Peters 2000) is
based on the belief that a complex turbulent diffusion flame can be decomposed on ele-
mentary flames which are subject to a local stagnation-point strain field in the microscale
., -which is of the same order as the Batchelor length-, as depicted in Figure 1(a). The
resulting counterflow diffusion flame undergoes bifurcations that were first described in
a seminal paper by Lindn in the limit of large activation energies (Lifidn 1974), and
which served as the fundamental pillar in later developments in flamelet models (Peters
1983). In particular, Lindn found that multiple solutions occur for the same value of the
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FIGURE 1. (a) Instantaneous flamelet concept for a high-speed fuel-air mixing layer downstream
from a splitter plate. (b) Sketch of Lindn’s S-curve for a counterflow diffusion flame (Lifidn
1974), with the grey area representing the zone where the influences of chemical-kinetic rate
uncertainties are the largest.

strain rate a -a quantity of the same order as the inverse of the microscale time ¢2, /Dy,
with Dg being the fuel diffusivity-, as depicted in Figure 1(b). In particular, according
to Lifidn’s analysis, an upper branch describes the limit of vigorously burning flames, in
which the chemical time scale is much shorter than the strain time, and reactants become
depleted very quickly as they flow through the mixing layer. Similarly, a lower branch
describes the chemically-frozen mixing of fuel and oxidizer, during which the chemical
time scale is much longer than the diffusion time scale of the reactants across the mixing
layer. The intermediate branch represents a partial-burning regime in which one of the
reactants leaks abundantly through the flame. The upper and lower turning points F
and I are representative of extinction and ignition, respectively. It is worth mentioning
that these two turning points represent abrupt quasi-static phenomena and that no tem-
poral dynamics, which are expected to occur near extinction or ignition, are captured
in Lindn’s formulation (Lindn 1974). Although Lindn’s analysis is limited to single-step
irreversible kinetics, the qualitative dynamics depicted in Figure 1(b) tend to persist in
diffusion flames even with complex chemistry (Sdnchez et al. 1995). However, in the case
of hydrogen-air diffusion flames, the bifurcation curve sketched in Figure 1(b) may depart
considerably from the S-shape in conditions of relevance for supersonic combustion, as
observed in Section 6.

It should be emphasized that all flamelet models implicitly assume an asymptoti-
cally large separation of time and length scales between the combusting zones and the
aerodynamically-dominated regions (Peters 2000). Such separation of scales does indeed
occur in vigorously-burning flames, for which the reaction-zone thickness ¢y; is typically
much smaller than the integral scale ¢ and the microscale ¢,,, as depicted in Figure 1(a).
Additionally, in the fast-chemistry limit the chemical time is much shorter than both
the integral time ¢/U and the microscale time ¢2,/Dg, where U is the characteristic
large-scale velocity. As a consequence, the vigorously-burning regions may be envisioned
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as undergoing combustion in a locally quasi-static ambient in which the outside inertial
turbulence plays little role, and for which steady non-premixed flamelets are well suited.

In the steady non-premixed flamelet model, first the microscale variables are obtained
from the resolution of the counterflow diffusion flame at scales of O({,,), as depicted
in Figure 1(a), as a function of the mixture fraction Z and the stoichiometric scalar
dissipation rate Y -a quantity of order aZ? for hydrocarbons-. In a subsequent step,
the averaged/filtered values of any flamelet variable ¥; s are computed by integrating
\fli_,f = [V, yP(Z,xst)dZdx s, where P(Z, xs) is a joint probability-density function
(PDF) which needs modeling, and which represents subgrid mixing and straining pro-
cesses that cannot be captured in RANS or LES. Models of P(Z, xst) are normally made

to depend on Z, 22 and Xst (Peters 2000), and solutions of the type \I/Z,f(Z Z”Q, Xst)
can be pre-computed and retrieved during the simulations to calculate the local com-
position, temperature, density and thermodynamic coefficients depending on the local
values of Z Z”2 and xs¢. However, because of the multivalued character of the bifurca-
tion curve in Figure 1(b), steady non-premixed flamelets are only capable of capturing
the vigorously-burning branch up to the extinction point, following the frozen branch
thereon, as depicted in Figure 1(b). Regions of re-ignition, premixing or preheating can-
not therefore be described by steady non-premixed flamelets.

To compensate for the inaccessibility of the steady non-premixed flamelets to the lower
branch and the ignition point, which may be of some interest to capture in partially-
premixed zones such as near-injector regions in high-speed combustors of the type orig-
inally analyzed by Pierce & Moin (2004) (i.e., with inlet speeds much larger than the
laminar premixed-flame velocity), a remapping of the flamelet solution was proposed in
earlier work in terms of an additional progress variable C', which represents the degree of
completion of the combustion process. This treatment was termed the flamelet progress-
variable approach (FPVA) (Pierce & Moin 2004). When the mass fractions and tempera-
ture are mapped onto Z and C, the multivalued character of the Z — x; parametrization
disappears. Therefore, access to the middle and lower branch up to the ignition point
is granted, as depicted in Figure 1(b) by the solid-line trajectory. However, it should be
noted that the middle branch is believed to be unstable (Williams 1985), and therefore
the physical relevance of capturing the middle branch could be questioned. The average
or filtered values of the flamelet variables ¥; ; then become V; y = [ ¥; (P(Z,C)dZdC.
Since C' is not a passive scalar, an additional conservation equation for C' is required,
in which the source term 1wc requires closure upon averaging or filtering. The aver-
aged /filtered progress-source term becomes w¢ = f weP(Z,C)dZdC and solutions of

the type Yi(Z, 7 .C), T(Z, iz ,C) and we(Z, 7 ,C) can be pre-computed and read
during numerical simulations. Nonetheless, it should be emphasized that the ignition
point I in Figure 1(b) is not indicative of autoignition in the evolution-type of flows
normally found in practical applications, in which two streams of fuel and oxidizer ignite
only when they mix together at sufficiently high temperatures and after decomposition
of heavy fuel molecules into a large amount of radicals, and in which the prediction of
autoignition requires careful consideration of the reactant time-histories as opposed to
the quasi-static treatment that leads to Figure 1(b). Despite these limitations, the steady
FPVA model allows for a simple representation of quasi-static ignition in terms of the
instantaneous-filtered or averaged local strain value.

Earlier studies have analyzed the effects of chemical uncertainties in simple combustion
problems, such as single-step ignition and planar flame propagation (Najm et al. 2009).
A recent study (Mueller et al. 2012) tackled a more complex problem by investigating
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the effects of chemical-rate uncertainties in LES of an unconfined and piloted low-Mach
methane-air jet diffusion flame, which represents a configuration suitable to be modeled
by steady non-premixed flamelets. The methodology proposed in that study is extended
below to high-speed partially-premixed turbulent reacting flows. This analysis makes
use of the concept of “gates” in uncertainty quantification (Taccarino et al. 2012), by
which the stochastic space is reduced in the direction of the uncertainty arrow by taking
advantage of the disparity of scales, as depicted in Figure 1(a).

3. Transport equations in the RANS-FVPA framework

In the RANS context, the aerothermochemical variables are decomposed as f = f—i— 1,
where f is a Favre average and f” is the perturbation. When the time-averaging operator
is applied to the Navier-Stokes equations and the transported variables are decomposed
into Favre-mean and Favre-perturbations, and under a number of assumptions detailed
below, the conservation equations become

ap .
%’" + V- (p00) = -Vp+V - T— V- (pv"v"), (3.2)
opZ e = ——
5 TV (pv2) =V (pDVZ) =V - (pv" 2"), (3.3)
opC o N e
5 TV (pp0) =V (pDVC) =V - (" C") + pibe, (34)
pZ" — — —~—

o TV (pPZ2) = —2pu" 2"V L =V - (' 2") + 22"V - (pDV Z)

+V - (pDVZ"2) — 2pD(V Z")2, (3.5)

OpE = _ _ o~ _
T +V. - (pvE)=-V - (pv)+ V- (70) =V - (pv"E") -V -7, (3.6)

which are listed here for reference. In this formulation, p is the pressure, T is the viscous
stress tensor and q is the heat flux. Similarly, C' is a progress variable that is typically
taken to be the main combustion product. Additionally, E = ¢+ v 0T /2+k is the Favre
mean of the total energy, with k being the turbulent kinetic, € = h+ p/p the internal
energy, and

N N . N T .
h=> Yih) + Z/ Yicp xdT (3.7)
k=1 i=17T°

the enthalpy, where c, ;. is the specific heat at constant pressure of species k and IV is
the number of species. Additionally, the equation of state

N
p=pRT, with R=R"> /Wi, (3.8)
k=1
is used to calculate the mean pressure p, with R? the universal gas constant and Wy, the

molecular weight of species k. In high-speed reacting flows, the temperature T" in (3.7)
and (3.8) should not be confused with the flamelet temperature, as stressed below.
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Equations (3.2)-(3.6) require closure. When traditional Boussinesg-type closure models
are used for the turbulent fluxes, eqs. (1)-(6) in Pecnik et al. (2012) are recovered.

Some approximations were undertaken when writing egs. (3.3)-(3.5), (3.7) and (3.8),
which are worth highlighting in the present context of uncertainty quantification, and
because it may be erroneously believed that these equations are exact even before un-
dertaking any endeavors for modeling the unclosed terms. In particular, eq. (3.3) was
derived under the assumption that all the molecular diffusivities in the mixture are
equal, Dy = D, in which case (3.3) can be obtained by linearly combining the species
conservation equations. If the molecular diffusivities are not equal, a transport equation
for Z similar to (3.3) can be written (Peters 2000), but it becomes physically unclear
what molecular diffusivity must be used in (3.3) -which in turn needs to be a calibrated
diffusivity- or whether the stoichiometric mixture fraction is in any physical way related
to the flame location in the fast-chemistry sense as it is when all the mass diffusivities
are equal. Similarly, the Favre-averaging operator was made to commute with the def-
inite integral sign in the second term of (3.7), and the same operator was also split in
the product of the mass fractions and the temperature in the equation of state (3.8);

—~

these approximations are suspect to degrade the solution if the correlations Y;”T” are
not small, which is typically the case in combustion (Peters 2000).

4. A stochastic FPVA formulation under chemical-kinetic uncertainties

Additional closures are required for the thermodynamic coefficients, Favre-averaged
mass fraction and progress-variable source term in (3.1)-(3.8), which are obtained via
flamelet modeling by integrating the steady problem

x 0%Yy, i

> o7s = Uk (4.1)
582Tf _ i hgu')kj (4 2)
2 822 t Cp,f ’ '

which is given here in a simpler form for space constraints. The two flamelet conservation
equations typically integrated are listed in Pitsch & Peters (1998), which include the
effects of multi-species diffusion and different c,; among chemical species. Equations
(4.1) and (4.2) are subject to the boundary conditions

Yk7f = Y;’F and Tf = TF,F, (43)
in the fuel stream Z = 1, and
Yk7f = }/i,A and Tf = TA, (44)

in the air stream Z = 0. The subindex ; has been used here to denote the variables
obtained from the solution to the flamelet problem (4.1)-(4.4). In this formulation, wy_ y
is the chemical production of species k. In particular, for & = C, the progress-variable
source term wc, s is obtained. Similarly, x = 2D|VZ |2 is the scalar dissipation rate, a
closure model for which can be obtained, for instance, by deriving and squaring eq. (5) in
Lindn (1974) for the thermodiffusive case. The stoichiometric scalar dissipation rate x:
is usually obtained from the outer field by using the approximate eq. (3.157) in Peters
(2000). In an asymptotic sense, the inner-problem formulation (4.1)-(4.4) is valid up to
scales of order /,,, as depicted in Figure 1(a).
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In the deterministic FPVA model, key Favre-averaged variables such as Tf7 e £, € I
ny d’y/ dT Rf, iy, and )\/ ¢p|f are pre-computed in chemical tables as a function of Z

C and 2 by convoluting the solution of (4.1)-(4.4) with PDF models, as outlined in
Section 2, and then they are injected to the outer-problem formulation (3.1)-(3.8). Here
w1 is the dynamic viscosity and A the thermal conductivity.

Equations (4.1)-(4.4) are subject to the equation of state (3.8) without the averaging
operator. In the low-Mach number limit used to describe flamelets by (4.2), the back-
ground pressure remains uniform in scales of order ¢,,. The flamelets can be computed at
constant pressure p, which in turn requires a scaling correction in the progress-variable
source term in (3.4) if read directly from the table (Pecnik et al. 2012), or they can be
computed at different pressures, thereby considering the pressure p as a tabulation input.
The analysis below considers the second approach, which is the most general one, and it
automatically simplifies to the single-pressure case when only one value of the pressure
is used to precompute flamelets.

4.1. An uncertainty-aware chemical table

In this investigation, the FPVA model is extended to tackle uncertainties in the chemical
reaction rates. Consider, without any loss of generality, a chemical mechanism in which

the vector of chemical rate constants IC = [kf.1,...,kf ] in a kinetic mechanism of M
elementary steps is given by the general expression (3.2) in Urzay et al. (2012), namely,
InK =G[S(&in),p,T] and 8= F(&n), (4.5)

where G and F are operators defined in Section 3 of Urzay et al. (2012), and §,,, is a REX!
vector of independent random variables used to describe the input random space, with
L > M in general. The operator F can be obtained analytically or evaluated numerically
by using any of the methods My — My described in Urzay et al. (2012).

In this stochastic FPVA model and for a single realization of IC, the value of a generic
variable ¥; ; read from the flamelet table can be written as

¥, (Z.27,C,5,K) = / A(C, Z.K.p)P(Z.C.p)dZdC dp, (4.6)

for averaged and Favre-averaged variables, respectively. In this formulation, P (Z,C,p) =
P({Z,C}|p)P(p) is the density-weighted joint PDF which models the turbulence effects
on the flamelets. In particular, one could assume that Z is independent of p to a good
extent, and therefore write P(Z,C,p) = P(Z)P(C|{Z,p})P(p). In particular, P(Z) is
a micro-mixing PDF usually modeled as a beta function parametrized by Z and Z".
The PDF of the pressure P(p) is assumed to be a delta function §(p — P) centered at
the average pressure p. Similarly, (C |{Z,p}) is a conditional PDF modeled as a delta

function 6(C — C|{Z, p}), where C’\{Z p} is the flamelet solution C(Z, x%;, D), where X%,
is a scalar dissipation rate chosen to enforce the constraint

C=Cs= /C(Z, Xst, D) P(2)dZ, (4.7)

in such a way that the flamelet solution and the solution given by the progress-variable
transport equation (3.4) are consistent. By enforcing the consistency condition (4.7), x%;
may not be necessarily related to the scalar dissipation rate that would be obtained from
the solution of the transport equations (3.1)-(3.6) (Pierce & Moin 2004).

It is worth emphasizing that if C is taken to be the water-vapor mass fraction in
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hydrogen combustion, in the autoignition region of Figure 1(a), the water-vapor mass
fraction obtained from an unsteady version of the flamelet problem (4.1)-(4.3) would be
smaller than the progress variable obtained by the steady flamelet solution, all numerical
errors aside, the reason being that the flamelet solution does not account for the chemical
inertia involved in the decomposition of large fuel molecules and subsequent radical build
up that occurs upon autoignition. In other words, during autoignition of hydrogen flames,
even though the autoignition process occurs across spatial scales of the same order as the
microscale £,,, there is no time-scale separation that permits matching the solution of the
unsteady outer problem (3.1)-(3.8) with the solution of the steady inner problem (4.1)-
(4.4), since autoignition occurs in time scales of the same order as the integral time scale
£/U. As a consequence, if the chemical table was fed with the exact progress variable,
the scalar dissipation rate viewed by the chemical table would be in fact larger than the
scalar dissipation rate observed from the resolution of the conservation equations.

In this FPVA model applied to high-speed combustion, the averaged variables (4.6) are

sole functions of the mixture fraction A , mixture-fraction variance Z//2, average pressure
P and progress variable C', the three of which represent input variables for the chemical
table. However, note that (4.6) requires one chemical table per realization in the random
rate constants /C. In general, the limiting factor of uncertainty quantification of turbulent
flows is the computational cost of the individual resolutions of the aerothermochemical
transport equations at each realization in the reaction-rate space. From the practical
standpoint, the brute-force approach may require a large computational cost, especially
in the case of LES and for heavy-hydrocarbon fuels, for which the chemical mechanisms
have many elementary steps (approximately as many as M = 784 steps for JP-7). How-
ever, for chemical-kinetic uncertainty quantification with relatively simpler fuels, such
as hydrogen, the number of random outputs from the chemical table (which typically
amount to 8 outputs as shown below) may become similar or larger than the number of
random input variables L needed to describe uncertainties in the mechanism if reduced
chemistry is employed (a minimum of L = 9 random inputs are required for the 3-step
reduced Hy /Oy mechanism of Boivin et al. (2011)). The methodology presented in this
study provides an attractive lower-cost alternative to the brute-force approach in systems
in which L > 8 by making use of the concept of “gate” (Iaccarino et al. 2012), in that a
dimension reduction in the random-variable space is made through the flamelet approxi-
mation by transferring all the uncertainties from the L-dimensional input random space
of random chemical rates K to a downsized D—dimensional stochastic space of chemical-
table outputs, with D <« M < L. Additionally, the indirect uncertainties caused by
the stochastic output variables on the transported aerothermochemical variables do not
revert to the chemical table. This method is described below.

A single chemical table can be pre-computed which contains statistical moments of the
output variables ¥; ;. In particular, the mean and variance of the flamelet variable over
the stochastic space IC are given by

E[V; ;] = / U, P(Z,C,p, K)dZdCdpdK, (4.8)

and

cov[W; p, W ¢] = /(‘Pz‘,f —E[W; ;) (¥, ; — E[W; /])P(Z,C,p,K)dZdCdpdK,  (4.9)

where
P(2,C,p,K) = P({Z,C,p}|K)P(K) (4.10)
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is a joint PDF. In this formulation, the symbols E[-] and cov[] represent mean and
covariance in the /C-space conditioned on the pressure, respectively. If the flamelets are
computed at a single pressure, the pressure conditioning disappears and E[-] and cov[/]
are just the mean and covariance in the reaction-rate space.

Further assumptions are needed to model the conditional PDF P({Z,C,p}|KC) in
(4.10). First, the mixture fraction Z is assumed to be independent of the random re-
action rates and of the pressure, since in the mixture-fraction formulation (4.1)-(4.4) of
the flamelet equations, Z becomes an independent coordinate. Additionally, in the low-
Mach flamelet formulation (4.1)-(4.4), the pressure p represents an input parameter, and
therefore it can be taken to be independent of the rates. On the other hand, the progress
variable C is a solution of the flamelet equations. If, as per usual in practice, C' is taken
to be the product mass fraction to avoid multi-valued mapping, it is evident that C and
IC must be dependent, since C' = 0 for IC = 0. Under these assumptions P({Z, C, p}|K)
can be written as

P({2,C,p}|K) = P(Z)P(p)(P(C|{Z,p,1C}), (4.11)

where P(Z) is modeled by the beta PDF, P(p) = §(p — ), and P(C|{Z,K}) is modeled
as

centered at C|{Z,p, K} = C(Z, xst,D,K). Upon substituting these expressions in (4.6)-
(4.8), the equations

E[¥, /](Z, 27, B[0],p) = / W, ;(2,E[C),p)P(2)dz, (4.13)
cov[¥; 5, U 11(Z, 22, E[C),p) = E[¥; 1 U, ;] — E[W; (]E[T; 4] (4.14)

are obtained, where
BICIZ. 27 xsp) = [ C(Zx b K)P(2) PUC)AZdKC (415)

is the conditional mean of the Favre-averaged progress variable over the stochastic
reaction-rate space conditioned on the average external pressure p.
For numerical purposes, it is more expedient to express egs. (4.13)- (4.15) in a dis-
cretized form using a quadrature rule for the integration in Z, which gives
)

— Q et
E[V, ;)(Z,2",E[C],p) = Y wiB[¥; ;(Zy, E[C], K)], (4.16)
k=1
COV[{I\;Z"JM\AI;j’f](27/ZT/I27E[6]Jf))

wlszOV[\I/i,f(Zk, E[C}vﬁa K)v \Ijj,f(Zk', E[C]aﬁa ’C)]

Il
e

ES
I

1

Q
+3° 3 wrwe{covlWi (2, BICL B, K), W4 (Zn, BIC], 5, KC)]
k=1m=k+1

+cov[W; 1 (Zn, BIC), 5. K0), W4 (24, EIC), 5. )]}, (4.17)
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and
E[C](Z ZN 7X5t7 ZwkE Zk7XSt7T?7 ’C)]7 (418)

where @ is the number of quadrature points and wy, are integration weights (which depend
on the local value of Z and Z7?).
In this formulation, the stochastic /C-space statistics E[U; ;] and cov[¥; ¢, ¥; ;] are

parametrized in terms of Z, Z"” and E[C] (and not C). The fact that C is used here as
a mapping variable instead of y, poses a fundamental challenge in the present investi-
gation that did not exist in earlier work by Mueller et al. (2012) on steady non-premixed
flamelets. In steady non-premixed flamelets, the scalar dissipation rate at stoichiome-
try Xs¢ is an independent parameter upon which the manifold of flamelet solutions is
discretized. Therefore the joint PDF P(Z, xst,IC) is simply equal to P(Z)P(xst)P(K).
As a result, the mean of a flamelet variable over the stochastic K space becomes a sole
function of Z 7" and ¥ Xst, the three of which are discretized independently as inputs for
the chemical table and do not contain any direct source of randomness from K (Mueller
et al. 2012). However, in the FPVA approach, the progress variable C'is a solution of the
flamelet equations and C' is directly influenced by randomness from the C variations. In
fact, different realizations in the IC space yleld different surfaces C' = C (Z 2z ) XstyD)-
Therefore, the mean surface E[O] E[C}(Z Z”Q, Xst,P) appears naturally as a tabula-
tion input, which is calculated as the mean of C over the IC—space for a given average
external pressure p.

__This treatment may lead to an inconsistency between the transported progress variable
C' obtained by solving the transport equation (3.4), and the mean progress variable
E[é], which is obtained from the KC—averaged chemical table. If the table based on mean
variables over the IC—space is used in a single calculation, in principle there is no warranty
that the C-field obtained from the integration of the progress-variable transport eq. (3.4)
matches the mean progress variable E[é] from the flamelet table. This discrepancy cannot
be solved by averaging in the /C-space the Favre-averaged conservation egs. (3.1)-(3.8),
since such approach would produce crossed terms of unknown nature. Notwithstanding
these limitations, an analogous consistency condition to (4.7) may be enforced by choosing
an appropriate scalar dissipation x”, such that C = E[CN']7 or equivalently, by using (4.15)
to give

C = / C(Z,x",,5,K)P(2)P(K)dZdK. (4.19)

However, the physical implications of the choice of x7, in (4.19) are more obscure in
comparison with the physical implications of the choice of x/, in (4.7). Equation (4.19)
should be taken as the leading-order approximation for small amplitudes of the variations
in the IC space, for which the quantity |x7, — x%:|/x%: is expected to be small, thereby
making the constraint (4.19) at least as physically reasonable as it was in the deterministic
case.

4.2. Stochastic computation of the temperature in high-speed turbulent-reacting flows

At low Mach numbers, the background pressure remains constant and the density be-
comes a sole function of the mixture composition and the temperature. In the steady
non-premixed flamelet approach, the energy and progress-variable egs. (3 4) and (3.6)

are not integrated in the outer problem. Alternatively, the density p(Z Z ”2, Xst) and the
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molecular coefficients are retrieved from the chemical table (Mueller et al. 2012). Simi-
larly, the temperature T can either be obtained from the table or from the equation of
state (3.8) based on the flamelet density and flamelet mass fractions up to errors related
to the splitting of the Favre operator in (3.8).

At moderate to high Mach numbers, an additional contribution to the discrepancy
between 7" and Ty comes from the fact that the kinetic energy becomes of the same
order as the thermal energy. The total-energy equation (3.6) is typically integrated for
facilitating the treatment of shock waves in terms of conserved fluxes. However, at such
high speeds the excess of kinetic energy in the flow renders the outer enthalpy h generally
different from the flamelet enthalpy h; in amounts of the same order as the large-scale
kinetic energy, especially if the flamelets are computed at constant pressure, which leads
to dimensionless differences |T — Tf| / Tf of the same order as the Mach number squared.
In fact, the validity of the flamelet approach at high convective Mach numbers -in which
compressibility effects start becoming important within the mixing microscales of Fig-
ure 1(b)- is questionable, since the flamelet formulation integrates a low-Mach number
set of conservation equations in the microscale.

To partially compensate for the detrimental effects of compressibility in the approx-
imation T' ~ T}, the temperature is computed here by using the method described
in Pecnik et al. (2012). In that method, the enthalpy equation (3.7) is rewritten as

h— Ef = ffo ¢pdT and integrated for a slowly varying average adiabatic coefficient
v ~Fs+az(T—Ty) and for the case in which R remains constant with temperature, where
hy = Zk L Yihd + fTO ¢,dT is the flamelet enthalpy, ¢, = Eif:i Yicpr = AR/(F = 1)
is the average specific heixt at constant pressure, ¥ = ¢, /¢, is the average adiabatic co-
efficient, and a5 = d7/dT. Using these approximations, the Favre-average temperature

becomes
i - L {eXp [‘W] - 1} (4.20)

which, as suggested by (Pecnik et al. 2012), seems to deviate less than 5 K from the
solution obtained by solving (3.7) for small differences |T' — Ty|. As outlined in the
following section, all the flamelet variables on the right hand side of (4.20) are in principle
stochastic because of the randomness in the /C space, in a manner described by eq. (4.6).
Similarly, the Favre-averaged internal energy € is also stochastic since it is one of the
solution variables to the problem (3.1)-(3.8). The utilization of eq. (4.20) is therefore
attractive in that the mass fractions ?k do not need to be retained as outputs of the
chemical table and therefore they do not need to be sampled.

5. Propagation of chemical-kinetic uncertainties

Figure 2 is a self-explanatory flowchart that describes the algorithm of the method de-
scribed in the previous section. As described above, the method reduces an L—dimensional
stochastic space of input random variables &;,,, which are needed to describe the uncer-
tainties in the rate-constants of a chemical mechanism of M elementary steps, to a
D-dimensional stochastic space €,: needed to describe the output random variables
from the chemical table. The method uses two gates: the chemical-kinetics gate and the
flamelet gate. The chemical kinetics gate is a one-way gate above which the chemical-
kinetics uncertainty is characterized as in Urzay et al. (2012) independently of the rest of
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FIGURE 2. Flowchart of the flamelet progress-variable approach for high-speed turbulent
combustion under chemical-kinetic uncertainties.

the problem. At this first level, reduction of the input-uncertainty space can be performed
by expert opinion or by sensitivity analyses. At the flamelet gate, the uncertainties in the
high-dimensional random input space are reduced to uncertainties in the output variables
from the table. Obviously, this strategy only makes sense in terms of computational-cost
savings when large chemical mechanisms in which L > D are used. The reduction of
uncertainties at the flamelet gate is again independent of the outer problem and can be
performed by analyzing the sample space of the stochastic flamelets, from which a model
for the operator R can be derived. In a hierarchical construction of uncertainty models
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FIGURE 3. Deterministic RANS numerical simulations of the HyShot-II SCRAMJET engine for
(a) non-diluted Ha-stream, and (b) 70% diluted Ha-stream with N2. The figures show less than
half of the total length of the combustor.

at the flamelet gate, simple models for the operator R of the type

Usi=Ri(fout, E [\Ilf] cov[\Ilf]) E[\Ilfl] +\/var[Ws &, (5.1)
can be proposed for the relevant flamelet variables, where the conditional mean and vari-
ances of Wy ; are calculated in the JC—space conditioned on the tabulated pressure p. In
the first approximation the mean response of the overall turbulent-combustion compu-
tation may be approximated by integrating (3.1)-(4.4) based on mean table quantities if
statistical non-linearities are neglected in the commutation of mean operators. However,
the model (5.1) neglects correlations between flamelet variables W ;, which contradicts
physical intuition. Further research is underway to obtain physics-constrained models for
the operator R.

6. A note on the potential effects of chemical-kinetic uncertainties in the
HyShot-II SCRAMJET engine

A case study for the effects of chemical-kinetic uncertainties in supersonic combustion
that has provoked some interest recently is the HyShot-II supersonic-combustion ramjet
(SCRAMJET). Figure 3 shows temperature contours from deterministic RANS simula-
tions of HyShot-II. The details of the numerical solver are given elsewhere (Pecnik et al.
2012).

In the combustor of HyShot-II, a sonic jet of hydrogen (Hsz) at Ty, r = 213 K is injected
in a crossflow with respect to a supersonic stream of hot air, which has a temperature
Ta = 1500 K and pressure p4 ~ 1.5 bar. In fact, the temperature T is beyond the
critical temperature above which a supercritical bifurcating response of the type shown
in Figure 4(a) -in which no abrupt ignition or extinction occur- develops instead of the
S-shaped curve of Figure 1(b) as predicted by Sdnchez et al. (1996). The uncertainty
bounds in the flamelet response of Figure 4(a) were calculated by using a Monte Carlo
method with 200,000 flamelet solutions sampled from the reaction-rate stochastic space
of the 20-step Hy — O2 mechanism of Hong et al. (2011) and by using method M; for
chemical-kinetic uncertainty modeling in Urzay et al. (2012), with the rates being subject
to the uncertainty factors in Table 1 of Urzay et al. (2012). In particular, Figure 4(a)
shows three different regions: i) An ignition or nearly-frozen region at high x,; in which
only pure mixing takes place, and which is subject to a very small chemical uncertainty;
ii) a near-equilibirium region at small g, in which the chemical time scales are so fast
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FIGURE 4. (a) Effects of chemical-kinetic uncertainties on the S-curve for HyShot-II flight con-
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P(Z,C) from deterministic RANS simulations for (b) non-diluted Hy-stream, and (c) 70% di-
luted Hs-stream with N2 (same color scale from white -highest values- to black -lowest values).

compared to the diffusion time ¢2, /Dy, that the rate-constant uncertainties in Table 1
of Urzay et al. (2012) are not sufficient to cause any significant variations in the solution;
and iii) a transition non-equilibrium region in which the chemical time scales are of
the same order as the diffusion time ¢2 /Dg,, and in which the consideration of the
uncertainties in the rates leads to ATy = O(100 K) temperature differences within the
two standard-deviations bound. Note that these three regions were already predicted to
occur in SCRAMJET engines in earlier work by Lindn et al. (1966).

In the HyShot-II the fast-chemistry zones occupy most of the combustor. This is re-
vealed by the examination of the joint PDFs P(Z,C) in Figure 4(b,c), where C has
been scaled with the maximum value. By way of contrast, the presence of fuel dilution
contributes to enlarge the transitional region, as observed in Figure 3(b) and Figure 4(c).
Therefore, for the Hyshot-II SCRAMJET and in the FPVA-RANS framework, chemical-
kinetic uncertainties lead to variations in the regions close to the injector, where finite-
rate chemistry effects are important, and are mostly irrelevant downstream where fast
chemistry occurs. The case of hydrogen combustion is also a pathological one, in that the
rate constants of the Hy — O2 mechanism are extremely well characterized as opposed to
the kinetics of heavy hydrocarbon fuels.

7. Conclusions

In this study, a method has been proposed to study, within the FPVA framework of
turbulent-combustion modeling, the effects of high-dimensional chemical-kinetic uncer-
tainties in partially-premixed high-speed turbulent combustion. The method employs two
gates at the kinetics and flamelet levels in order to reduce the high-dimensional chemical
uncertainties to a downsized stochastic space of flamelet variables.
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