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Characteristic regimes of subgrid-scale coupling
in LES of particle-laden turbulent flows

By J. Urzay, M. Bassenne, G. I. Park AND P. Moin

1. Motivation and objectives

Large-Eddy Simulations (LES) of turbulent flows are fundamentally based on resolving
eddy sizes larger than a filter width ∆ while modeling the subfilter scales. In practice, ∆
is imposed by the grid resolution and is ideally representative of scales associated with
the inertial subrange. Dynamic subgrid-scale (SGS) models for turbulent transport of
momentum and energy have produced relatively accurate computation of single-phase
flows at high Reynolds numbers (Moin et al. 1991). In LES of particle-laden turbulent
flows, however, additional difficulties arise when SGS modeling is pursued, in that closure
models are required for the simultaneous description of both phases, including consider-
ation of one-way and two-way coupling effects (Balachandar & Eaton 2010; Sánchez et

al. 2015).
In most practical applications, difficulties related to SGS modeling of particle-laden

flows pertain not only to the effects of unresolved carrier-phase momentum and thermal-
energy transport on particle dynamics, as in a one-way coupled direction, but also to
the two-way coupled influences that the unresolved particle dynamics have on the carrier
phase. While the unresolved one-way coupled interactions in LES involve the repercussion
of the missing small scales on particle dynamics, the corresponding two-way coupling
phenomena effects are associated with consequences of subgrid energy transfer from the
particles to the carrier phase. As described below, the importance of these processes
in LES can be described in terms of a reduced number of fundamental dimensionless
parameters that account for cutoff scales.
The remainder of this report is structured as follows. Section 2 is focused on describ-

ing a set of characteristic scales specific to particle-laden turbulent flows that give rise
to different inter-phase SGS-coupling regimes in LES. Additionally, sample numerical
computations are performed in Section 3 to investigate the effects of neglecting SGS
dynamics on dispersion and preferential concentration of particles in a homogeneous
isotropic turbulent flow. Finally, conclusions are drawn in Section 4.

2. Characteristic scales and inter-phase SGS-coupling regimes

In describing the dynamics of particle-laden turbulent flows, it is expedient to consider
three characteristic length scales, namely, the particle radius a, the large-scale eddy size ℓ,
and the Kolmogorov length ℓk, as depicted in Figure 1. The ratio of large-to-small eddy
sizes is large in turbulent flows according to the universal-equilibrium scaling ℓ/ℓk ∼

Re
3/4
ℓ ≫ 1 obtained from the invariance of the turbulent dissipation ǫ ∼ u3

ℓ/ℓ through
the inertial subrange of the kinetic-energy cascade. In this formulation, Reℓ = uℓℓ/ν ≫ 1
is a sufficiently large turbulent Reynolds number that warrants separation of scales in
the carrier phase, and is based on the large-scale turnover velocity uℓ and on the fluid
kinematic viscosity ν. In addition to these scales, the filter width ∆, which is imposed by
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Figure 1. Sketch of the model problem.

the grid spacing, plays an important role in LES by delimiting the smallest characteristic
length of the resolved turbulence structures.
In most practical applications, the density ρp of the particle material is much larger

than the carrier-phase density ρ. In gases, the corresponding ratio ρp/ρ becomes increas-
ingly larger with decreasing pressure and increasing temperature. For instance, in the
subcritical combustion of sprays of typical hydrocarbon liquid fuels, the droplet-to-gas
density ratio is of order ρp/ρ ∼ 102 − 103. Similarly, in flows laden with solid particles
of ceramic materials or heavy metals, of interest for particle-based solar receivers, larger
values of order ρp/ρ ∼ 103− 104 are commonly encountered. That the density ratio ρp/ρ
is a large parameter is relevant for the separation of fast dynamics at particle scales from
slower transport processes developing at larger scales in the carrier phase, as described
below.
Two types of SGS inter-phase coupling effects emerge in LES of particle-laden flows.

First, the unresolved dynamics of the carrier phase can influence the particles during their
flight time in a one-way coupled direction. Additionally, and under sufficiently large mass
loading, the energy transferred from the particles to the fluid may cause considerable two-
way coupling effects in unresolved scales, including variations of SGS momentum that
may lead to turbulence modulation. A description of these two phenomena, along with
the associated spatio-temporal scales, is given below.

2.1. One-way SGS inter-phase coupling regimes

Restriction is first made in the analysis to small particles compared with Kolmogorov
scales, a/ℓk ≪ 1, with brief references to the more involved case a ∼ ℓk being deferred
to later in the text. In the small-particle limit, the description is greatly simplified when
molecular transport prevails over the relative flow advection, thereby making the particle
Reynolds number

Rep = [(ui − up,i)(ui − up,i)]
1/2

a/ν (2.1)

a small quantity compared to unity, and the equation of motion of the particle becomes

4

3
πρpa

3 dup,i

dt
= 6πµa(ui − up,i), (2.2)

with µ being the dynamic viscosity of the fluid. In this formulation, ui and up,i denote,
respectively, the gas and particle velocity components, with ui − up,i a velocity slip that
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depends on particle inertia and on the fluctuation time scale of the gas velocity field, as
described below.

A number of higher-order corrections to Eq. (2.2) exist (Maxey & Riley 1983). In
principle, curvature of the fluid velocity far from the particle can be accounted for in
a Faxén correction of order a2/ℓ2k. Similarly, unsteady forces related to virtual-mass
displacement and Basset history effects result in additional terms of order ρ/ρp and
(ρ/ρp)

1/2, respectively, that become vanishingly small at the high density ratios ρp/ρ ≫ 1
considered here. Additionally, fluid-inertia effects at fast relative motion can be quantified
in Eq. (2.2) by accounting for a Saffman side force of order (a/ℓk)Rep (Saffman 1965),
and by considering an Oseen correction of order Rep for the drag (Oseen 1910).

In absence of the aforementioned second-order effects, Eq. (2.2) describes a character-
istic relaxation of the particle velocity to the local velocity of the fluid in an acceleration
time scale of order ta ∼ (2/9)(a2/ν)(ρp/ρ). Because of the large density ratio, ta is typi-
cally much larger than the characteristic diffusion time a2/ν. As a result, the dynamics
around the particle can be treated quasi-steadily due to the prevailing molecular diffusion
at Rep ≪ 1, which enables a separation of slow large-scale transport in the gas environ-
ment from the propagation of fast viscous disturbances in the vicinity of the particle. The
magnitude of the acceleration time scale ta, however, is not restricted, and in principle
can be comparable to the characteristic hydrodynamic time depending on the specific
problem conditions.

In turbulent flows, the fluid velocity ui in Eq. (2.2) undergoes intermittent variations in
time and space with values ranging from the turnover velocity of the large eddies uℓ, to the

Kolmogorov velocity uk ∼ uℓRe
−1/4
ℓ ≪ uℓ. Nonetheless, some of these fluctuations lie in

the subgrid and are not resolved in LES, in which the solution to the filtered conservation
equations only provides the resolved fluid velocity ũi. A closure problem not present in
single-phase flows therefore arises in Eq. (2.2) in connection with modeling the unresolved
one-way coupling effects of SGS fluid-velocity fluctuations u′′

i = ui − ũi on the particle
motion.

It should be stressed here, however, that their non-zero inertia makes the particles
insensitive to a range of SGS fluctuations, which in most instances pertain to the distur-
bances caused by rapidly turning, low kinetic-energy eddies. In particular, the description
of particle motion in turbulent flows largely depends on the relative magnitude of the
acceleration time scale ta in comparison with the turnover time of the eddies tn = ℓn/un.
The ratio of those two quantities defines the scale-dependent Stokes number

Stn = ta/tn, (2.3)

with the restriction Stn ≪ 1 determining the size range of the eddies for which the
particles behave as tracers. This can be understood by examining the low-pass filtering
involved in computing the particle velocity from Eq. (2.2), which can be illustrated in
the following manner. Consider a particle released at t = 0 with speed u0

p in a locally
uniform, fluctuating velocity field un = Un exp(2πjt/tn) of slowly varying amplitude Un

and zero mean, which serve to illustrate, in a simplified way, the effect a single velocity
disturbance on the particle motion. In these variables, the component-wise solution to
Eq. (2.2) yields the relative velocity

un − up =
2πjStnun

1 + 2πjStn
−

(
u0
p −

Un

1 + 2πjStn

)
exp(−t/ta), (2.4)
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where the exponential transient term, which carries information of the initial condition,
vanishes after sufficiently long integration periods t ≫ ta along the particle trajectory.
It is worth discussing the implications of Eq. (2.4). As indicated above, the Stokes

number Stn determines the sensitivity of the particle motion to aerodynamic fluctuations
with time scale tn. Specifically, for Stn ≫ 1 and short integration times t ≪ ta, the
particle initial motion has not yet been modified by the fluctuating velocity field un. As
a result, the particle velocity remains close to its initial value up ∼ u0

p, and the particle
Reynolds number Rep ∼ (un − u0

p)a/ν is determined by the initial relative slip. At long
times t ≫ ta, the exponential transient term in Eq. (2.4) disappears and the particle
velocity settles to a zero-mean velocity that oscillates out of phase with a vanishing
amplitude of order 1/Stn ≪ 1 relative to the fluid velocity. In this limit, the particle
is mostly insensitive to the velocity fluctuation un, which causes relative velocities and
particle Reynolds numbers of order un and Rep ∼ una/ν, respectively. On the other
hand, for Stn ≪ 1 soon after deployment the particle follows the fluid with vanishing
relative velocities, up − un ∼ unStn ≪ un, in a regime that yields characteristic particle
Reynolds numbers of order Rep ∼ (una/ν)Stn. In conclusion, Eq. (2.4) indicates that
the relative velocity un − up, along with the corresponding particle Reynolds number
(2.1), decrease with decreasing Stn, while the fluid-to-particle velocity transfer function
up/un = 1/(1 + 2πjStn) decays in frequency space as a first-order low-pass filter with a
smooth cutoff Stokes number of order unity, Stn = O(1).
Despite the information provided by Eq. (2.4), the interaction of particles with turbu-

lent flows is a significantly more complicated phenomenon that is difficult to represent in
such a simplified manner. For instance, at high Reynolds numbers the fluid velocity is a
broadband field characterized by a wide range of spatio-temporal scales. As a result, for
a given particle acceleration time ta, the Stokes number (2.3) increases with decreasing
eddy sizes, with

Stℓ = ta/tℓ (2.5)

being a characteristic minimum value of Stn based on the turnover dynamics of the large
eddies, and

Stk = ta/tk ∼ StℓRe
1/2
ℓ ≫ Stℓ (2.6)

corresponding to a maximum value based on the Kolmogorov scales that is not approach-
able in LES, since such small eddies are beyond the grid resolution.
The characteristic scale of turbulence for which the local Stokes number is of order

unity plays an important role in the dynamics of the particles. To see this, consider the
first term on the right hand side of Eq. (2.4), which represents the quasi-steady response
of the particle slip velocity in a single, zero-mean fluid-velocity disturbance. Since the
Stokes number of the particle increases with decreasing eddy turnover times as 1/tn,

and since the eddy velocity un decreases as t
1/2
n , the amplitude of the slip velocity in

spectral space decays for both large and small eddies as u − up ∼ c1ǫ
1/2ω1/2ta and

u−up ∼ c2ǫ
1/2ω−1/2, respectively, with c1 and c2 two numerical constants. Additionally,

the maximum slip velocity predicted by Eq. (2.4),

u− up ∼ (ǫta)
1/2, (2.7)

is caused by eddy sizes of order

ℓa ∼ (ǫt3a)
1/2, (2.8)

for which the Stokes number is of order unity, Stn = O(1).
To characterize the effects of subgrid eddies on particle motion, it is convenient to
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define a SGS Stokes number

StSGS = ta/t∆ ∼ Stk(ℓk/∆)2/3 ∼ Stℓ(ℓ/∆)2/3 (2.9)

based on the cutoff time scale

t∆ ∼ (∆2/ǫ)1/3. (2.10)

Specifically, StSGS corresponds to an intermediate value of the Stokes number that departs
from Stℓ and Stk by factors that depend on the size of the filter relative to ℓ and ℓk,
respectively.

Consideration of Eqs. (2.4) and (2.9) indicates that the particles are SGS-non-inertial
with respect to subgrid eddies when StSGS ≪ 1, in that the particles become sensitive
to the high-frequency fluctuations of the turbulence in the subgrid while behaving as
tracers for the large eddies. In this limit, a model for the SGS fluid-velocity fluctuations
is required in Eq. (2.2) to account for the effects of the unresolved scales. This limit, for
instance, is attained in conditions of interest for solar-power receivers based on distributed
absorption of heat by particles in the bulk of the co-flowing air, for which the particles
are sufficiently small to render order-unity Kolmogorov-based Stokes numbers Stk =

O(1) and correspondingly small integral-based Stokes numbers Stℓ ∼ Re
−1/2
ℓ ≪ 1. As

a consequence, the particles slip predominantly on the small eddies while following the
motion of the large scales. This phenomenon results in small particle Reynolds numbers,
Rep ∼ uka/ν ∼ a/ℓk ≪ 1, for which the viscosity-dominated Stokes region extends
to distances of order ℓk away from the particle surface. The resulting slip velocities
u− up ∼ uk − up = O(uk) amount to small fractions of the large-scale turnover velocity
uℓ. Existing SGS models in this regime involve, for instance, the use of approximate
deconvolution methods (Kuerten 2006), stochastic differential equations (Fede et al. 2006;
Jin & He 2013; Gorokhovski & Zamansky 2014; Mazzitelli et al. 2014) and hybrid methods
that mix both of those approaches (Michaek et al. 2014).

In the opposite limit, StSGS ≫ 1, the particles become ballistic or SGS-inertial with re-
spect to subgrid eddies, and the resolved fluid velocity ũi suffices to describe the particle
motion in Eq. (2.2) with no additional subgrid modeling being required in the one-way
coupled formulation. This, for instance, is the relevant limit for droplet dispersion in
most spray-combustion applications, in that atomizers are typically designed to break
liquid filaments into droplets whose acceleration times (which are comparable to the
droplet vaporization times) are similar to the time scales of the large-scale turbulence in
the combustor, thereby warranting full penetration of the fuel spray into the air envi-
ronment. In these conditions, order-unity integral-based Stokes numbers Stℓ = O(1) are
encountered. As a result, the relative motion is mostly dominated by the slippage on the
large eddies, u− up ∼ uℓ − up = O(uℓ), with characteristic droplet Reynolds numbers of
order Rep ∼ uℓa/ν being determined by the integral scales of the turbulence.

Because of the large density ratio considered, ρp/ρ ∼ 102 − 104, the small-particle
approximation a/ℓk ≪ 1 is expected to remain valid in most of the dynamical range of
interest, with exceptions found in flows at sufficiently large Reynolds numbers. Specifi-
cally, only at exceedingly large Kolmogorov-based Stokes numbers Stk ∼ ρp/ρ ≫ 1 the
particle size becomes comparable to the Kolmogorov length, a ∼ ℓk. In this limit, and
unless the Reynolds number of the turbulence Reℓ is larger than a quantity of order
(ρp/ρ)

2, the finite size of the particles leads to SGS-inertial conditions and impractically

large values of the integral-based Stokes number, Stℓ ∼ (ρp/ρ)Re
−1/2
ℓ ≫ 1, as observed

from Eq. (2.6). This, however, is a case of limited interest for studies of turbulence-
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enhanced dispersion of particles, since their motion would exclusively be conditioned by
their initial velocities.

One-way coupled interactions of finite-size particles (a ∼ ℓk) with large-scale turbu-
lence arise at large Reynolds numbers, Reℓ & (ρp/ρ)

2, for which the integral-based Stokes
number becomes of order unity or smaller. The representative particle Reynolds num-
ber in that situation is moderately large and of order Rep ∼ (ρp/ρ)

1/2, as obtained by
considering slip velocities of order uℓ. This regime requires revision of the Stokes drag
in Eq. (2.2) to account for fluid inertia in conjunction with possibly additional effects
related to the presence of velocity gradients at particle scales. However, in this regime
the particles are SGS-inertial or ballistic with respect to the subgrid eddies, with the cor-
responding SGS Stokes number being larger than unity by a factor of order (ℓ/∆)2 that
depends on the relative value of the filter width with respect to the integral length scale,
thereby suggesting that in principle the resolved fluid velocity field suffices to describe
the particle trajectories.

Effects of subgrid turbulence on the dynamics of finite-size particles (a ∼ ℓk) become
important at larger Reynolds numbers of order Reℓ ∼ (ℓ/∆)4/3(ρp/ρ)

2 and above, which
enable regimes of small SGS Stokes numbers StSGS . 1 in a range of SGS-non-inertiality
that requires, besides modification of Eq. (2.2) to account for finite Rep as described
above, subgrid modeling of fluid-velocity fluctuations for computing the particle motion.
Under these conditions, the large separation of scales in the turbulent flow makes the
particles small compared with the filter width, the corresponding ratio of those two
quantities being of order a/∆ ∼ ℓk/∆ ∼ (ρp/ρ)

−1/2 ≪ 1 and smaller.

An analogous description of SGS inertial and non-inertial regimes can be given to
address the effects of SGS temperature fluctuations when considering inter-phase heat
transfer in non-isothermal particle-laden flows. In addition to small particle Reynolds
numbers Rep ≪ 1, here the approximation requires much higher thermal conductivities
in the particle than in the fluid, a requirement that is met by many dispersed phases of
practical interest. In this limit, the spherico-symmetrical solution of the heat equation
around the particle, subject to the fluid temperature T at infinity and to the uniform
particle temperature Tp on its surface, leads to the energy balance

4

3
πρpca

3 dTp

dt
= 4πκa(T − Tp), (2.11)

where c is the particle specific heat and κ is the fluid thermal conductivity. A thermal
relaxation time tq ∼ (3/2)(c/cp)Pr ta can be inferred from Eq. (2.11), with Pr and cp
being, respectively, the Prandtl number and the constant-pressure specific heat of the
fluid. However, tq is typically of the same order as the acceleration time scale ta since
the specific heat ratio c/cp and the Prandtl number are order-unity parameters in most
conditions. Therefore, the thermal Stokes number of the particles resembles the kinematic
Stokes number (2.3) up to an order-unity multiplicative factor that has no relevance in
the scaling analysis, and the discussion of thermal coupling parallels that of momentum
coupling.

2.2. Two-way SGS inter-phase coupling regimes

The importance of the effects of the dispersed phase on the carrier fluid is measured by
the mass-loading ratio

α = (4/3)πa3ρpn/ρ, (2.12)
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defined as the mass of particles per unit mass of surrounding fluid, with n being a
characteristic number density of particles that can be associated with an inter-particle
distance δp ∼ n−1/3. For α ≪ 1, the dilution in the particle cloud is too large to cause
any statistical modification of momentum in the carrier phase. By way of contrast, the
two-way inter-phase coupling is most effective for α = O(1), in that the balance

ρ
Dui

Dt
∼ 6πµan(up,i − ui) (2.13)

is reached between the convective transport of momentum in the fluid and the collective
force per unit volume exerted by the particle cloud, with particles gaining or draining
energy predominantly from eddies whose Stokes number is of order unity, Stn = O(1),
as suggested by the discussion in the previous section. Additionally, increasing the mass
loading ratio leads to increasingly large influences of the extra viscous dissipation ρǫp =
6πµan(up,i − ui)(up,i − ui) produced by the collective effect of the shear due to the
non-slip boundary conditions on the particle surfaces, which becomes of the same order
as the turbulent dissipation per unit volume ρǫ when α = O(1), as indicated by the
approximation ǫp ∼ 6πµanǫta obtained by making use of Eq. (2.7).
At the high density ratios considered here, α = O(1) implies large mean inter-particle

distances compared with the particle radius, δp/a ∼ (ρp/ρ)
1/3 ∼ 10 − 20, and corre-

spondingly small volume fractions φ ∼ ρ/ρp ∼ 10−3−10−4. Particle-particle interactions
correspond to second-order effects except in regions of preferentially concentrated parti-
cles where departures from these mean estimates may occur.
Depending on the SGS Stokes number, the two-way coupling effects in LES may be

more intense in the subgrid than in resolved field. To quantify the relative resolution of
these effects, the SGS Stokes number (2.9) is recast in the form

StSGS = (ℓa/∆)2/3, (2.14)

where use has been made of Eqs. (2.8) and (2.10). The Stokes number (2.14) is indicative
of whether the preferentially coupled scale is resolved or, conversely, lies in the subgrid.
In particular, the subgrid is unloaded when α = O(1) and StSGS ≫ 1, in that the
particles are SGS-inertial with respect to the subgrid eddies and coupling is most effective
with respect to the resolved scales. On the other hand, the subgrid is loaded for α =
O(1) and StSGS ≪ 1, with SGS-non-inertial particles coupling preferentially with subgrid
eddies while behaving as tracers for the resolved scales. The two-way coupling effects
are, however, much less intense in the SGS-loaded case than in the SGS-unloaded one, in
that particle slippage occurs predominantly on large eddies in SGS-unloaded flows under
correspondingly larger turbulence modulation. However, the SGS-loaded case requires
additional modeling of the fluid-velocity subgrid fluctuations in computing the transfer
of energy from the particles to the fluid.
Inter-phase coupling of momentum invariably requires inter-phase coupling of energy

and vice-versa, unless unusually large departures from unity occur in the thermal-capacity
ratio c/cp as described above. In this way, α = O(1) enables order-unity thermal-energy
variations in the fluid that are caused by energy exchange with the dispersed phase,

ρcp
DT

Dt
∼ 4πκan(Tp − T ), (2.15)

with particles predominantly modifying the thermal energy of eddies whose Stokes num-
ber is unity. The discussion on two-way coupled thermal-energy transfer therefore paral-
lels that of momentum transfer.
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Reλ 80.0 Taylor-Reynolds number
Stk 1.0 Kolmogorov-based Stokes number
StSGS 0.1 SGS Stokes number
α 0.0001 mass-loading ratio
Rep 0.1 particle Reynolds number
ρp/ρ 1000 particle-to-gas density ratio
∆/ℓk 2.0 grid spacing to Kolmogorov-length ratio (DNS)
∆/ℓk 18.0 grid spacing to Kolmogorov-length ratio (LES)

Table 1. Characteristic dimensionless parameters in the computations.

100 101 102

10−6

10−4

10−2

100

LES

−5/3

DNS

kℓ

E(k)

u2
ℓℓ

Figure 2. Kinetic-energy spectra in LES and DNS.

3. Numerical simulations

In this section, results from numerical simulations of particle-laden forced homogeneous
isotropic turbulence are shown for both DNS and LES resolution settings that illustrate
the effects of neglecting SGS fluid-velocity fluctuations in Eq. (2.2). The computational
parameters are listed in Table 1.
In the computations, homogeneous isotropic turbulent motion was sustained in a triply

periodic domain by using linear forcing in physical space. Additional details about the
forcing procedure are available elsewhere (Rosales & Meneveau 2005). The computations
were first run without particles to allow the turbulence to reach a statistically stationary
state. Results were analyzed after 5 integral times had passed since deployment of the
particles. The computations were one-way coupled because of the small mass-loading
ratios involved. The dynamic model of Moin et al. (1991) was used in LES as a closure
model for the SGS transport of momentum in the carrier phase.
The numerical method is based on a low-Mach number, central second-order in space,

second-order in time, finite-difference scheme that incorporates a Lagrangian set of
ordinary-differential equations to compute particle trajectories and velocities (Pouransari
et al. 2014). The calculations were conducted on a staggered, structured uniform carte-
sian grid with 2563 and 323 elements in the DNS and LES configurations, respectively.
Sample kinetic-energy spectra from the computations are shown in Figure 2 for DNS and
LES, with four decades of decay being observed along two decades of wavenumbers in
the DNS.
The small SGS Stokes number employed in the simulations renders the particles SGS-

non-inertial according to the description given in Section 2, with a subgrid model for
the velocity fluctuations being in principle needed for computing the particle motion
in Eq. (2.2). The results are analyzed in terms of particle dispersion and particle con-



Characteristic regimes of SGS coupling in LES of particle-laden flows 11

0 1000.5 1 1.5
0

1

2

101

3

4

5

6

102

10−2

100

102

104

DNS

LES
LES

DNS

kℓ

En(k)

n0ℓ

tǫ1/3/R
2/3
0

D

R2
0

(a) (b)

Figure 3. LES and DNS results for (a) particle dispersion and (b) particle concentration
spectra.

centration, with LES without SGS model for the particles leading to underprediction
of dispersion and artificial modification of characteristic lengths associated with regions
under preferential-concentration effects.

3.1. Particle dispersion

The relative dispersion of two particles, understood as the mean square of the modulus of
their separation distanceD = 〈|δRp|

2〉Np
is a relevant indicator of performance for LES of

particle-laden flows. In this formulation, δRp = [Rp,i−Rp,i(t = 0)]− [Rp,j−Rp,j(t = 0)]
is the relative separation between two particles i and j, with R the corresponding position
vector. Additionally, the angular brackets indicate averaging over all pairs of particles.
At t = 0, the particles are deployed in local kinematic equilibrium with the gas, in a
uniform spatial distribution of inter-particle distance 25ℓk that is representative of the
inertial subrange.
Figure 3(a) shows the time evolution of the particle dispersion for both DNS and

LES computational settings after sampling 10,000 particles. In a way similar to passive-
scalar dispersion, the relative distance between particles computed from DNS grows
parabolically in time, with LES showing a deficit of dispersion in amounts of order unity
during a single turnover time of a 25ℓk-sized eddy. This under-prediction is related to
both the absence of SGS model for the particle motion and the alteration of space-time
correlations commonly obtained as a result of not resolving the small scales of turbulence
(Jin & He 2013).

3.2. Preferential concentration

The finite inertia makes the particles to centrifuge away from vortical regions and pref-
erentially concentrate in zones of high strain rates (Robinson 1956). The characteristic
spatial scales associated with those accumulation regions can be inferred from wavenum-
bers corresponding to peaks in the particle-concentration spectra (Jin et al. 2010). In
Lagrangian formulations, a scalar number-density field n can be computed by combining
the discrete position of the particles and using an interpolation or tessellation scheme.
Figure 3(b) shows the volume- and time-averaged spectra of particle-number density

for DNS and LES obtained by using a trilinear interpolation among particle coordinates
to compute n. While the DNS indicates that the maximum of the concentration spec-
trum involves wavenumbers corresponding to spatial scales of thin accumulation zones,
which are comparable to the thickness of the smallest and most strained turbulent ed-



12 Urzay et al.

−45 0 5−6 025
ω3ℓ/uℓω3ℓ/uℓ

x1x1

x2x2

(a) (b)

Figure 4. Instantaneous spatial distribution of particles (dark dots) overlaid on x3−vorticity
contours in (a) DNS, and (b) LES.

dies, the LES over-predicts the spatial extent of those regions, mainly due to the fact
that such thin regions or high wavenumbers are not supported by the LES grid. Alterna-
tively, this can be understood by looking at the instantaneous vorticity contours shown
in Figure 4. Specifically, the under-prediction of vorticity and strain-rate in LES leads
to thicker turbulent structures that make the particles to preferentially concentrate at
smaller wavenumbers with respect to the fine accumulation scales observed in DNS.

4. Concluding remarks

In this study, an analysis of characteristic scales is employed to describe regimes of
SGS coupling in LES of particle-laden turbulent flows. Two dimensionless parameters,
namely, the SGS Stokes number StSGS and the mass-loading ratio α are central to the
description. In one-way coupled flows, α ≪ 1, the interaction of particles with the subgrid
eddies involve two different regimes. First, the regime StSGS ≫ 1 corresponds to SGS-
inertial particles, which are ballistic with respect to the subgrid eddies. On the other
hand, the opposite limit StSGS ≪ 1 represents SGS-non-inertial particles, which behave
as tracers for the large eddies but become sensitive to the high-frequency fluctuations
of the turbulence in the subgrid, this being a regime that requires consideration of SGS
models for particle motion. In two-way coupled flows, α = O(1), the effects of particles on
the carrier phase predominantly occur in resolved or unresolved scales when StSGS ≫ 1
and StSGS ≪ 1, respectively, the latter limit requiring SGS modeling of two-way cou-
pled phenomena. For finite-size particles up to diameters comparable to the Kolmogorov
length, one-way coupled interactions with SGS turbulence become important only at
large Reynolds numbers of the same order as density-ratio squared. However, in two-way
coupled flows with α = O(1), the extra viscous dissipation due to finite-size particles
becomes of the same order as the turbulent dissipation. Additionally, DNS and LES of
particle-laden homogeneous isotropic turbulence at StSGS ≪ 1 are utilized to illustrate
the effects of not using SGS modeling for particles on relative dispersion and preferential
concentration. Specifically, LES without SGS model for the particles leads to under-
prediction of dispersion and artificial widening of characteristic lengths associated with
regions under preferential-concentration effects.
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