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Multi-fidelity uncertainty quantification of
irradiated particle-laden turbulence

By L. Jofre, G. Geraci†, H. R. Fairbanks‡,
A. Doostan‡ AND G. Iaccarino

1. Motivation and objectives

Uncertainty quantification (UQ) has become increasingly popular in the modeling and
simulation community. The ability to quantitatively characterize and reduce uncertain-
ties, in conjunction with model verification and validation, plays a fundamental role in
increasing the reliability of numerical simulations. In this regard, the Predictive Science
Academic Alliance Program (PSAAP-II) at Stanford University focuses on advancing
the state of the art in large-scale predictive simulations of irradiated particle-laden tur-
bulence relevant to concentrated solar power (CSP) systems. To this end, physics-based
models are developed and the model predictions are validated against data acquired from
an in-house experimental apparatus designed to mimic a scaled-down particle-based solar
energy receiver.
Turbulent flows laden with inertial particles, or droplets, in the presence of thermal

radiation are encountered in a wide range of natural phenomena and industrial applica-
tions. For instance, it is well established that turbulence-driven particle inhomogeneity
plays a fundamental role in determining the rate of droplet coalescence and evaporation
in ocean sprays (Veron 2015) and atmospheric clouds (Shaw 2003). Another example is
found when studying fires, in which turbulence, soot particles, and radiation are strongly
interconnected resulting in very complex physical processes (Tieszen 2001). From an in-
dustrial point of view, important applications include the atomization of liquid fuels in
combustion chambers (Lasheras & Hopfinger 2000), soot formation in rocket engines (Ra-
man & Fox 2016), and more recently, volumetric particle-based solar receivers for energy
harvesting (Ho 2017).
Even in the simplest configuration, e.g., homogeneous isotropic turbulence, particle-

laden turbulent flow is known to exhibit complex interactions between the carrier and dis-
persed phases in the form of preferential concentration and turbulence modulation (Bal-
achandar & Eaton 2010). Preferential concentration is the phenomenon by which heavy
particles tend to avoid intense vorticity regions and accumulate in regions of high strain
rate, while turbulence modulation refers to the alteration of fluid flow characteristics
in the near-field region of particle clusters as a result of two-way coupling effects, e.g.,
enhanced dissipation, kinetic energy transfer, or formation of wakes and vortexes. The
physical complexity is further increased by the simple addition of solid walls as tur-
bophoresis (Caporaloni et al. 1975), i.e., tendency of particles to migrate towards regions
of decreasing turbulence levels, becomes an important mechanism for augmenting the
inhomogeneity in spatial distribution of the dispersed phase by accumulating particles
at the walls.
As described above, characterization of particle-laden turbulent flows is a difficult
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problem; many experimental and numerical research studies have been devoted to this
objective over the past decades (Squires & Eaton 1991; Wang & Squires 1996; Sar-
dina et al. 2012). However, the problem of interest in this work involves, in addition
to particle-flow coupling, heat transfer from the particles to the fluid through radia-
tion absorption. The practical application motivating the study of this phenomenon is
the improvement of energy harvesting in volumetric particle-based solar receivers. At
present, most CSP technologies use surface-based collectors to convert the incident solar
radiation into thermal energy. In this type of system, the energy is transferred to the
working fluid downstream of the collection point via heat exchangers, typically resulting
in large conversion losses at high temperatures. By contrast, volumetric solar receivers
continuously transfer the energy absorbed by particles directly to the operating fluid as
they are convected through an environment exposed to thermal radiation. This innova-
tive technology is expected to increase the performance of CSP plants by avoiding the
necessity of heat-exchanging stages, while requiring significantly high radiation-to-fluid
energy transfer ratios. This requirement imposes a very complex design constraint as the
physical mechanisms governing irradiated particle-laden turbulent flow are still not fully
comprehended, and therefore is a topic of intense research (Zamansky et al. 2014; Frankel
et al. 2016).
The system studied in this work is based on a small-scale apparatus designed to re-

produce the operating conditions of volumetric particle-based solar receivers. As a con-
sequence, many different uncertainties naturally arise when trying to numerically inves-
tigate the apparatus’s performance in terms of, for instance, thermal output and effi-
ciency. Examples include incomplete characterization of particle-size distribution (Rah-
mani et al. 2015) and radiation properties (Frankel & Iaccarino 2017), variability in radi-
ation input and boundary conditions, and structural uncertainty inherent in the models
utilized (Jofre et al. 2017). In addition to the large number of uncertainties, accurate pre-
dictions of the complex interaction of particle-laden turbulent flow with radiative heat
transfer demand the utilization of expensive high-fidelity (HF) numerical simulations. As
an example, the cost of a medium-scale HF calculation of this problem requires approx-
imately 500k core-hours per sample on the Mira supercomputer (ALCF). Therefore, if
brute-force UQ techniques, e.g., Monte Carlo (MC) simulation with O(103) samples, are
to be performed, the total cost is of the order of 500M core-hours, resulting in unafford-
able UQ studies. In this regard, the objective of this work is to investigate multi-fidelity
UQ strategies on large-scale, multiphysics applications based on the PSAAP-II solar
receiver.
The report is organized as follows. In Section 2, the physical models utilized to simu-

late irradiated particle-laden turbulent flow are described. Then, in Section 3, the multi-
fidelity strategies investigated are presented. The UQ study is detailed next, in Section 4,
in terms of computational setup, uncertainties, and quantities of interest (QoIs) consid-
ered. In Section 5, the performance of the multi-fidelity estimators is analyzed. Finally,
the work is concluded and future directions are proposed in Section 6.

2. Formulation of irradiated particle-laden turbulent flows

The overarching problem at PSAAP-II involves the interaction of particles and wall-
bounded turbulent flow in a radiation environment. The equations describing this type of
flow are continuity, Navier-Stokes in the low-Mach-number limit, conservation of energy
assuming ideal-gas behavior, Lagrangian particle transport, and radiative heat transfer.
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2.1. Variable-density turbulent flows

The volumetric particle-based solar receiver operates at atmospheric pressure conditions
in which air, the carrier fluid, is assumed to follow the ideal-gas equation of state (EoS),
Pth = ρgRairTg, where Pth is the thermodynamic pressure, ρg is the density, Rair is the
specific gas constant for air, and Tg is the temperature. As indicated by the EoS, density
varies with temperature. However, the Mach number of the flow Ma = u/c, with u the
local flow velocity and c the speed of sound of the medium, for the range of velocities
and temperatures considered is small (Ma < 0.03). Therefore, the low-Mach-number
approximation (Esmaily-Moghadam et al. 2015) is utilized to separate the hydrodynamic
part, p ≪ Pth, from the total pressure, Ptot = Pth + p. This decomposition results in the
following equations of fluid motion

∂ρg
∂t

+∇ · (ρgug) = 0, (2.1)

∂ (ρgug)

∂t
+∇ · (ρgug ⊗ ug) = −∇p+∇ ·

{

µg

[

(

∇ug +∇u⊺g
)

−
2

3
(∇ · ug)I

]}

(2.2)

+ρgg+ fTWC ,

∂ (ρgCv,gTg)

∂t
+∇ · (ρgCp,gTgug) = ∇ · (λg∇Tg) + STWC , (2.3)

where ug is the gas velocity, I is the identity matrix, g is the gravitational acceleration, µg

and λg are the dynamic viscosity and thermal conductivity, Cv,g and Cp,g are the isochoric
and isobaric specific heat capacities, and fTWC and STWC are two-way coupling terms
representing the effect of particles on the fluid and approximated as

fTWC =
∑

p

mp

up − vp

τp
δ (x− xp) , STWC =

∑

p

πd2ph (Tp − Tg) δ (x− xp) , (2.4)

where mp = ρpπd
3
p/6 and vp are the particle mass and velocity, up is the gas velocity at

the particle location, τp = ρpd
2
p/(18µg) is the particle relaxation time and dp the particle

diameter, δ (x− xp) is the Dirac delta function concentrated at the particle location xp,
h = Nuλg/dp is the gas-particle convection coefficient with Nu the particle Nusselt
number — the Biot number is Bi = hdp/λp ≪ 1 in this problem, and therefore particles
are assumed to be isothermal — and Tp is the particle temperature.

2.2. Lagrangian particle transport

The carrier fluid is transparent to the incident radiation. Hence, micron-sized nickel
particles, i.e., the dispersed phase, are seeded into the gas to generate a non-transparent
gas-particle mixture that absorbs and transfers, by means of thermal convection, the
incident radiation from the particles to the gas phase. The diameters of the particles are
several orders of magnitude smaller than the smallest significant (Kolmogorov) turbulent
scale τη, and the density ratio between particles and gas is ρp/ρg ≫ 1. As a result,
particles are modeled following a Lagrangian point-particle approach with Stokes’ drag
as the most important force (Maxey & Riley 1983). Their description in terms of position,



24 Jofre et al.

velocity and temperature is given by

dxp
dt

= vp, (2.5)

dvp
dt

=
up − vp

τp
+ g, (2.6)

d (mpCv,pTp)

dt
=

πd2p (1− ω)

4

∫

4π

(

I −
σT 4

p

π

)

dΩ− πd2ph (Tp − Tg) , (2.7)

where Cv,p is the particle specific isochoric heat capacity, ω = Qs/ (Qa +Qs) is the
scattering albedo with Qa and Qs the absorption and scattering efficiencies, respectively,
I is the radiation intensity, σ is the Stefan-Boltzmann constant, and dΩ = sin θdθdφ is the
differential solid angle. In the conservation equation for particle temperature, Eq. (2.7),
the first term on the right-hand side accounts for the amount of radiation absorbed by a
particle, while the second term represents the heat transferred to its surrounding fluid.

2.3. Radiative heat transfer

In the problem under consideration, the flow and particles timescales are orders of mag-
nitude larger than the radiation timescale, which is related to the speed of light. As a
consequence, it can be assumed that the radiation field changes instantaneously with
respect to temperature and particle distributions; i.e., radiation field is quasi-steady. Un-
der this assumption, and considering that air is transparent at all wavelengths and that
absorption and scattering are determined solely by the presence of particles and solid
boundaries, the radiative heat transfer equation becomes

ŝ · ∇I = −σeI + σa

σT 4
p

π
+

σs

4π

∫

4π

IΦdΩ, (2.8)

where ŝ is the direction vector, σe = σa + σs is the total extinction coefficient with σa

and σs the absorption and scattering coefficients, respectively, and Φ is the scattering
phase function that describes the directional distribution of scattered radiation.
The total extinction coefficient can also be defined in terms of absorption and scattering

efficiencies as σe = (Qa +Qs)πd
2
pnp/4 with np the local number density of particles.

Moreover, assuming gray radiation Qa +Qs ≈ 1, which leads to ω ≈ Qs, and as a result
σa ≈ Qaπd

2
pnp/4 and σs ≈ Qsπd

2
pnp/4.

3. Multi-fidelity accelerated sampling strategies

In computational science and engineering, multiple physical, mathematical, and numer-
ical models with different features can be constructed to characterize a system of interest.
Typically, computationally expensive HF models are designed to describe the system with
the degree of accuracy required by the problem under study, while low-fidelity (LF) mod-
els are formulated as less accurate, but relatively cheaper, representations. Outer-loop
problems, such as inference, UQ and optimization, require large numbers of model evalu-
ations for different input values, resulting in unaffordable computational requirements in
the case of large-scale, multiphysics calculations. The objective of multi-fidelity methods,
therefore, is to reduce the cost of the outer-loop problem by combining the accuracy of the
HF models with the speedup achieved by the LF representations. Different multi-fidelity
UQ strategies exist in the literature; see, for example, the review by Peherstorfer et al.
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Figure 1. Illustration describing the BF approximation method. First, a sweep of LF realizations
(top row) is performed from which the low-rank basis and coefficient matrix are identified.
Next, HF realizations of the LF-basis samples are computed (bottom row). Finally, the BF
approximation is obtained by applying the coefficient matrix to the HF basis (center row).

(2016). However, due to the high-dimensional input space and the complexity of the con-
servation equations involved, this study is restricted to a reduced subset of acceleration
strategies appertaining to surrogate-based MC-type sampling approaches.
As its name indicates, MC-type approaches are derived from the original Monte Carlo

method, in which the expectation of the QoI Q = Q(ξ), as a function of the stochastic
input ξ, is estimated via a sample average. Let E [Q] and Var (Q) denote the mean
and variance of Q. Given N independent realizations of the stochastic input, denoted
ξ(i), the MC estimator of E [Q] is defined as Q̂MC

N = N−1
∑N

i=1 Q
(i), where Q(i) =

Q(ξ(i)). Although unbiased, the accuracy of Q̂MC
N , measured by its standard deviation

√

Var (Q) /N , decays slowly as a function of N . Therefore, for a fixed computational
budget a viable alternative to increase the MC accuracy is to possibly replace Q with
other quantities with the same mean but reduced variances.

3.1. Multi-level Monte Carlo

One of the most popular acceleration strategies is the multi-level (ML) method (Giles
2008). This technique, inspired by the multigrid solver idea in linear algebra, is based
on evaluating realizations of Q from a hierarchy of models with different fidelity levels ℓ,
ℓ = 0, . . . , L, with L the highest fidelity, in which Q is replaced by the sum of differences
Yℓ = Qℓ −Qℓ−1, where by definition Y0 = Q0. As a result, the QoIs of the original and
new ML problems have the same mean E [Q]. An example of a level is the grid resolution
considered for solving the system of equations, so that a LF (or HF) model can be
established by simulating Q on a coarse (or fine) grid. Then, E [Q] can be computed
using the ML QoI and an independent MC estimator on each level ℓ as

Q̂ML =
L
∑

ℓ=0

Ŷ MC
ℓ =

L
∑

ℓ=0

1

Nℓ

Nℓ
∑

i=1

Y
(i)
ℓ . (3.1)

This approach is referred to as multi-level Monte Carlo (MLMC) and the resulting es-

timator has a variance equal to Var
(

Q̂ML
)

=
∑L

ℓ=0 N
−1
ℓ Var (Yℓ). Consequently, if the

level definition is such that Qℓ → Q in mean square, then Var (Yℓ) → 0 as ℓ → ∞. Hence,
fewer samples are required on the finer level L. In particular, it is possible to show that
the optimal sample allocation across levels, Nℓ, is obtained in closed form given a target
variance of the MLMC estimator equal to ε2/2 and resulting in

Nℓ =

∑L

k=0

√

CkVar (Yk)

ε2/2

Var (Yℓ)

Cℓ
, (3.2)
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Figure 2. Computational setup of the PSAAP-II volumetric particle-based solar energy receiver.
An isothermal periodic section (left domain) is utilized to generate fully developed particle-laden
turbulent flow, which is used as inflow conditions for the second section (right domain), where
the gas-particle mixture is irradiated perpendicularly to the flow direction from one the sides.

where the cost of each evaluation Yℓ per level is denoted by Cℓ.

It is important to note that the variance decay can be proven to be satisfied only for
levels based on a numerical discretization (spatial/temporal meshes) and not for general
hierarchies of models, such as 1-D versus 2-D, Reynolds-averaged Navier-Stokes versus
large-eddy simulation, etc.

3.2. Multi-fidelity Monte Carlo

To accommodate LF representations that are not obtained directly from coarsening the
HF models, a common approach is to utilize LF realizations as a control variate (Pa-
supathy et al. 2014; Ng & Willcox 2014). In this work this strategy is referred to as
multi-fidelity (MF). In statistics, the control variate approach requires that a generic
QoI f be replaced by f −β(g−E [g]), where g is a function chosen for its high correlation
with f and for which the value of E [g] is readily available. However, in the problem of
interest here the LF model features are not available a-priori, and consequently need
to be established during the computations along with the HF calculations. As a conse-
quence, the expected value of the LF model is generally approximated by means of an
MC estimator requiring a set of additional (independent) LF computations. The control
variate MC estimator (MF estimator) is defined as

Q̂MF = Q̂HF,MC − β
(

Q̂LF,MC − E

[

Q̂LF
])

, (3.3)

where the parameter β is chosen to minimize the variance of Q̂MF. The optimal β =
√

ρ (Var (QHF) /Var (QLF)) selection leads to

Var
(

Q̂MF
)

= Var
(

Q̂HF,MC
)

(

1− ρ2
r

1 + r

)

, (3.4)

where ρ2 is the correlation between the HF and the LF models, and r is used to param-
eterize the additional rNHF LF realizations needed in order to evaluate

E

[

Q̂LF
]

≈
1

NHF(1 + r)

NHF(1+r)
∑

i=1

QLF,(i). (3.5)

As a result, the optimal control variate is obtained for a particular r value that, in turn,
depends on the correlation between the two models and their cost ratio. In this report,
the value is directly given by

r = −1 +

√

CHF

CLF

ρ2

1− ρ2
, (3.6)
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Variable Interval Variable Interval

1. Prt. rest. coeff. 1 [0.0 : 0.6] 8. Mass load. ratio [18 : 22]%
2. Prt. rest. coeff. 2 [0.1 : 0.7] 9. Prt. abs. eff. [0.37 : 0.41]
3. Prt. rest. coeff. 3 [0.2 : 0.8] 10. Prt. scatt. eff. [0.69 : 0.76]
4. Prt. rest. coeff. 4 [0.3 : 0.9] 11. Radiation [1.8 : 2.0] MW/m2

5. Prt. rest. coeff. 5 [0.4 : 1.0] 12. Radiated wall [1.6 : 6.4] kW/m2

6. Stokes’ drag corr. [1.0 : 1.5] 13. Opposite wall [1.2 : 4.7] kW/m2

7. Prt. Nusselt num. [1.5 : 2.5] 14. Side x-y walls [0.1 : 0.2] kW/m2

Table 1. List of random inputs with the corresponding ranges. All inputs are assumed to be
uniformly distributed.

as described in Geraci et al. (2015, 2017). Moreover, a hybridization between the ML
and MF approaches (Fairbanks et al. 2017) is also possible and will be studied in future
works.

3.3. Bi-fidelity low-rank approximation

An alternative methodology is the bi-fidelity (BF) approximation (Narayan et al. 2014;
Doostan et al. 2016; Skinner et al. 2017; Hampton et al. 2017), where a low-rank repre-
sentation of the HF solution is generated using an ensemble of LF samples along with
a relatively small number of selected HF samples. Low-rank representation of a vector-
valued QoI q refers to a linear approximation of q in a small size basis {q(ξ(i))} consisting
of selected realizations of q; i.e.,

q(ξ) ≈

r
∑

i=1

q(ξ(i))ci(ξ). (3.7)

Here, ci(ξ) are unknown coefficients, and the rank of approximation r is assumed to be
considerably smaller than the size of q. The methodology to construct a BF approxima-
tion is illustrated in Figure 1. First, a sweep of N MC simulations of the LF model is
performed to generate the vector of LF realizations QLF = [qLF(1) . . .q

LF
(N)] (top row). The

next step is to calculate its low-rank approximation, defined as QLF ≈ [qLF(i1) . . .q
LF
(ir)

]CLF

with qLFir the LF-basis vectors and CLF the interpolation matrix. This approximation can
be obtained, for instance, by means of a rank-revealing QR algorithm (e.g., Gu & Eisen-
stat (1996); Cheng et al. (2005); Halko et al. (2011)). Then, HF realizations with the
same inputs as the LF-basis samples, i.e., [qLF(i1) . . . q

LF
(ir)

] → [qHF
(i1)

. . . qHF
(ir)

], are computed

(bottom row). Finally, the BF approximation (center row) is obtained by applying the
interpolation matrix to the HF basis as

QBF = [qHF
(i1)

. . . qHF
(ir)

]CLF, (3.8)

and the estimates can then be used, for example, for MC estimation, or to form a poly-
nomial chaos expansion (PCE) (Ghanem & Spanos 2002). For the analysis of this BF
construction, the interested reader is referred to Hampton et al. (2017).
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Model # HF runs # LF runs # Equivalent HF runs CI/mean [%]

HF 15 - 15 42.31

ML MF

LF1 15 123 15.73 27.28 25.20
LF2 15 501 15.38 22.81 20.56

Table 2. Computational cost and accuracy, defined as the ratio between confidence interval
(CI) and mean, of the ML and MF estimators.

4. Uncertainty quantification for particle-based solar receivers

4.1. Computational setup and physical parameters

Numerical simulations of the volumetric particle-based solar receiver are performed on
the computational setup depicted in Figure 2. Two square duct domains, with dimensions
1.7L ×W ×W (L = 0.16 m; W = 0.04 m) in the streamwise (x-axis) and wall-normal
directions (y- and z-axis), are utilized to mimic the development and radiated sections
of the experimental apparatus. The development section (left domain) is an isothermal,
T0 = 300 K, periodic particle-laden turbulent flow generator that provides inlet con-
ditions for the inflow-outflow radiated section (right domain). The solid boundaries of
the development section (y- and z-sides) are considered smooth, no-slip, adiabatic walls.
Regarding the radiated section, the same boundary conditions are imposed except for
the radiated region in which the y- and z-boundaries are modeled as non-adiabatic walls
accounting for heat fluxes due to the radiation energy absorbed by the glass windows.
The bulk Reynolds number of the gas phase at the development section is Reb =

ρgubL/µg = 20000, with ub the gas bulk velocity. The particle-size distribution is ap-
proximated by 5 different classes with Kolmogorov Stokes numbers in the range 5 <
Stη = τp/τη < 20 and with a total mass loading ratio (MLR) of npmp/ρg ≈ 20%. The
gas-particle mixture is volumetrically irradiated through a L×W glass window starting
at ∆x = 0.1L from the beginning of the radiated section. The radiation source consists of
an array of diodes mounted on a vertical support placed ∆y = 2.875W from the radiated
window and aligned with the streamwise direction of the flow. The diodes generate a
total power of P ≈ 1 kW approximately uniform within a 18◦ cone angle.

4.2. Uncertainties and quantities of interest

The uncertainty quantification study considers 14 stochastic variables to target experi-
ment and model-form uncertainties, as shown in Table 1. These correspond to incertitude
in particle restitution coefficient for the different classes, correction to Stokes’ drag law,
particle Nusselt number, MLR, particle absorption and scattering efficiencies, incident
radiation flux, and heat fluxes from the walls to the fluid.
The intervals of the stochastic variables listed in Table 1 have been carefully char-

acterized on the basis of information provided by the team responsible for conducting
the experiments, and by taking into consideration results and conclusions extracted from
published studies. The intervals of the particle restitution coefficients follow the trend
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Model # HF runs # LF runs # Equivalent HF runs

LF2 (MF) 57 4064 61
LF2 (ML) 68 6793 74

LF1 (MF) 81 1660 91
LF1 (ML) 108 1364 117

HF 269 269

Table 3. Cost comparison: 10% accuracy in the prediction of mean ∆T (32.03 ± 1.6015 K).

observed in experimental investigations by Yang & Hunt (2006) in which CR increases
with Stokes number. The expression for Stokes’ drag force correction and its coefficient
interval is based on the theoretical work by Brenner (1962). The particle Nusselt number
range is extracted from numerical experiments of heated particles. The intervals for par-
ticle absorption and scattering efficiencies are obtained from Mie scattering theory and
take into account sensitivity to shape deformation as investigated by Farbar et al. (2017).
Intervals for mass loading ratio, incident radiation, and heat fluxes from the walls to the
fluid are characterized based on comparisons between preliminary numerical simulations
and experimental results.
Time-averaged 3-D solutions of the numerical simulations are saved in binary files

from which first- and second-order statistics of different QoIs can be analyzed. These
include, gas velocity and density distributions, mean gas temperature and fluctuations,
transmitted light, number density, velocity and temperature of particles, etc. However, in
this work, the performance of the MF estimators is focused on thermal QoIs at a probe
located ∆x = 0.3L downstream from the radiated perimeter, and perpendicular to the
flow direction along the y-axis at z = W/2. Of particular interest, as these quantities are
available from the experiments, is the time-averaged y-axis profile of gas temperature and
gas heat flux over the streamwise-perpendicular plane, viz. radiation power transferred
to the fluid.

5. Performance analysis of multi-fidelity estimators

Three fidelity levels have been designed to perform the UQ study: one HF model and
two LF representations, denoted LF1 and LF2. The HF model corresponds to a point-
particle direct numerical simulation with sufficient resolution (≈ 55M cells/section) to
capture all the significant (integral to Kolmogorov) turbulent scales, while approximating
the particles as Lagrangian points (≈ 15M particles/section) with nonzero mass. The flow
grid is uniform in the streamwise direction with spacings in wall units equal to ∆x+ ≈ 12,
while stretched in the wall-normal directions with the first grid point at y+, z+ ≈ 0.5 and
with resolutions in the range 0.5 < ∆y+,∆z+ < 6. The radiative heat transfer equation
is solved on a discrete ordinates method mesh of 270×160×160 grid points (≈ 7M cells)
with 350 quadrature points (discrete angles).
Based on the HF model, two LF models have been constructed by carefully coarsening

the Eulerian and Lagrangian resolutions, which allows for larger time steps. The resulting
LF1 and LF2 representations are, respectively, ≈ 170× and ≈ 1300× cheaper per sample
than the HF representation. To explore the performance of the acceleration strategies on
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Figure 3. (a) ML variance decay across levels, Var (Yℓ), for time-averaged temperature at probe
location y ≈ W . (b) MF HF-LF correlation, ρ2, for time-averaged probe temperature profile.

predicting temperature profile and heat flux at the probe location, a total of 16 HF, 128
LF1, and 512 LF2 samples derived from identical input realizations have been computed
using supercomputing resources (≈ 20M core-hours) from Mira (ALCF).

5.1. Multi-level and multi-fidelity Monte Carlo estimators

A pilot study has been performed to understand the relations between the different
models described above. For this set of LF and HF realizations, the relevant variances
and correlation for several QoIs have been computed. Focus is placed here on the time-
averaged temperature at probe location y ≈ W , for which the variances and correlations
are reported in Figure 3.
In the case of ML-LF1, the variance at the coarse level (Y0) starts from a small value,

but it does not decay for the difference between LF1 and HF models (Y1). In contrast,
the variance decays across levels for ML-LF2, starting from a much larger value at Y0. In
terms of correlation with the HF, both LF1 and LF2 models present a similar behavior:
correlation is small at the duct centerline, where the variability is almost negligible, but
increases for the approximate range 0.75 < y/W < 1, where the variability of the HF
estimator is larger.
The performance in terms of computational cost and estimator accuracy of the ML

and MF strategies is summarized in Table 2 for the time-averaged temperature at probe
location y ≈ W . The general observation is that the utilization of the acceleration strate-
gies is beneficial as the accuracy, defined as the ratio between confidence interval (CI)
and mean, is reduced by half with practically negligible additional cost. Particularly for
this QoI, the best performance is obtained when using the MF-LF2 combination due to
the higher correlation shown in Figure 3 and the reduced computational cost of the LF2
model. In general, for this problem the LF2 model-based accelerations (either ML or
MF) work consistently better than the ones based on LF1. On the basis of these results,
the performance of the strategies can be extrapolated to estimate what would be the
cost of obtaining, for example, a temperature prediction at y ≈ W with a 10% CI. The
extrapolations, which are reported in Table 3, are based on the optimal allocation Nℓ and
additional LF ratio r ≈ 20, 70 for LF1 and LF2, respectively. For this particular case,
269 HF calculations are needed, in contrast to only 57 HF and 4064 LF2 realizations,
with an equivalent cost of 61 HF runs, if the MF-LF2 strategy is utilized. Overall, due to
a lack of monotonic variance decay, the MF methods outperform their ML counterparts.
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Figure 4. (a) Simulated heat flux values for all three fidelities and BF approximations. (b) The
BF1 and BF2 data displayed correspond to non-basis data. CoV and normalized error values for
the planar heat flux. Data based on 8 samples corresponding to available non-basis high-fidelity
data.

5.2. Bi-fidelity low-rank approximation performance

Two BF approximations are constructed to estimate the statistics for the QoI of time-
averaged heat flux over the streamwise-perpendicular plane at the probe location. Bi-
fidelity approximation 1 (BF1) is formed via samples from LF1 and HF models, and
bi-fidelity approximation 2 (BF2) is formed via samples from LF2 and HF models. Both
BF approximations are of rank r = 5. The aim of this section is to compare the ability
of the BF and LF models to capture the statistics of the HF heat flux QoI when limited
samples are available.
Simulated values of the heat flux for all five models are displayed in Figure 4(a). For the

BF models, only the non-basis data is provided. Note that the LF1 and LF2 simulations
are not able to accurately capture the correct heat flux values of the HF data; however,
the LF1 and LF2 data are well correlated with the HF data. Due to this high correlation,
the resulting BF1 and BF2 samples closely align with those of the HF samples, with BF1
data being slightly more accurate than BF2.
Figure 4(b) provides the normalized validation error between the LF and BF data sets

and the HF data. The normalized error is defined to be the ℓ2 error of the scalar heat flux
values relative to the ℓ2 norm of the HF heat flux values. The coefficient of variation (CoV)
for the HF, LF, and BF data sets present values of the same order, which is necessary
to form an accurate approximation. The normalized validation errors show that the BF
approximations are 10× more accurate than their respective LF approximations, with
errors of 1% for the BF1 data and 2% for the BF2 data. This is an indication that, on
the basis of available data, the BF models provide a more accurate representation of
the HF data than the corresponding LF models. It is also of value to note that, while
the LF2 model has a small error, the BF2 data is still an improvement over LF1. The
relationship between LF1 and LF2, where LF1 is better than LF2, is consistent for their
corresponding BF approximations as well.
To further compare the LF and BF models, a first-order PCE is computed from the

available samples and used to generate additional samples. With this PCE surrogate, 100k
samples are generated to construct a histogram. Figure 5(a) displays the normalized his-
tograms of the LF1 and BF1 PCE surrogates along with the HF data, and Figure 5(b)
displays the normalized histograms of the LF2 and BF2 PCE surrogates along with the
HF data. The figure shows that the BF generated histogram is more aligned with the
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Figure 5. Normalized histogram of mean heat flux at probe location based on sparse PCEs of
(a) LF1 and BF1 and (b) LF2 and BF2. Using all available LF and BF data, 100k surrogate
values were evaluated to construct the histograms.

HF data than the LF counterparts. While previous results indicate that the BF1 approx-
imation is a more accurate estimate of the HF data, the spread of the BF2 histogram
appears to capture the spread of the HF data better than the BF1 histogram.

6. Conclusions

Performing UQ studies of large-scale, multiphysics applications is challenging due to
the expensive HF calculations required and the large number of uncertainties encoun-
tered. For instance, extrapolation of the PSAAP-II UQ study to the full-system scale
could cost on the order of 1G core-hours in some of the most advanced supercomputers.
Therefore, ML, MF and BF strategies have been explored in this work to effectively
reduce the cost of such studies.
On the basis of the system of interest and methods considered, the MF performs

better than the ML due to the high correlation but significant bias of the LF models.
In terms of the BF approach, the two approximations similarly outperform, by an order
of magnitude, their associated LF estimators despite the larger error of the LF2 data,
which is an indicator of the robustness of the methodology. An interesting study is the
hybridization of these two approaches by utilizing the BF method as a control variate.
Ongoing and future work focuses on improving the performance of these approaches

for Lagrangian particles under more challenging MLR and radiation inputs. In parallel,
data reduction strategies for particle-laden flow are being explored, and researchers are
pursuing a better understanding of physical variability in stochastic systems.
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