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1. Motivation and objectives

The direct numerical simulation (DNS) of high-Re wall-bounded turbulent flows is

prohibitively expensive, with its cost scaling as Re
5/2
τ in channel flows, where Reτ is the

Reynolds number defined based on the friction velocity (Mizuno & Jiménez 2013). The
direct application of the large-eddy simulation (LES) approach, where only the energy-
containing eddies are resolved, to wall-bounded turbulent flows, termed wall-resolved LES
(WRLES), yields a marginally better cost scaling than DNS, Re2τ (Mizuno & Jiménez
2013). The still prohibitive cost of WRLES is due to the reduction in size of the energy-
containing eddies as the wall is approached (Tennekes & Lumley 1972; Townsend 1976).
Wall-modeled LES (WMLES) attempts to further reduce the cost by only resolving the
energy-containing eddies in the outer region of the flow, extending the near-isotropic grid
which scales in outer units to the wall. The effect of the severely under-resolved near-wall
region on the outer flow is replaced by wall models (Bose & Park 2018). The cost scaling
of WMLES is potentially reduced to Re0τ assuming the same arguments made by Choi
& Moin (2012) and Yang & Griffin (2021) in the context of spatially-evolving boundary
layers.
The wall models employed in WMLES rely primarily on some form of the Reynolds-

averaged Navier-Stokes (RANS) equations (Bose & Park 2018). This could range from
the entirety of the RANS equations solved on a separate embedded grid such as the non-
equilibrium wall model (NEQWM) of Park & Moin (2014) to the equilibrium wall model
(EQWM), where all terms in the RANS equations are ignored except for the wall-normal
diffusion, equivalent to the assumptions of local equilibrium and a constant stress layer.
The use of the RANS equations limits the predictive capabilities of these wall models to
the mean wall-shear stress, with higher-order statistics and fluctuating quantities such as
the wall-shear stress fluctuations being severely underpredicted, regardless of grid refine-
ment (Park & Moin 2016). This is expected, because the near-wall eddies responsible for
the wall-shear stress fluctuations are under-resolved and not modeled explicitly. Further-
more, the use of the gradient-diffusion hypothesis to model the Reynolds shear stress in
both the EQWM and NEQWM prevents them from behaving correctly under viscously
induced three-dimensional non-equilibrium effects (Lozano-Durán et al. 2020). This is
due to the misalignment between the mean shear and the Reynolds shear stress.
The objective of this study is to devise a wall model that incorporates the near-wall

turbulent structures, hence addressing the misprediction of both the wall-shear stress
fluctuations and the non-equilibrium behavior of the near-wall layer. To do so, we propose
to use a near-wall patch with DNS resolution. The patch has a size that is constant in
inner units in all three Cartesian directions and is independent of the LES grid size. To
couple the patch to the outer LES flow, we utilize the wall-normal self-similar structure
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Figure 1. Schematic showing the interdependence of the DNS near-wall patch and the outer-
flow LES flow field. The near-wall patch is fixed in inner units, and its size is independent of the
LES grid size. The outer flow centered around ∆AE is used to extract statistical constraints that
are enforced at the top boundary of the DNS near-wall patch. The inset shows the boundary
conditions (BC) of the DNS near-wall patch, where the dashed line indicates the internal plane
whose structure is copied and rescaled at the top boundary (Elnahhas et al. 2020).

of high-Reτ wall-bounded turbulent flows, namely the presence of a self-similar hierarchy
of wall-attached eddies scaling with distance from the wall (Townsend 1976; Marusic &
Monty 2019). Below the smallest eddies in this self-similar hierarchy, there is a near-wall
self-sustaining cycle (Jiménez & Pinelli 1999). The patch is sized such that it captures
the smallest eddies in the self-similar hierarchy of wall-attached eddies. Because the
outer LES flow captures the largest eddies in the hierarchy, a coupling between the two
domains motivated by the attached-eddy hypothesis is pursued. It is argued that such
an approach leads the cost of the wall model to scale as Re0τ . Other approaches that
utilize patches have linked their size to the LES grid size, resulting in less-favorable cost
scalings (Sandham et al. 2017).

Another approach motivated by the self-similar hierarchy of wall-bounded turbulent
structures is the multi-block method of Pascarelli et al. (2000), who also suggested using
periodically replicated subdomains that are constant in size in inner units. However,
these subdomains were coupled directly to the outer flow, and required a hierarchy of
them to be explicitly added and inter-coupled as Reτ increased. In this study, the use of
the attached-eddy hypothesis to couple the near-wall patch with the outer LES domain
can be viewed as a method to circumvent hierarchical domains of Pascarelli et al. (2000).
Figure 1 illustrates all the components of the proposed coupling.

The remainder of this study is structured as follows. Section 2 presents the formulation
of the DNS near-wall patch wall model (NWP-WM) along with an attached-eddy-based
coupling between it and the outer LES domain. In Sections 3 and 4, the results of using
the NWP-WM in both equilibrium and non-equilibrium channel flows, respectively, are
presented. Finally, conclusions are drawn and future tasks are presented in Section 5.
This study extends the work presented by Elnahhas et al. (2020).
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2. The near-wall patch wall model formulation

The near-wall patch is intended to capture the smallest of the wall-normal self-similar
eddies. Combined with the outer LES capturing the largest of the self-similar eddies, the
ones in between can be accounted for with statistical constraints. This alleviates the need
for a hierarchy of patches as described in Pascarelli et al. (2000).

2.1. A near-wall patch constant in inner units

Let x, y, and z denote the streamwise, wall-normal, and spanwise coordinates, respec-
tively, with u, v, and w denoting the corresponding velocity components in each direc-
tion. In index notation, these correspond to i = 1, 2, and 3, respectively. As discussed
by Elnahhas et al. (2020), consider a region near the wall that is homogeneous in the
wall-parallel directions, The wall-parallel averaged wall-shear stress τw

x,z can be used to
find a time-varying friction velocity uτ (t) = (τw

x,z/ρ)1/2, where (.)
x,z

denotes averaging
along the homogeneous directions, and ρ is the fluid density. Rescaling continuity and
the Navier-Stokes equations with this time-dependent friction velocity, while maintaining
time in outer units, leads to
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where (.)+ indicates time-dependent plus units, and Ri are all the terms on the right-
hand side (RHS) of the momentum equation, excluding the linear forcing term. The
linear forcing term A(t)u+

i is required to force the size of the patch to remain constant
in inner units.

As opposed to Elnahhas et al. (2020), the time under which the patch evolves is retained
in outer units for two reasons. First, because the patch is coupled to the outer LES, it
is more convenient to maintain the same time for both simulation domains. Second, and
more importantly, note that uτ ≡ uτ (t) is measured in physical time, and it is used to
define the inner unit time-scale, t+ = tu2

τ (t)/ν. If instead we define uτ ≡ uτ (t
+), then

there is the potential for uτ to be multi-valued in physical time when coupling back the
wall-shear stress predicted by the patch to the LES domain. To understand this, consider
the case of temporally intermittent, large wall-shear stress fluctuations averaged along
the wall-parallel directions inside the patch. If the temporal fluctuation of this local mean
wall-shear stress is strong enough, the conversion from t+ −→ t = t+ν/u2

τ (t
+) could lead

to a smaller value of t than before, which is unphysical.

To maintain the size of the patch in inner units, the linear forcing term on the RHS of
Eq. (2.2) is used to enforce the implicit constraint of ∂u+

x,z
/∂y+|w = 1, which follows

from the definition of plus units. The friction velocity uτ (t) can be found by integrating

duτ

dt
= −A(t)uτ (2.3)

alongside the governing equations, using an appropriate definition of A(t). A proportional
controller is used similar to that of Bassenne et al. (2016). Averaging the streamwise
component of Eq. (2.2) along the wall-parallel directions and evaluating the wall-normal
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derivative at the wall leads to the equation
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for the time evolution of the slope at the wall of the mean streamwise velocity.
By equating the RHS of this evolution equation to a proportional controller, an ex-

pression for A(t) is found,
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where τ+∞ is the large-eddy turnover time inside in the patch, which is proportional to
its size in inner units, and τ+∞/G is some time constant chosen to be smaller than the
Kolmogorov timescale of the patch in inner units (i.e., τ+∞/G < τ+η = 1). For all cases in
this study, this time constant is chosen to be 0.4, with no variation in the results found
with time constants as low as 0.04.
In the case where the flow is not aligned with the streamwise coordinate direction,

such as the case of the temporally varying three-dimensional non-equilibrium channel
flow of Lozano-Durán et al. (2020), a similar approach is used to derive the proportional
controller, where the implicit constraint is the resultant wall-normal slope

√(
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+
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)2

= 1. (2.6)

2.2. The size of the patch in inner units

The size of the patch is important for the justification of the attached-eddy-based top
BC, and the coupling procedure to the outer flow (Elnahhas et al. 2020). Because the
patch needs to adequately represent the near-wall self-sustaining cycle, any Reτ -invariant
dynamics, as well as the smallest of the self-similar attached eddies, its size in all three
coordinate directions should be chosen accordingly. High-pass filtering the turbulent ki-
netic energy shows that the near-wall region has an Reτ -invariant solution for wave-
lengths shorter than λ+

x,z ≈ 1000 (Lee & Moser 2019). Following the choice of Carney
et al. (2020), the patch is chosen to have a size of (L+

x , L
+
y , L

+
z ) = (1500, 300, 1500).

The following subsection shows that wall-normal self-similarity starts to emerge around
y+ ≈ 100, indicating that the wall-normal height of the patch satisfies the constraint of
containing the smallest of the self-similar wall-attached eddies. Finally, the aspect ra-
tio of this patch is consistent with the aspect ratios of wall-attached self-similar eddies
(Lozano-Durán & Bae 2019; Chandran et al. 2020).

2.3. The top boundary condition of the patch

The near-wall patch is homogeneous in the x and z directions, and periodic boundary
conditions are applied to all velocity components. In the wall-normal direction, the no-
slip and no-penetration boundary conditions are applied at the bottom wall. At the top of
the patch, the mean and fluctuating components of each of the three velocity components
are specified separately as follows

u+
i |L+

y
= u+

i |L+
y
+ u+′

i |L+
y
. (2.7)
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Following Elnahhas et al. (2020), the mean velocities in the wall-parallel directions are
specified by assuming the existence of a logarithmic profile between the outer LES flow
around ∆AE and the top of the patch. The von Kármán constant and the intercept of
the log-law are dynamically found using a least-squares approach centered around ∆AE .
The fluctuating component of each of the velocities is defined using a magnitude, αi, and
a spatial structure function, u∗

i as follows

u+′

i |L+
y
= αiu

∗
i (x

+, z+)|L+
y
. (2.8)

At a sufficiently high Reτ , the wall-attached eddies carry the bulk of the turbulent
kinetic energy and momentum of the flow (Townsend 1976; Perry & Chong 1982; Marusic
& Monty 2019). Under these assumptions, the turbulent intensity profiles reduce to
logarithmic forms

u′2

u2
τ

= B1 −A1 log

(
y

δ

)
,

w′2

u2
τ

= B2 −A2 log
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y

δ

)
,
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u2
τ

= B3, (2.9)

where A1, A2, B1, B2, and B3 are coefficients that depend on the flow, and δ is the
channel half-height or boundary layer thickness. By fitting these coefficients dynamically
using a least-squares approach centered around ∆AE , the scaling magnitudes αi can be
specified using the extrapolated values of u′2

i + at L+
y .

As discussed by Elnahhas et al. (2020), the self-similar hierarchy extends beneath
the top boundary of the patch, and as such, the spatial structure of the top boundary
condition is based on a rescaling of the flow inside the patch. Several boundary conditions
were tested by running the patch in an a-priori setting similar to that of Elnahhas et al.
(2020). These included copying the structure of a plane a certain distance away from the
top boundary, rescaling the Fourier components of the plane in wavenumber space using

the difference between the characteristic shear length scale ℓ∗ = uτ/(∂u+
x+,z+

/∂y+) at
the copying plane and the top boundary while accounting for the difference in mean
advection velocities, filtering global wall-normal velocity components, and accounting for
virtual origins of the self-similar scaling (Lozano-Durán & Bae 2019; Mizuno & Jiménez
2013; Encinar et al. 2014). It was found that these choices made little difference as long
as the source plane was within the logarithmic region. This is understood by considering
that if the source plane was taken from y+ ≈ 200, any of these choices would change the
scale of the resulting structures by 15% at most, which was found not to have substantial
effects.
Owing to these results, and the computational complexity and cost of wavenumber

rescaling, the top boundary condition used for the coupled patch-LES calculations in
the subsequent sections only copies the structure of the fluctuations while accounting
for the difference in mean advection velocities between the source and the top boundary
condition planes. The plane was copied from y+ ≈ 230, and varying this location between
y+ ≈ 160−250 yielded negligible changes to the mean wall shear-stress prediction, which
is the primary quantity of interest.

2.4. The cost scaling of the patch

The nominal start of the logarithmic region of the flow scales in inner units as 2.6Re
1/2
τ

(Klewicki et al. 2009). If the patch is required to capture the start of the logarithmic

region, then its cost would scale as Nx×Ny×Nz ∼ Re
3/2
τ , where Nx, Ny, and Nz are the

number of grid points in the three coordinates. However, the primary constraint on the
patch is to capture the smallest self-similar eddies, not the start of the logarithmic layer.
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Figure 2. Premultiplied two-dimensional streamwise energy spectra as a function of the stream-
wise and spanwise characteristic shear length-normalized wavelengths for an Reτ = 5200 channel
flow (Lee & Moser 2015). The contour levels are {0.1, 0.6}×max(kxkzΦ

+
u′u′). The nominal start

and end of the logarithmic layer are shown above the plot (Klewicki et al. 2009).

If the smallest of the self-similar eddies are fixed in size in inner units, that would make
the cost of the scale as Re0τ . To verify if that is the case, we examine the premultiplied
two-dimensional spectra of the one of the highest available Reτ channel flows, namely
the Reτ = 5200 of Lee & Moser (2015).

Figure 2 shows the premultiplied two-dimensional spectra of the streamwise turbulence
intensity as a function of wall-normal height. The figure shows that when normalized by
the characteristic shear length scale ℓ∗, the spectra collapse across the entirety of the
logarithmic region, which is bounded from below by 2.6Reτ = 185, and from by above
by 0.2Reτ = 780. However, it is evident that there is approximate collapse below the
lower bound as well, down to y+ = 100. This behavior is observed at lower-Reτ channel
flows down to Reτ = 1000. However, the Reτ = 5200 result is most important because
it is the value where the separation between the nominal start of the logarithmic region
and the closest collapsing contours to the wall is largest. This result confirms that the
cost of the patch is nominally Re0τ .

However, note that while the self-similar rescaling or copying of the structure of the
interior of the patch remains valid as Reτ increases, the statistical constraints in Eq. (2.9)
lose their validity due to the increase in size of the mesolayer. More refined expressions,
such as those derived by Chen et al. (2018), are necessary for accurate prediction of the
scaling magnitudes.

2.5. The outer flow grid requirement

Since the coupling between the outer LES and the patch requires an accurate prediction
of the turbulent intensities in the outer regions of the logarithmic region, the outer LES
has to be sufficiently resolved. Lozano-Durán & Bae (2019) showed that a grid resolution
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Domain Nx Ny Nz ∆+
x ∆+

z ∆+
y L

(+)
x L

(+)
y L

(+)
z ∆+

copy ∆AE SGS model

Patch 256 66 256 5.9 5.9 0.38-7.4 1500 300 1500 230 0.1-0.2δ -
LES 256 121 128 100 100 35-100 2πδ 2δ πδ - - AMD

Table 1. Mesh parameters for the patch and the outer LES domains at Reτ = 4200. Note that
the patch domain size and resolution are fixed in inner units independent of Reτ while those of
the outer LES are fixed in outer units. ∆AE corresponds to the region in the outer LES where
the logarithmic mean velocity and turbulent intensity functional forms are fitted using least
squares. ∆+

copy corresponds to the wall-normal height of the plane whose structure is copied for
the top boundary condition. The grid resolution for the EQWM case is the same as that used
for the outer LES coupled to the patch, and the EQWM matching location is the third grid
point away from the wall, corresponding to y+ ≈ 90. The subgrid-scale (SGS) model used in the
outer LES is the anisotropic minimum dissipation (AMD) model and is kept constant for both
the EQWM and the patch calculations (Rozema et al. 2015).

satisfying the following constraints

2∆min
x

y
≈ 0.15,

2∆min
z

y
≈ 0.15, (2.10)

where ∆x and ∆z are the grid sizes in the streamwise and spanwise directions, respec-
tively, is required to resolve 90% of the turbulent kinetic energy at some wall-normal
height. Applying this condition to the outer portion of the logarithmic region, y ≤ 0.2δ,
and assuming an isotropic grid, as is the norm in WMLES, leads to a wall-normal grid
resolution requirement of approximately 60 points per boundary-layer thickness. While
this maybe prohibitive for external aerodynamic applications, it is lower than the ac-
cepted grid requirements of atmospheric boundary layer simulations (Ghate & Lele 2017;
Howland et al. 2020). However, this number can be reduced if wall-normal stretching is
employed outside the logarithmic region, and if the required resolved turbulent intensity
for an accurate prediction of the patch’s top boundary condition is lower than 90%. The
second point was not investigated in this study. Regardless, because this estimate scales
in outer units, it does not change the cost of scaling of WMLES discussed in Section 1.

3. Equilibrium channel flow and comparison to the EQWM

As a first test, we use the NWP-WM in a canonical equilibrium channel flow at Reτ =
4200, corresponding to the DNS of Lozano-Durán & Jiménez (2014). Table 1 shows the
number of grid points, the domain size, and the resolutions for both the outer LES and
the patch. Further details such as the location of the source plane for the patch boundary
condition, the location in the outer LES where Eq. (2.9) is fitted using least squares, and
the the SGS model used are included in the table. Note that the wall-normal grid of
the outer LES is weakly stretched to deposit 15 points below y/δ = 0.2, with a total of
60 points across the channel half-height. Furthermore, the wall-shear stress predicted by
the near-wall patch is applied everywhere along the top and bottom walls of the LES
channel, and changes only temporally. In between LES time steps, the patch is run with
a CFL of 0.5 to bridge the temporal gap. For comparison, we run both the NWP-WM
and the EQWM with third-point matching with equal outer LES grid resolution. Both
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wall-models are run in both constant mass flux and constant pressure gradient modes to
test the validity of our assumptions in predicting the correct mean-wall shear stress as
compared to the EQWM as well as the wall-shear stress fluctuations when the mean-wall
shear stress is fixed, respectively. For the NWP-WM cases, the initial condition for the
patch is extracted from a separate simulation using the approach of Carney et al. (2020),
where the domain is then truncated from 600 to 300 in the wall-normal direction, and
the initial condition for the outer LES is extracted from the EQWM case. Finally, all
cases are run for 15 large-scale eddy turnover times, τ∞ = δ/uτ .

Figure 3(a) shows the mean velocities predicted by both the NWP-WM and the EQWM
normalized by the DNS value of uτ for the case of constant mass flux. The figure shows
that profiles of the mean velocity in the outer LES for both cases are equally good, but
that the prediction of the wall-shear stress by the NWP-WM is worse when compared
to the EQWM. The uNWP−WM

τ and uEQWM
τ differ from the DNS values by 6% and

2%, respectively. Nonetheless, this prediction is quite impressive given the crudity of the
assumptions made, and the lack of tuning of any of the parameters such as the patch size,
copying plane location, and outer flow attached-eddy equations fitting range. However,
the patch does predict the remainder of the mean velocity profile that is invisible to the
outer LES, which is something not predicted by the EQWM, but rather fitted through
the form of the eddy viscosity used. Note that the overlap between the two domains
is only due to the small Reτ value, and the method would eventually lead to the two
domains separating as originally designed at higher values of Reτ . The prediction of the
inner mean velocity profile is quite accurate, with minor errors at the first three grid
points closest to the top boundary. This is expected, as the turbulence has to adjust to
the still artificial top boundary condition.

Beyond the mean velocity profile and the mean wall-shear stress, the patch provides a
prediction of the near-wall turbulence intensities, and in general, the full flow structure
near the wall, as seen in Figure 3(b). Similar to the mean velocity profile, the turbulence
has to adjust to the artificial top boundary condition. Similarly, this adjustment zone is
limited to the first three grid points in the cases of u′+

rms and w′+
rms. However, it extends

deeper in the case of v′+rms. The reason for this discrepancy comes from the fact that the
wall-normal velocity has to adjust strongly to continuity through its relation to pressure
in the boundary condition for the pressure Poisson equation, and the direct copying of
its structure from within the domain adversely impacts it more than the wall-parallel
velocities. Finally, note that the consistent drop of u′+

rms across its wall-normal extent
could be due to two things. First, the elevated v′+rms profile is extracting energy from
the streamwise direction due to their pressure-strain relationship. Second, the drop is
due to the streamwise intensity being dominated by the large scale structures through
amplitude superposition and modulation that do not fit in the patch domain (Marusic
et al. 2010). The issue is probably a combination of both, with the first motivating the
formulation of a less intrusive boundary condition for the wall-normal velocity, and the
second motivating the development of super-domain-scale models (Colonius & Ran 2002).

Finally, we compare the root-mean-square (RMS) values and the spectra of the wall-
shear stress fluctuations predicted by the EQWM and the NWP-WM to DNS. Table
2 shows the RMS values of the wall-shear stress fluctuations predicted by the two wall
models when the channel is run with a constant pressure gradient. The NWP-WM recov-
ers the wall-shear stress fluctuation RMS value within 3%, whereas the EQWM is off by
44%, showing significant improvement. To further examine this issue, we compare both
the streamwise and spanwise wall-shear spectra from the two wall models to the DNS in
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(a) (b)

Figure 3. (a) The streamwise mean velocity profile in inner units predicted by both the NWP-
WM and the EQWM at a nominal Reτ = 4200 from the constant mass flux case calculation. The
patch wall model generates two mean velocity profiles, one in the outer LES and another within
the patch. (b) The turbulence intensities predicted by the near-wall patch within its domain from
the constant mass flux case calculation. The solid lines represent the patch and the dashed lines
represent the matching intensities from the full DNS simulations of Lozano-Durán & Jiménez
(2014).

DNS EQWM NWP-WM

τ+,rms
w,x 0.4413 0.2487 0.4300

Table 2. Fluctuating wall-shear stress root-mean-square values at Reτ = 4200 normalized in
inner units. These values are from the cases run with constant pressure gradient.

Figure 4. It is evident that that EQWM captures the large scales of the wall-shear stress
fluctuations reasonably well, but is not cognizant of the small-scale eddies near the wall,
which contribute a substantial amount to the fluctuating wall-shear stress. In contrast,
the NWP-WM does not see the larger eddies, and due to attaining local equilibrium, it is
over-predicting the contribution of the smaller eddies to recover the correct RMS value,
equivalent to correctly predicting the turbulent kinetic energy dissipation at the wall.
However, upon rescaling the spectra predicted by the NWP-WM by LPatch

(x,z) /LLES
(x,z), they

collapse onto the DNS spectra. As such, the NWP-WM is capable of predicting both
the correct RMS value, and the shape of the small-scale spectra of the wall-shear stress
fluctuations. By combining both the EQWM and NWP-WM, a complete prediction of
the wall-shear stress spectra across all scales is possible.

4. Non-equilibrium channel flow

To further test the capabilities of the NWP-WM, we run a case where the EQWM
is known to fail, namely a viscously-induced non-equilibrium three-dimensional channel
flow. In this flow, a sudden strong spanwise pressure gradient is applied to a steady two-
dimensional channel flow. Depending on the strength of the transverse pressure gradient,
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(a) (b)

Figure 4. (a) Streamwise (b) Spanwise wavenumber spectra of the wall-shear stress fluctuations
from the constant pressure gradient case calculations. The DNS wall-shear stress fluctuations
are from the DNS of Lozano-Durán & Jiménez (2014).

defined as Π = (dP/dz)/(dP/dx), a large portion of the largest eddies in the self-similar
hierarchy can be forced out of equilibrium and become misaligned with respect to the
mean shear. As such, not only is the assumption of the gradient-diffusion hypothesis to
model the Reynolds shear stress incorrect, but also the wall-shear stress is no longer
aligned with the velocity from the matching location in the case of the EQWM. Further-
more, this misalignment is temporally varying and is intrinsically tied to the multi-scale
nature of the wall-bounded flow. This case is thoroughly studied by Lozano-Durán et al.
(2020) at the moderate Reτ = 1000. For a sufficiently high value of Π, all the wall-
attached eddies are forced out of equilibrium, which corresponds to Π = 420 for our
current flow with Reτ = 4200. This case is illustrated in Figure 5.
We use the two-dimensional steady-state flow of the constant streamwise pressure

gradient channel solved with the NWP-WM as the initial condition. At t = 0, we impose
a transverse pressure gradient of strength Π = 420. Flow statistics are obtained from an
ensemble average of five realizations from initial conditions spaced one τ∞ apart. Figure
6 illustrates the ensemble averaged response of the streamwise Reynolds stress and the
Reynolds shear stress inside the patch. As found by Lozano-Durán et al. (2020), both
quantities initially decay in time before eventually increasing. Comparing the numerical
values and times to Figure 4 of Lozano-Durán et al. (2020), run at Reτ = 500, shows that
the normalized response is quantitatively correct. Note that the quantities are normalized
with the initial value of uτ (0). Hence, the wall-normal extent of the patch in these original
units is decreasing becuase it is held constant in inner units given the time-local value of
uτ (t) ≡ u∗

τ .
To further examine this non-equilibrium response, we compute the maximum percent-

age drop, Dτ (t
+)(Reτ/Π), at the wall-normal location y+ = 30 defined on the basis of

the initial uτ (0). The results are shown in Figure 7(a) and are both qualitatively and
numerically consistent with the predictions of Lozano-Durán et al. (2020). It is evident
that that the eddies at y+ = 30 are not affected until t+ ≈ 30, consistent with the idea
that the smaller eddies near the wall react first to the transverse pressure gradient at a
timescale proportional to their distance from the wall. Also, the normalized maximum
decay and its temporal location are quantitatively consistent with the inner-layer scaling
law of Lozano-Durán et al. (2020). However, the outer LES does not the temporal drop
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Figure 5. Schematic of the setup of the non-equilibrium channel flow experiment. A fully
developed two-dimensional turbulent channel flow driven by −dP/dx is suddenly subjected to a
strong transverse pressure gradient −dP/dz, with the strength of the pressure gradient quantified
using Π = (dP/dz/dP/dx). The strength of the transverse pressure gradient is set to Π = 420
in this test case to drive all scales out of equilibrium, corresponding to the test case in the
bottom right for a nominally Reτ = 4200 channel flow. The figure is extracted and modified
from Lozano-Durán et al. (2020).

of the streamwise wall-shear stress. Figure 7(b) shows the output net wall-shear stress
τ∗w = ρu∗2

τ , as well as its projections in the streamwise and spanwise directions, τxw and
τzw, respectively. The streamwise wall-shear rises, then decays, followed by an eventual
rise, which is inconsistent with the normalized Reynolds shear stress behavior observed
by the near-wall patch. The wall-shear stress predicted by the patch is the output of
the modified controller based on Eq. (2.5) for a two-dimensional, time-varying wall-shear
stress. It is currently unknown whether the issue is due to the controller design, or due
to some physical argument about the patch only seeing a portion of the near-wall eddies.
This is a topic of current study. However, the correct quantitative normalized behavior
of the eddies inside the patch indicate that the wall model may be capable of recov-
ering the correct behavior in extremely challenging flow conditions. To date, the most
sophisticated RANS-based wall model, namely the NEQWM, is incapable of capturing
the non-equilibrium discussed above (Lozano-Durán et al. 2020).

5. Conclusions and future work

The present study builds upon the work presented by Elnahhas et al. (2020) where a
NWP-WM is designed in such a way as to capture the near-wall self-sustaining cycle, as
well as the smallest eddies in the hierarchy of wall-attached self-similar eddies, indepen-
dent of the value of Reτ and the LES grid, which scales in outer units. It is argued that
such a wall model is practically necessary for the prediction of higher-order quantities of
interest such as the wall-shear stress fluctuations, which are completely dependent on the
near-wall structure of the flow. Furthermore, the direct capture of the near-wall eddies
allows for the prediction of multi-scale phenomena such as the viscously induced three-
dimensional flow, due to a sudden spanwise pressure gradient. Traditional RANS-based
wall-models are known to fail in these two areas. Holding the near-wall patch constant
in inner units required a controller, which was the mechanism by which the wall-shear
stress was predicted. By appealing to DNS data, the sizing of the patch is chosen such
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(a) (b)

Figure 6. The mean Reynolds stress behavior observed by the patch for the Π = 420 case at
Reτ = 4200. (a) Reynold shear stress. (b) Streamwise Reynolds stress. For both plots, darker
colors correspond to earlier times, while lighter colors correspond to later times with the following
times t+ ∈ {1, 30, 61, 123, 186, 248, 310, 387, 465}. The inner units are those normalized by the
initial value of uτ = uτ (0).

(a) (b)

Figure 7. (a) The maximum percentage drop of the tangential Reynolds stress at y+ = 30
defined with respect to the initial value of uτ = uτ (0). The maximum percentage drop is defined
as Dτ (y

+, t) = (u′v′(y+, t) − u′v′(y+, 0))/(u′v′(y+, 0)) × 100 (Lozano-Durán et al. 2020). (b)
The wall-shear stress predicted by the patch through the two-dimensional extended controller
through Eq. (2.5)-(2.6) and outputted to the outer LES. τ∗

w is the resultant wall-shear stress, and
τx
w and τ z

w are the projected wall-shear stresses along the streamwise and spanwise directions,
respectively. All wall-shear stresses are normalized by the fully developed two-dimensional value
(thin black line).

that it captures the Reτ -invariant dynamics of the near-wall flow as well as a portion of
the self-similar flow lying above. Combined with the fact that the outer LES captures
the largest of the self-similar eddies, a statistical coupling is formed using the predictions
of the attached-eddy hypothesis. Even though the nominal start of the logarithmic layer
is a function of Reτ , DNS data of channel flow at Reτ = 5200 showed that the structural
self-similarity starts at a location fixed in inner units, validating the formulation of the
boundary condition, as well as implying that the cost scaling of such an approach is
Reτ -invariant.
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The model was tested in both equilibrium and highly non-equilibrium flows. In the tra-
ditional equilibrium setting, it is capable of recovering the mean-wall shear stress value,
as well as the RMS value and spatial structure of the wall-shear stress fluctuations. Fur-
thermore, the model is capable of predicting the near-wall mean velocity profile as well
as the turbulent intensities with reasonable accuracy. These are quantities of interest for
multi-physics flow phenomena such as particle-laden turbulence (Johnson et al. 2020). In
non-equilibrium settings, the near-wall patch model is capable of recovering the correct
qualitative and quantitative normalized behavior of the Reynolds stress tensor, illustrat-
ing the efficacy of the multi-scale approach. However, the output wall-shear stress is
mispredicted, which is currently being investigated as a potential issue of the controller
design.
In future works, we will address the controller issues and verify the efficacy of the

model design in highly non-equilibrium flows. Furthermore, the effect of more accurate
outer flow statistical constraints will be examined. Finally, interesting research avenues
such as the development of super-domain-scale models, and coupling of the EQWM and
the NWP-WM for a better spatial representation of the wall-shear stress will be pursued.
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