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Visualizing turbulence anisotropy in the spatial
domain with componentality contours

By M. Emory AND G. Iaccarino

1. Motivation and objectives

Visual representations of quantitative information have proven very useful in the con-
text of fluids engineering. In experiments Schlieren imagery for compressible flows and
dye/smoke streaks for low-speed flows (Van Dyke 1982) are vivid examples of how phys-
ical behaviors and important system dynamics can be observed, giving the analyst a
better understanding of the flow structures. Computational fluid dynamics (CFD) relies
just as heavily on visual representations to extract understanding from and explore the
large amounts of data generated by numerical simulations. Whether using the Q-criterion
(Dubief & Delcayre 2000) to investigate vortices or plotting of velocity profiles, the abil-
ity to visually represent quantitative data is a critical aspect of numerical simulation
analysis.

One such frequently visualized quantity is the anisotropic behavior of turbulence, a
common feature of complex fluid flows. In many engineering applications, properly pre-
dicting the amount and type of anisotropy is critical for accurate numerical simulation
of these flows. In practice, the turbulence modeling community uses various properties
of the Reynolds stress anisotropy tensor

aij =
u′iu
′
j

2k
− δij

3
, where k =

u′nu
′
n

2
, (1.1)

to both inform model development and compare different modeling techniques. At present
there are only a handful of visualization techniques for second-order tensor fields, e.g.,
glyphs or hyperstreamlines (Hashash et al. 2003), and none is used broadly by the CFD
community due to their complex construction and difficulty of interpretation. Instead a
variety of derived quantities, which distill the relevant information contained in aij to
either scalar or vector metrics, are used to investigate anisotropic behavior.

One of the most popular techniques is the use of anisotropy invariant maps. Originally
introduced by Lumley & Newman (1977), these maps are two-dimensional domains based
on invariant properties of aij . The diagonalization of aij provides three eigenvalues (λ1,
λ2, and λ3)†, or magnitudes, and three eigenvectors (e1, e2, and e3), or directions, of the
turbulence anisotropy. Most invariants and scalar metrics of aij are functionals of the
eigenvalues λi; by ignoring the eigenvectors these metrics no longer represent information
about the directional distribution. Despite this shortcoming, invariant maps have been
used in numerical modeling and both numerical and experimental analyses of a diverse
set of fluid flows.

One challenge with broader adoption of invariant maps as an analysis tool is their
limited range of applicability. As we will show in Section 2, these domains are only useful
for visualizing small amounts of data, and their utility is stunted by a lack of context or

† Defined such that λ1 ≥ λ2 ≥ λ3 and the sum of these eigenvalues is zero.
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correlation to the spatial domain. Put differently, information (anisotropy data from a
region of the flow) is taken from the spatial domain and visualized in the invariant map.
It is hoped that knowledge is gained from this visualization, but the workflow stops at
this point.

In this brief we propose a new visualization technique which allows the knowledge
and information gained in the invariant map to be represented in the spatial domain,
adding an additional transfer of information to the workflow described above. By doing
so the utility of the invariant maps is increased because there is no longer a loss of
spatial context. In Section 2 we introduce in detail several common invariant maps and
describe how they are differentiated. We focus on one in particular, the barycentric map,
to define a new visualization technique. Section 3 introduces the new technique, which is
subsequently compared against traditional scalar metrics of anisotropy. The visualization
approach is demonstrated in Section 4 for three cases: the flow over a random cube array,
flow over a wavy-wall channel, and a shock-turbulent boundary layer interaction (STBLI).
A simple extension of the approach for visualization of targeted anisotropic behavior is
presented in Section 5. The brief concludes by discussing future areas of research based
on the results presented.

2. Anisotropy invariant maps

The anisotropy invariant maps (AIMs) described in this section share the common
trait that the independent variables xAIM and yAIM axes variables are functions of the
anisotropy eigenvalues λi. These eigenvalues are used to describe the relative strengths
of the fluctuating velocity components, i.e., the componentality of the turbulence field
(Helgeland et al. 2004). There are three limiting states of componentality which define
the boundaries of the invariant maps. All other states of aij (other locations within the
map) can be represented as a convex combination of these limiting states, which are

(a) one-component: describes a flow where turbulent fluctuations only exists along

one direction, i.e., when λi =
[
2
3 ,
−1
3 ,
−1
3

]T
. This state is also referred to as rod-like or

cigar-shaped turbulence, a visual description which evokes the one-dimensional nature of
this state. This state is represented by x1C in all maps;

(b) axisymmetric two-component: describes turbulence where fluctuations exist along

two directions with equal magnitude, i.e., λi =
[
1
6 ,

1
6 ,
−1
3

]T
, also referred to as pancake-

like turbulence. This state is represented by x2C;
(c) isotropic: represents turbulence where all three λi are equal to zero, also referred

to as spherical turbulence. This state is represented by x3C.

By joining these points the boundaries of the invariant map are formed, which correspond
to additional physical behaviors:

(a) axisymmetric expansion: joins x1C and x3C and occurs when 0 < λ1 < 1
3 and

−1
6 < λ2 = λ3 < 0;

(b) axisymmetric contraction: joins x2C and x3C, occurring when −1
3 < λ1 < 0 and

0 < λ2 = λ3 <
1
6 ;

(c) two-component: exists between x1C and x2C occurring when λ1 + λ3 = 1
3 and

λ2 = −1
3 .

A final state of interest is that of plane-strain turbulence, where at least one λi = 0,
which exists within the map. A wealth of physical understanding and insight is provided
by visualizing the proximity of turbulent anisotropy to these different behaviors.
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Figure 1. Diagram of two non-linear anisotropy invariant maps. The limiting states of
componentality are labeled along with the plane-strain limit (dashed line) for reference.

AIMs are typically classified by whether the invariants constituting the axes’ variables
are non-linear or linear combinations of λi. We briefly introduce the four most common
invariant maps, two non-linear and two linear domains. We then demonstrate the differ-
ences between these maps by visualizing DNS data from turbulent channel flow (Hoyas
& Jimenez 2006) in all four maps.

2.1. Non-linear invariant maps

2.1.1. Lumley triangle

The invariant map of Lumley & Newman (1977), also called the Lumley triangle, uses
the second and third principal components of turbulence anisotropy (Choi & Lumley
2001; Banerjee et al. 2007), defined as

II = aijaji/2 = λ21 + λ1λ2 + λ22 , (2.1a)

III = aijajnani/3 = −λ1λ2 (λ1 + λ2) , (2.1b)

to create the coordinate system (III, II), shown in Figure 1(a).

2.1.2. Turbulence triangle

Another domain based on the invariants II and III, the turbulence triangle uses the
coordinate system (η, ξ), where

ξ3 = III/2, η2 = II/3 . (2.2)

This mapping, shown in Figure 1(b), stretches the lower left quadrant of the Lumley
triangle, providing a detailed view of the region near the isotropic corner. This domain was
designed for evaluating trajectories of the return to isotropy of homogeneous turbulence
(Choi & Lumley 2001).

2.2. Linear invariant maps

2.2.1. Eigenvalue map

The eigenvalue map simply uses the first and second eigenvalues of the turbulence
anisotropy to define the coordinate system (λ2, λ1), shown in Figure 2(a).
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Figure 2. Diagram of two linear anisotropy invariant maps. The limiting states of
componentality are labeled along with the plane-strain limit (dashed line) for reference.

2.2.2. Barycentric map

Another construction based on the eigenvalues λi, the barycentric map of Banerjee
et al. (2007) leverages the fact that any realizable state of turbulence is a convex com-
bination of the three limiting states of (corners) componentality. A Euclidian domain is
constructed where these limiting states are placed at x1C = (1, 0), x2C = (0, 0), and
x3C = (1/2,

√
3/2). Although these points can be chosen arbitrarily, an equilateral trian-

gle is chosen which equally weights the different limiting states. The coordinate system
(xB , yB) is defined such that

xB = C1cx1c + C2cx2c + C3cx3c = C1c + C3c
1

2
, (2.3a)

yB = C1cy1c + C2cy2c + C3cy3c = C3c

√
3

2
, (2.3b)

and the weights are

C1c = λ1 − λ2 , (2.4a)

C2c = 2 (λ2 − λ3) , (2.4b)

C3c = 3λ3 + 1 . (2.4c)

Uniqueness within the barycentric map is enforced by the constraint that the sum of the
weights Cic = 1.

2.3. Example: turbulent channel flow

To visualize the differences between these maps we plot a wall-normal profile (extending
to the centerline) from DNS of developed turbulent channel flow (Hoyas & Jimenez
2006), shown in Figure 3. The physics of this flow are not discussed here; the focus is on
highlighting differences between the visual representations.

In all maps the trajectories initiate at the two-component limit (wall) and move to-
wards the one-component corner before heading towards the isotropic corner (channel
centerline). As a general conclusion the non-linear maps appear to bias the profiles to-
wards the axisymmetric expansion boundary relative to the linear maps. Perhaps the
most noticeable difference between the non-linear and linear domains is the degree to
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Figure 3. Turbulent channel flow DNS data (Hoyas & Jimenez 2006) plotted within four
anisotropy invariant maps.

which the turbulence approaches the isotropic corner. Based on the non-linear maps, one
might assume the turbulence is nearly isotropic at the channel centerline, whereas the
linear maps show this to be an incorrect assertion - an observation noted by Banerjee
et al. (2007).

As was evident in this exercise, even for a very simple flow it is difficult to correlate
the trajectories in the AIMs to the spatial domain. The work presented in the rest of the
document is an effort to transfer the componentality information learned within the AIMs
back to the physical domain. We choose to leverage the barycentric map in particular for
this work, primarily because the equal weighting of limiting states provides an intuitive
and more easily interpretable result.

2.4. Limitations of invariant maps

Qualitatively, the strength of the barycentric map is the ability to convey proximity
to limiting states of componentality. While this map (and invariant maps in general)
have proven useful for turbulence modeling and analysis of simple flows, there are two
significant drawbacks when it is applied to complex flows: (1) the loss of physical context,
and (2) difficulty in representing large amounts of data.
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Figure 4. Barycentric maps showing different CFD results data. In (a) the same channel flow
data as Figure 3(d) is shown, where the points have been colored by the wall distance y+. In
(b) the entire domain from a contracting-diverging nozzle flow (RANS solution of the Délery C
flow (Emory 2014, chap. 4.3)) is plotted.

2.4.1. Loss of physical context

Because the invariants used to define (xB , yB) in Eq. (2.3) are based only on λi, the
barycentric map trajectories cannot contain information regarding the physical domain.
There have been attempts to address this shortcoming, such as individually labeling the
scatter points with spatial coordinates or coloring the points based on physical coordi-
nates. In Figure 4(a) we demonstrate the latter approach, where colors indicate the wall
distance y+. Though this does provide some context, there is a significant burden on the
reader/analyst to (a) interpret the colors and (b) map the componentality information
back to physical coordinates.

2.4.2. Large amounts of data

Complicating the interpretation of the barycentric map is that while each state of
anisotropy uniquely maps to a different location within the barycentric map, physical lo-
cations with nearly identical aij will overlap within the barycentric map. This cluttering
phenomenon can obscure many data points from the analysis. As the number of points
plotted increases, this shortcoming becomes more pronounced; for example Figure 4(b),
where the entire domain of a relatively simple flow† has been represented within the
barycentric map. Both the obscuring of data points and lack of physical context render
this plot nearly useless. For this reason analysts who are investigating large complex flow
domains must plot only a subset of the domain information, typically one-dimensional
profiles. This limitation makes identification of global componentality behaviors and pat-
terns more difficult.

† Data from the Délery C turbulent channel flow (Délery 1981), which is described in Section
5.
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3. Componentality contours

3.1. Implementation

We introduce a new visualization technique to represent componentality information in
the physical domain by constructing a color map from the barycentric map coordinates
(x, y). Color mapping is a common technique for scalar visualization, where the scalar
values are used as indices to a lookup table which contains color information (Helgeland
2007).

One of the most common color maps is the red-green-blue (RGB) color system which
uses three scalar values, one each for the red, blue, and green color intensities. The values
of these three channels must ∈ [0, 1],† represented as a triplet such that [1 0 0]T is red,
[0 1 0]T is green, and [0 0 1]T is blue. All colors can be represented as a linear combination
of these triplets.

We make the observation that the coefficients Cic, used to construct the barycentric
map coordinates in Eq. (2.3), are similar to an RGB triplet in that they also ∈ [0, 1]. The
only notable difference between Cic and an RGB triplet is that the sum of the coefficients
must equal one; no such constraint exists for an RGB triplet. We formulate an RGB value
using the componentality coefficients to weight the RGB color channels throughRG

B

 = C1c

1
0
0

+ C2c

0
1
0

+ C3c

0
0
1

 . (3.1)

This simple construction assigns colors to componentality behaviors such that one-
component turbulence is red, two-component is green, isotropic is blue, and all other
states within the map are combinations of these colors. In Figure 5(d) we show the
barycentric map colored in this approach; this map now serves as a color map with which
we can visualize the physical domain and quickly determine proximity to the limiting
states of anisotropy.

A variety of scalar anisotropy metrics have been developed as analysis tools, e.g., used
to study the diffusion of water within biological tissues (Kindlmann et al. 2000; Prados
et al. 2010). These tools and their associated color maps are inappropriate for representing
turbulence componentality. The anisotropy maps demonstrate that componentality is
described by two independent parameters; by reducing the anisotropy to a scalar value
important information is lost. This is demonstrated in Section 5, a discussion comparing a
variety of scalar metrics to componentality contours is provided in Emory (2014, Chapter
2).

3.2. Invariant map analysis

The primary use for these contours is flow-field analysis, presented in Section 4 for sev-
eral cases. Componentality contours can also be used to better understand the differences
between the invariant maps discussed in Section 2. We visualize componentality contours
in Figure 5 for all four invariant maps, highlighting the differences between their repre-
sentations of aij .

Several trends become clear from this comparison. The first is that the Lumley triangle
dedicates most of its area to one- and two-component behavior. Second, the turbulence
triangle dedicates more of its area to two-component and isotropic turbulence. By min-
imizing one limiting state, these non-linear maps explore in more detail the interplay

† Technically each value is represented by 8 bits, and thus range from ∈ [0, 255]. In many
visualization packages these ranges are normalized to [0, 1].
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Figure 5. Reynolds stress anisotropy componentality contours plotted in four anisotropy
invariant maps.

between the remaining two states. In contrast, the linear maps utilize a more equal
weighting of the three limiting states.

4. Examples

We demonstrate application of componentality contours to three cases†, showing their
use for both exploration and analysis of complex fluid flow results. The physics of each
case will not be discussed in depth. Most of the discussion centers on the analyses enabled
by the componentality contour color map.

4.1. Flow through an urban-like canopy

The atmospheric boundary layer flow over a building array with variable heights (all
buildings have a square planform area) is numerically investigated using large-eddy sim-
ulation (LES) by Philips et al. (2013). The goal of this work is to study scalar dispersion
of a point source within this domain, which is shown in Figure 6. Sensitivity of dispersion
to flow direction was evaluated by using three orientations (relative to the x-axis): 0◦,
45◦, and 90◦.

In Figure 7 time-averaged componentality contours are shown for a horizontal slice

† Additional examples can be found in Emory (2014, Figures 2.18 and E.3).
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Figure 6. Diagram of the variable height building array (Philips et al. 2013, Figure 1).

(xy-plane) whose height is equal to that of the largest building (white square). The
authors were able to quickly explore the domain as well as qualitatively identify regions
of interesting turbulence behavior by visualizing the anisotropy in this way. Looking
first at Figure 7(a), the most prominent feature is the wake downstream of the tallest
building, which is primarily isotropic (blue coloration). Immediately adjacent to the walls
of the tallest building are regions of x2C turbulence, and as the flow interacts and turns
around the corners there is significant x1C behavior. The top surfaces of the nearby
tall buildings (the shorter buildings’ influence is not visible in this plane) indicate x2C

behavior; downstream of these buildings the turbulence is near a state of axisymmetric
expansion (red-purple hues).

In Figure 7(c) there are banding patterns in the componentality contours. These occur
because the buildings are aligned in parallel with respect to the flow direction; the wake
structures are allowed to propagate long distances. These striations are not visible in
Figure 7(a), where the buildings are staggered relative to the flow. This causes the wake
structures to frequently interact with nearby buildings; they can only propagate short
distances before being disturbed.

4.2. Oblique shock-boundary layer interaction

An oblique shock turbulent boundary layer interaction (OSTBLI) is investigated by Mor-
gan et al. (2013). In this work LES results are used to evaluate the performance of sev-
eral different Reynolds-averaged Navier-Stokes (RANS) turbulence models, specifically
the Reynolds stress transport (RST) and k−ω models. These three turbulence modeling
approaches are compared using componentality contours in Figure 9, showing a spanwise
plane zooming in on the interaction region (shock location is identified by isobaric lines
in black).

The most notable difference between the two RANS models and the LES is the near-
wall layer of x1C turbulence (red coloring) upstream of the interaction. Downstream of
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Figure 7. Anisotropy componentality contours for a horizontal plane at the height of the tallest
building (white square) for one quadrant of the domain. These images correspond to time-av-
eraged LES data (D. Philips, private communication, March 19th, 2012) where the atmospheric
boundary layer angle of attack (relative to the x axis) is (a) 0◦, (b) 45◦, and (c) 90◦. Colors
indicate componentality where red: one-component; green: axisymmetric two-component; blue:
isotropic.232 B. Morgan, K. Duraisamy, N. Nguyen, S. Kawai and S. K. Lele
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FIGURE 1. Illustration of a typical oblique shock/boundary layer interaction (Touber &
Sandham 2008).

the separation bubble (Dolling & Murphy 1983). Despite a number of experimental
and numerical studies on the nature of this low-frequency unsteadiness, there
remains dissidence within the community as to the precise mechanism responsible.
Furthermore, it is generally accepted that traditional eddy-viscosity-based Reynolds-
averaged Navier–Stokes (RANS) simulations may provide unsatisfactory prediction of
mean pressure, skin friction, and heat transfer in all but the weakest of interactions
(Knight & Degrez 1998). Of course, the existence of low-frequency unsteadiness as
a dominant flow feature may contribute to inaccuracies in steady RANS solutions;
however, it has been suggested that more fundamental issues such as the use of
a single length scale or the application of wall functions in eddy viscosity models
may contribute to their inaccuracy in simulations of separated flows (Dolling 2001).
It is therefore the objective of the present work to explore the physics of oblique
STBLI with high-fidelity large-eddy simulation (LES) over a range of incident shock
strengths and Reynolds numbers in order to: (i) identify important trends with respect
to the flow conditions which may, in general, be uncertain; (ii) investigate potential
mechanisms for low-frequency unsteadiness; and (iii) address potential causes of
failure in lower-fidelity RANS models.

STBLIs occur in a number of practical and experimental configurations,
including compression corner, expansion-compression corner, double fin, normal shock
impingement, and oblique shock impingement configurations (Knight et al. 2002). The
present study focuses on the unit problem of an oblique shock wave impinging on a
turbulent boundary layer (OSTBLI), illustrated schematically in figure 1. The incident
shock impinges on a turbulent boundary layer that is developing over a flat plate.
The adverse pressure gradient due to the shock causes a region of separated flow
to form in the boundary layer, and compression waves off the leading edge of this
bubble coalesce to form the reflected shock. On the reverse side of the separated
region, a Prandtl–Meyer expansion fan develops and joins the reflected shock structure.
In addition, the separation bubble undergoes a low-frequency expansion/contraction,
which perhaps causes (or alternately is a result of) a low-frequency motion in the
reflected shock structure.

The cause of this low-frequency unsteadiness remains an open issue, and several
explanations have been proposed. Ganapathisubramani, Clemens & Dolling (2009)

Figure 8. Illustration of a typical oblique shock-boundary layer interaction (Morgan et al.
2013, Figure 1).

the interaction the LES indicates strong x2C turbulence adjacent to the wall. While both
RANS models do relatively well capturing the pressure field, they fail to predict either
the x1C or x2C anisotropic behavior near the wall. They predict surprisingly similar
anisotropy in this region despite a significant difference in model complexity†.

4.3. Wavy wall channel

The turbulent flow in a channel with a sinusoidal (wavy) bottom wall has been investi-
gated using a variety of turbulence simulation techniques (Rossi & Iaccarino 2009; Gorlé
et al. 2012). The periodic (both streamwise and spawns) domain is shown in Figure 10.
A single wavelength of the sinusoidal wall (peak-to-peak) is used to compare the different
turbulence simulations.

Figure 11 uses componentality contours to compare DNS, LES, and two RANS mod-
els (Philips 2012). The DNS and LES are nearly identical in their prediction of the

† The k−ω model is a two-equation eddy-viscosity model whereas the RST uses six transport
equations, one for each term of the Reynolds stress.
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FIGURE 36. The barycentric anisotropy mapping technique. Invariants of the anisotropy
tensor are mapped to a coordinate in the equilateral triangle and to a three-component RGB
colour code.
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FIGURE 37. The barycentric anisotropy mapping technique applied to the OSTBLI problem
solved with LES (a), RST (b), and k–! (c). Interaction is coloured by RGB colour
corresponding to the location of anisotropy invariants in the barycentric map illustrated in
figure 36. Ten evenly spaced contours of pressure from p/p1 are overlaid in black.

near the wall. Additionally, it is clear in the LES that this one-component behaviour
extends into the interaction as the boundary layer separates away from the wall.
However, neither of the RANS solutions are able to capture this feature. Indeed it is
likely that the failure of the RANS models to capture this feature is related to the
previously discussed shortcomings of the RANS models to properly predict the effects
of turbulent transport, especially in the shear layer. Similarly, it is observed in the LES

Figure 9. Componentality contours for OSTBLI obtained from (a) large-eddy simulation,
(b) a Reynolds stress transport model, and (c) and k−ω eddy-viscosity model. Isobars (black
lines) are provided for reference (Morgan et al. 2013, Figure 37).

Figure 10. Illustration of the wavy wall channel geometry and location of separated flow
(Gorlé et al. 2012, Figure 1).

anisotropy, showing a layer of x1C emanating from the peak (where separation occurs).
The rest of the sinusoidal wall has a thick layer of x2C turbulence. The top wall is pri-
marily x1C, whereas the channel core is nearly isotropic. The RST model adequately
represents these phenomena, though somewhat underpredicting the extent away from
the wall where these behaviors exist. The final RANS model, the v2−f , shows little re-
semblance to any of the other results, predicting nearly isotropic turbulence throughout
the channel.
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Figure 11. Comparison of Reynolds stress anisotropy componentality contours for four
different simulations of turbulent wavy wall flow (Philips 2012, Figure 5.11).

4.4. Conclusion

The fundamental feature of the proposed color map is the ability to visualize the anisotropic
behavior of turbulence in the physical domain. The comparisons performed in Figures
11 and 9 would be difficult to interpret if performed only in an invariant map; context
with regards to flow features and geometry would be lost. Relative to invariant maps, the
same type of information is visualized (componentality of turbulence), but this coloring
technique is able to address both the loss of context and quantity of data shortcomings
that limit broader use of invariant maps.

5. Alternative coloring schemes

Two extensions to this color map approach are currently being explored. The first is
related to an optimal choice of colors which more delineate the different limiting behaviors
of componentality. The second introduces a modified formulation of Eq. (3.1) which allows
for more complex color maps, enhancing the color maps’ ability to highlight limiting
behaviors of anisotropy.

5.1. Modified corner colors

In Figure 5(d) the RGB base colors (colors at the corners) are defined as [1 0 0]T , [0 1 0]T ,
and [0 0 1]T , respectively. There is no reason why red, green, and blue must be used at
these corners. The analyst may want to use a different set of colors to enhance visual
perception of particular limiting states, which requires a trivial modification to the corner
colors described in Eq. (3.1). We demonstrate this using contours from a RANS solution
of the Délery Case C flow (Délery 1981). This turbulent channel flow has a large bump
on the lower wall which causes the flow to accelerate from subsonic conditions to a
standing shock of M ≈ 1.4, which spans the channel. The shock interacts with the
turbulent boundary layers on both top and bottom walls, inducing a large separation
bubble downstream of the bump geometry. These features are evident in Figure 12(a)
which shows Mach contours of this flow.

Figures 12(b) and 12(c) depict the standard RGB componentality color map, while
Figures 12(d) and 12(e) show an alternative color map where the base colors have been
modified (equivalent to the component anisotropy index scalar metric). Figure 12(d)
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Figure 12. Contours for the Délery C flow using the SST model. In (a) Mach contours (M = 0:
black, M = 1.4: white, 15 uniformly speed contours) visualize the shock and separated flow.
In (b) and (c) the RGB color map, described by [1 0 0]T , [1 1 1]T , and [0 0 1]T , and associated
componentality contours are displayed; in (d) and (e) the modified color map, described by
[1 1 1]T , [1 1 1]T , and [0 0 0]T , and associated contours are displayed.

shows that the color map produces a gradient perpendicular to the two-component (bot-
tom wall) limit; indicating distance from the isotropic corner. The limitation of using
a scalar metric is evident when comparing Figures 12(c) and 12(e); the white region in
Figure 12(e) is non-uniquely specified with this color map.

5.2. Modified map construction

While the color maps described by Eq. (3.1) adequately identify behavior very close to
the corners of the map, the gradients in the interior and near the edges of the domain
are much harder to visually interpret. In order to address this (and allow these color
maps to clearly demarcate other regions within the barycentric map), we introduce a
new formulation for the RGB channel valuesRG

B

 = C∗1c

1
0
0

+ C∗1c

0
1
0

+ C∗1c

0
0
1

 , (5.1a)

where C∗ic = (Cic + Coff )
Cexp . (5.1b)
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(a) Coff = 0.65, Cexp = 5 (b) Coff = 0.80, Cexp = 5

(c) Coff = �1.50, Cexp = 5 (d) Coff = 1.75, Cexp = 2

Figure 8
Figure 13. Barycentric map componentality contours using different values for the coefficient
offset Coff and exponent Cexp. In (a) and (b) the RGB base colors are [1 0 0]T , [0 1 0]T , and
[0 0 1]T , respectively; in (c) and (d) they are [0.5 0.5 − 0.5]T , [0.5 − 0.5 0.5]T , and [−0.5 0.5 0.5]T

(corresponds to yellow-magenta-cyan).

By changing the base color regime and modifying the offset and exponent coefficients,
several potentially useful color regions can be constructed. For example, in Figures 13(a)
and 13(b) the behaviors near the limiting states (corners) are still clearly identified by
red, green, and blue. Now, however, states in the interior and near the edges of the
map are clearly identified with their own colors. In Figure 13(b) only behaviors near the
boundaries† are identified; states of anisotropy which correspond to the middle of the
barycentric map are not colored at all. The map in Figure 13(c) is used to identify only
behaviors near the edges of the map (neglecting corner proximity), and the inverse which
only focuses on proximity to corners is demonstrated in Figure 13(d).

† The thickness of this layer is controlled by Coff ; the smoothness of the color map transition
from colored to white is controlled by Cexp.
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6. Conclusion and future work

This brief has described the development and use of a new color map based on turbu-
lence anisotropy componentality. The color map is an extension of anisotropy invariant
maps and allows information about componentality to be plotted in physical dimensions.
This coloring technique provides analysts with a faster and more intuitive visualization
of the anisotropic behavior of an arbitrary second-order tensor which maintains physi-
cal context and can handle large amounts of data (relative to invariant maps). Several
extensions to this coloring approach were presented which allow for targeted coloring of
physical behaviors.

Future work involves further application of this coloring approach to complex flows,
demonstrating the utility of these visualizations. Additionally the alternative coloring
schemes will be explored and refined in terms of their ability to enhance our physical
understanding of flow physics and their impact on modeling approaches.
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